OpenCV Python Tutorial For Beginners - Smoothing Images | Blurring Images OpenCV
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
img = cv2.imread('lena.jpg') | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
kernel = np.ones((5, 5), np.float32)/25 | |
dst = cv2.filter2D(img, -1, kernel) | |
blur = cv2.blur(img, (5, 5)) | |
gblur = cv2.GaussianBlur(img, (5, 5), 0) | |
median = cv2.medianBlur(img, 5) | |
bilateralFilter = cv2.bilateralFilter(img, 9, 75, 75) | |
titles = ['image', '2D Convolution', 'blur', 'GaussianBlur', 'median', 'bilateralFilter'] | |
images = [img, dst, blur, gblur, median, bilateralFilter] | |
for i in range(6): | |
plt.subplot(2, 3, i+1), plt.imshow(images[i], 'gray') | |
plt.title(titles[i]) | |
plt.xticks([]),plt.yticks([]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment