Skip to content

Instantly share code, notes, and snippets.

@qoh
Last active May 11, 2020 04:50
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save qoh/6779282 to your computer and use it in GitHub Desktop.
Save qoh/6779282 to your computer and use it in GitHub Desktop.
renderCsm_frag.glsl file for soft shaders v2 - performance optimized version.
#version 120
#extension GL_EXT_texture_array : require
#extension GL_EXT_texture_array : enable
// Soft shadows v2
// - Performance optimized version
float dist = 0.05f;
float step = 0.025f;
// fudgeKey is very hard to get right.
// Try various values to fix weird patterns or "disconnected shadows".
// It depends on your shadow quality, too.
const float fudgeKey = 0.1f;
const float fudgeKeyMult2 = fudgeKey * 2.0f;
const float fudgeKeyMult3 = fudgeKey * 3.0f;
const float fudgeKeyMult4 = fudgeKey * 4.0f;
// Varying.
varying vec4 vPos;
varying vec3 worldNormal;
varying vec3 worldPos;
// Global directional light uniforms.
uniform vec4 dirLightDir;
uniform vec4 dirLightColor;
uniform vec4 dirLightAmbient;
uniform vec4 dirShadowColor;
// Misc uniforms.
uniform vec3 camPos;
uniform mat4 obj2World;
uniform mat4 world2Cam;
uniform int isParticle;
uniform int doColorMultiply;
uniform int glow;
uniform sampler2DArray stex;
uniform sampler2D tex;
// Surface calculations, including specular power.
varying vec2 texCoord;
vec4 viewDelta;
float specular;
float NdotL;
vec3 reflectVec;
void calculateSurface(vec4 color, inout vec4 albedo)
{
viewDelta.xyz = worldPos - camPos;
viewDelta.w = length(viewDelta.xyz);
viewDelta.xyz = -normalize(viewDelta.xyz);
vec4 texAlbedo = texture2D(tex, texCoord);
albedo.rgb = mix(color.rgb, texAlbedo.rgb, texAlbedo.a);
if(doColorMultiply == 1)
albedo *= gl_Color;
albedo.a = color.a;
NdotL = max(dot(worldNormal, dirLightDir.xyz), 0.0f);
reflectVec = normalize(reflect(-dirLightDir.xyz, worldNormal));
specular = pow(max(dot(reflectVec, viewDelta.xyz), 0.0f), 12.0f) * length(texAlbedo.rgb);
//albedo.rgb = normalize(viewDelta.xyz);
}
// Fogging.
uniform vec4 fogBaseColor;
uniform vec4 fogConsts;
uniform sampler2D fogTex;
varying vec2 fogCoords;
void applyFog(inout vec4 albedo)
{
// Calculate fog.
vec4 fogColor = texture2D(fogTex, fogCoords) * fogBaseColor;
// Blend it.
albedo = mix(albedo, fogColor, fogColor.a);
}
// Shadowing
uniform vec4 far_d;
uniform vec2 texSize; // x - size, y - 1/size
uniform vec4 zScale;
uniform int shadowSplitCount;
void calculateShadowCoords(vec3 offset, inout vec4 shadow_coord)
{
vec4 rPos = vPos + vec4(offset, 0.0f);
int index = 3;
float fudgeFactor = fudgeKeyMult4 / zScale.w;
// find the appropriate depth map to look up in based on the depth of this fragment
if(rPos.y < far_d.x)
{
index = 0;
fudgeFactor = fudgeKey / zScale.x;
}
else if(rPos.y < far_d.y)
{
index = 1;
fudgeFactor = fudgeKeyMult2 / zScale.y;
}
else if(rPos.y < far_d.z)
{
index = 2;
fudgeFactor = fudgeKeyMult3 / zScale.z;
}
// transform this fragment's position from view space to scaled light clip space
// such that the xy coordinates are in [0;1]
// note there is no need to divide by w for orthogonal light sources
shadow_coord = gl_TextureMatrix[index]*rPos;
shadow_coord.w = shadow_coord.z - fudgeFactor; // Figure the input coordinate for PCF sampling if appropriate.
shadow_coord.z = float(index); // Encode the layer to sample.
}
// Point lighting
uniform vec4 pointLightPos0;
uniform vec4 pointLightColor0;
uniform float pointLightRadius0;
uniform vec4 pointLightPos1;
uniform vec4 pointLightColor1;
uniform float pointLightRadius1;
uniform vec4 pointLightPos2;
uniform vec4 pointLightColor2;
uniform float pointLightRadius2;
uniform vec4 pointLightPos3;
uniform vec4 pointLightColor3;
uniform float pointLightRadius3;
uniform vec4 pointLightPos4;
uniform vec4 pointLightColor4;
uniform float pointLightRadius4;
uniform vec4 pointLightPos5;
uniform vec4 pointLightColor5;
uniform float pointLightRadius5;
uniform vec4 pointLightPos6;
uniform vec4 pointLightColor6;
uniform float pointLightRadius6;
uniform vec4 pointLightPos7;
uniform vec4 pointLightColor7;
uniform float pointLightRadius7;
vec4 accumulatePointLights()
{
vec4 pointLightTotal = vec4(0.0f, 0.0f, 0.0f, 0.0f);
vec3 lightDelta = vec3(0.0f, 0.0f, 0.0f);
float lightDot = 0.0f;
float ratio = 0.0f;
// Calculate effects of the 8 point lights.
lightDelta = worldPos.xyz - pointLightPos0.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius0);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor0.xyz;
lightDelta = worldPos.xyz - pointLightPos1.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius1);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor1.xyz;
lightDelta = worldPos.xyz - pointLightPos2.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius2);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor2.xyz;
lightDelta = worldPos.xyz - pointLightPos3.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius3);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor3.xyz;
lightDelta = worldPos.xyz - pointLightPos4.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius4);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor4.xyz;
lightDelta = worldPos.xyz - pointLightPos5.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius5);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor5.xyz;
lightDelta = worldPos.xyz - pointLightPos6.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius6);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor6.xyz;
lightDelta = worldPos.xyz - pointLightPos7.xyz;
lightDot = max(dot(-normalize(lightDelta), worldNormal), 0.0f);
ratio = 1.0f - (length(lightDelta) / pointLightRadius7);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * lightDot * pointLightColor7.xyz;
return pointLightTotal;
}
vec4 accumulateParticlePointLights()
{
vec4 pointLightTotal = vec4(0.0f, 0.0f, 0.0f, 0.0f);
vec3 lightDelta = vec3(0.0f, 0.0f, 0.0f);
float ratio = 0.0f;
// Calculate effects of the 8 point lights.
lightDelta = worldPos.xyz - pointLightPos0.xyz;
ratio = 1.0f - (length(lightDelta) / pointLightRadius0);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * pointLightColor0.xyz;
lightDelta = worldPos.xyz - pointLightPos1.xyz;
ratio = 1.0f - (length(lightDelta) / pointLightRadius1);
ratio = ratio * ratio * ratio * 0.4f;
ratio = max(ratio, 0.0f);
pointLightTotal.xyz += ratio * pointLightColor1.xyz;
return pointLightTotal;
}
// Combine specular and direct lighting terms.
// note: if we make combinedColor "out" only, it throws a potentially uninitialized value warning, so we've made it inout
void applyLighting(inout vec4 combinedColor, vec4 albedo, float occlusionFactor)
{
//large normal means glowing object
if(glow == 1 || (worldNormal.x + worldNormal.y + worldNormal.z) > 2.0f)
{
combinedColor = albedo;
return;
}
vec4 dirLightSpecular = occlusionFactor * specular * dirLightColor;
dirLightSpecular *= 0.5f; //arbitrary adjustment
vec4 dirLightDirect = ((NdotL * dirLightColor) * occlusionFactor) + (dirLightAmbient * occlusionFactor) + (dirShadowColor * (1.0f - occlusionFactor));
if(NdotL <= 0.04f)
{
dirLightDirect = dirShadowColor;
dirLightSpecular = vec4(0.0f, 0.0f, 0.0f, 0.0f);
}
else if(NdotL <= 0.1)
{
float val = (NdotL - 0.04f) / (0.1f - 0.04f);
dirLightDirect = (dirLightDirect * val) + (dirShadowColor * (1.0f - val));
dirLightSpecular = dirLightSpecular * val;
}
dirLightDirect += accumulatePointLights();
dirLightSpecular.a = length(dirLightSpecular.rgb);
dirLightDirect.a *= min(occlusionFactor + 0.75f, 1.0f);
combinedColor.rgb = dirLightDirect.rgb * albedo.rgb;
combinedColor.a = albedo.a;
combinedColor += dirLightSpecular;
}
float shadowCoef()
{
vec4 shadow_coord;
int total = 0;
int samples = 0;
for (float x = -dist; x <= dist; x += step) {
for (float y = -dist; y <= dist; y += step) {
for (float z = -dist; z <= dist; z += step) {
calculateShadowCoords(vec3(x, y, z), shadow_coord);
if (texture2DArray(stex, shadow_coord.xyz).x - shadow_coord.w > 0.0f) {
total += 1;
}
samples += 1;
}
}
}
return float(total) / samples;
}
void main()
{
vec4 albedo = vec4(0.0f, 0.0f, 0.0f, 0.0f);
calculateSurface(gl_Color, albedo);
float occlusionFactor = 0.0f;
if(NdotL > -0.01f)
{
if(shadowSplitCount <= 0)
occlusionFactor = 1.0f;
else
occlusionFactor = shadowCoef();
}
// Apply lighting and fog.
vec4 fragColor = vec4(0.0f, 0.0f, 0.0f, 0.0f);
if(isParticle == 1)
{
vec4 texAlbedo = texture2D(tex, texCoord);
vec4 dirLightDirect = (dirLightColor * occlusionFactor) + (dirLightAmbient * occlusionFactor) + (dirShadowColor * (1.0f - occlusionFactor));
vec4 plt = accumulateParticlePointLights();
vec4 lightTotal = dirLightDirect + plt;
lightTotal.x = clamp(lightTotal.x, 0.0f, 1.2f);
lightTotal.y = clamp(lightTotal.y, 0.0f, 1.2f);
lightTotal.z = clamp(lightTotal.z, 0.0f, 1.2f);
fragColor = texAlbedo * gl_Color * lightTotal;
applyFog(fragColor);
fragColor.a = texAlbedo.a * gl_Color.a;
}
else
{
applyLighting(fragColor, albedo, occlusionFactor);
applyFog(fragColor);
}
// Uncomment to viz depth in B.
//fragColor.z = vPos.y * 0.01f;
gl_FragColor = fragColor;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment