Skip to content

Instantly share code, notes, and snippets.

@rajeshmr
Created December 7, 2017 10:33
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
Embed
What would you like to do?
from keras.models import Sequential
from keras.layers import Conv1D, GlobalMaxPooling1D, Flatten
from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation
model = Sequential()
model.add(embedding_layer)
model.add(Dropout(0.2))
model.add(Conv1D(300, 3, padding='valid',activation='relu',strides=2))
model.add(Conv1D(150, 3, padding='valid',activation='relu',strides=2))
model.add(Conv1D(75, 3, padding='valid',activation='relu',strides=2))
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(150,activation='sigmoid'))
model.add(Dropout(0.2))
model.add(Dense(3,activation='sigmoid'))
model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['acc'])
model.summary()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment