Skip to content

Instantly share code, notes, and snippets.

@racerxdl
Created October 18, 2020 00:16
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save racerxdl/d77307df2ed1052bb729837674110b70 to your computer and use it in GitHub Desktop.
Save racerxdl/d77307df2ed1052bb729837674110b70 to your computer and use it in GitHub Desktop.
#include <SPI.h>
#include "FS.h"
#include "SPIFFS.h"
#define CS 5
#define FORMAT false
SPIClass * vspi = NULL;
SPISettings settings(20000000, MSBFIRST, SPI_MODE0);
//SPISettings settings(1000000, MSBFIRST, SPI_MODE0);
byte jedec[3];
void readBuffer(uint32_t addr, uint8_t *buff, uint32_t len) {
uint8_t ad[3];
uint8_t out;
ad[0] = (addr & 0xFF0000) >> 16;
ad[1] = (addr & 0x00FF00) >> 8;
ad[2] = (addr & 0x0000FF) >> 0;
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x03); // Read Data command
vspi->transfer(ad[0]);
vspi->transfer(ad[1]);
vspi->transfer(ad[2]);
for (uint32_t i = 0; i < len; i++) {
*buff = vspi->transfer(0x00);
buff++;
}
vspi->endTransaction();
digitalWrite(CS, HIGH);
}
void printHexPad32(uint32_t val) {
for (int i = 7; i > 0; i--) {
uint32_t v = (1 << (i * 4));
if (val < v) {
Serial.print("0");
} else {
break;
}
}
Serial.print(val, HEX);
}
void printHexPad8(uint8_t val) {
if (val < 0x10) {
Serial.print("0");
}
Serial.print(val, HEX);
}
void printASCII(uint8_t v) {
if (v >= 0x20 && v <= 0x7E) {
Serial.print((char)v);
} else {
Serial.print(".");
}
}
void printBuff(uint8_t *buff, uint32_t len, uint32_t mainoffset) {
Serial.println("-----------------------------");
for (uint32_t i = 0; i < len; i++) {
if (i % 16 == 0) {
printHexPad32(mainoffset + i);
Serial.print(": ");
}
printHexPad8(buff[i]);
Serial.print(" ");
if (i % 16 == 15) {
uint32_t off = (i / 16) * 16;
for (uint32_t p = 0; p < 16; p++) {
printASCII(buff[off+p]);
}
Serial.println("");
}
}
Serial.println("-----------------------------");
}
#define CHUNK 256
uint8_t databuff[CHUNK];
uint8_t pattern[CHUNK];
uint32_t flashSize = 512 * 1024;
uint8_t readStatus() {
uint8_t status;
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x05);
status = vspi->transfer(0);
vspi->endTransaction();
digitalWrite(CS, HIGH);
return status;
}
void waitReady() {
uint8_t status = 1;
// Serial.println("Waiting device not BUSY");
while (status) {
delay(1);
status = readStatus();
status &= 1; // Only first bit
}
// Serial.println("Device is free!");
}
void sectorErase(uint32_t addr) {
uint8_t ad[3];
uint8_t out;
ad[0] = (addr & 0xFF0000) >> 16;
ad[1] = (addr & 0x00FF00) >> 8;
ad[2] = (addr & 0x0000FF) >> 0;
writeEnable();
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x20); // Read Data command
vspi->transfer(ad[0]);
vspi->transfer(ad[1]);
vspi->transfer(ad[2]);
vspi->endTransaction();
digitalWrite(CS, HIGH);
waitReady();
}
#define SRP (1 << 7)
#define TB (1 << 5)
#define BP2 (1 << 4)
#define BP1 (1 << 3)
#define BP0 (1 << 2)
#define WEL (1 << 1)
void unprotect() {
writeEnable();
uint8_t ok = 0;
while(!ok) {
uint8_t status = readStatus();
status &= ~(SRP | TB | BP2 | BP1 | BP0); // Reset protections
status &= ~(WEL); // Avoid checking Write Enable that is reseted after operation
digitalWrite(CS, HIGH);
delay(1);
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x01);
vspi->transfer(status);
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(1);
waitReady();
uint8_t status2 = readStatus();
if (status != status2) {
Serial.print("Error writting status! Expected ");
Serial.print(status, HEX);
Serial.print(" got ");
Serial.println(status2, HEX);
} else {
ok = 1;
}
}
}
void writeEnable() {
// Serial.println("Write Enable");
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x06);
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(10);
uint8_t status = readStatus();
status &= 2;
if (status != 2) {
Serial.println("ERROR setting Write Enable!");
}
waitReady();
}
void chipErase() {
writeEnable();
Serial.println("Chip Erase");
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0xC7);
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(10);
waitReady();
}
void programPage(uint32_t addr, uint8_t *data) {
uint8_t ad[3];
ad[0] = (addr & 0xFF0000) >> 16;
ad[1] = (addr & 0x00FF00) >> 8;
ad[2] = (addr & 0x0000FF) >> 0;
writeEnable();
digitalWrite(CS, LOW);
vspi->beginTransaction(settings);
vspi->transfer(0x02);
vspi->transfer(ad[0]);
vspi->transfer(ad[1]);
vspi->transfer(ad[2]);
for (int i = 0; i < 256; i++) {
vspi->transfer(data[i]);
}
vspi->endTransaction();
digitalWrite(CS, HIGH);
delay(1);
waitReady();
}
char *wololo = "ACNDEFHEJRHSUDIFKEMLOPEC";
void TestChip() {
Serial.println("Unprotect");
unprotect();
// Serial.println("Erasing chip");
// chipErase();
Serial.println("Programming test buffer");
for (int i = 0; i < CHUNK; i++) {
pattern[i] = (i & 0xFF);
}
int numPages = flashSize / CHUNK;
for (int i = 0; i < numPages; i++) {
Serial.print("Testing page ");
Serial.println(i, HEX);
sectorErase(i*CHUNK);
programPage(i*CHUNK, pattern);
readBuffer(i * CHUNK, databuff, CHUNK);
int diff = compare(databuff, pattern, 256);
if (diff != -1) {
Serial.print("Expected at offset ");
printHexPad32(i * CHUNK);
Serial.println("");
printBuff(pattern, CHUNK, i * CHUNK);
Serial.println("");
Serial.println("Got: ");
printBuff(databuff, CHUNK, i * CHUNK);
break;
}
}
Serial.println("FINISH");
}
void setup() {
Serial.begin(115200);
Serial.setDebugOutput(true);
Serial.println("ON!!!");
pinMode(23, OUTPUT);
pinMode(19, INPUT);
pinMode(18,OUTPUT);
pinMode(CS, OUTPUT);
pinMode(13, OUTPUT);
pinMode(22, OUTPUT);
digitalWrite(CS, HIGH);
digitalWrite(13, HIGH);
digitalWrite(22, HIGH);
if(FORMAT) {
SPIFFS.format();
}
if(!SPIFFS.begin(true)){
Serial.println("SPIFFS Mount Failed");
return;
}
memcpy(databuff, wololo, 24);
vspi = new SPIClass(VSPI);
vspi->begin();
vspi->setDataMode(0);
vspi->setBitOrder(MSBFIRST);
delay(100);
uint32_t offset = 0;
Serial.println("Send anything to start.");
while(Serial.available() <= 0);
TestChip();
// unprotect();
// chipErase();
// programPage(0, databuff);
// PrintFlash();
// DumpFlash();
// WriteFlash();
// VerifyFlash();
}
int compare(uint8_t *buff0, uint8_t *buff1, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {
if (buff0[i] != buff1[i]) {
return i;
}
}
return -1;
}
void VerifyFlash() {
File file = SPIFFS.open("/FLSHSAVE.BIN", FILE_READ);
if (!file) {
Serial.println("Error opening file!");
while(true) {
delay(1000);
}
}
uint32_t addr = 0;
int diff = -1;
Serial.println("VERIFING");
while(addr < flashSize) {
// printHexPad32(addr);
// Serial.println("");
file.read(databuff, 256);
readBuffer(addr, databuff + 512, 256);
diff = compare(databuff, databuff + 512, 256);
if (diff != -1) {
Serial.print("\nCorrupted at index ");
Serial.print(addr + diff, HEX);
Serial.println("");
break;
}
addr += 256;
}
file.close();
Serial.println("DONE");
}
void WriteFlash() {
unprotect();
chipErase();
File file = SPIFFS.open("/FLSHSAVE.BIN", FILE_READ);
if (!file) {
Serial.println("Error opening file!");
while(true) {
delay(1000);
}
}
uint32_t addr = 0;
Serial.println("FLASHING");
while(addr < flashSize) {
printHexPad32(addr);
Serial.println("");
file.read(databuff, 256);
programPage(addr, databuff);
addr += 256;
}
file.close();
Serial.println("DONE");
}
void PrintFlash() {
uint32_t offset = 0;
Serial.println("READING FLASH");
while (offset < flashSize) {
readBuffer(offset, databuff, CHUNK);
printBuff(databuff, CHUNK, offset);
offset += CHUNK;
break;
}
}
void DumpFlash() {
File file = SPIFFS.open("/SAVE.BIN", FILE_WRITE);
if (!file) {
Serial.println("Error opening file!");
while(true) {
delay(1000);
}
}
uint32_t offset = 0;
Serial.println("READING FLASH");
while (offset < flashSize) {
readBuffer(offset, databuff, CHUNK);
file.write(databuff, CHUNK);
printHexPad32(offset);
printBuff(databuff, CHUNK, offset);
Serial.println("");
offset += CHUNK;
}
file.close();
}
void loop() {
delay(1000);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment