
Lab 1: Brainf—k

Due: May 30, 2011

1 Objective

You will write both an interpreter and a compiler for Brainf—k, a simple, but Turing-complete
language.1 You will use the Visitor design pattern to complete the lab.2

2 Brainf—k Semantics

The detailed description for the language is available at http://en.wikipedia.org/wiki/Brainfuck.
The runtime environment consists of:

• A 30,000 byte array with all elements initialized to zero.

• A movable pointer initialized to index 0 (the leftmost element) of the array.

• Input and output streams in ASCII encoding.

The commands consist of:

Character Type Meaning
> Right Increment pointer (move pointer right)
< Left Decrement pointer (move pointer left)
+ Increment Increment byte at pointer
- Decrement Decrement byte at pointer
. Output Output array[pointer]
, Input Input array[pointer]
[Loop If array[pointer] is zero, jump past matching]

] jump back to matching [

3 Lab Instructions

Follow the instructions and ask for help if you get stuck.

1. Create a class called BF.

1Technically, the language is only Turing-complete if the array is unlimited in size.
2http://en.wikipedia.org/wiki/Visitor_pattern

1

2. Inside BF, add the following code (the brainf—k program in main should be on one line):3

public interface Visitor {

void visit (Left left);

void visit (Right right);

void visit (Increment increment);

void visit (Decrement decrement);

void visit (Input input);

void visit (Output output);

void visit (Loop loop);

void visit (Program program);

}

public interface Node {

void accept (Visitor v);

}

private int i = 0;

public static Program parse (String str) {

return new Program (new BF().doParse(str));

}

public static class PrintVisitor implements Visitor {

public void visit (Left n) { System.out.print(’<’); }

public void visit (Right n) { System.out.print(’>’); }

public void visit (Increment n) { System.out.print(’+’); }

public void visit (Decrement n) { System.out.print(’-’); }

public void visit (Input n) { System.out.print(’,’); }

public void visit (Output n) { System.out.print(’.’); }

public void visit (Loop n) {

System.out.print(’[’);

n.body.accept(this);

System.out.print(’]’);

}

public void visit (Program n) { n.body.accept(this); }

}

public static void main (String[] args) {

Node hello = BF.parse("++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+

++++++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.");

hello.accept(new BF.PrintVisitor());

}

3. Create the following classes (that implement Node) within BF: Left, Right, Increment,
Decrement, Input, Output, Loop, Program, and Sequence. The implementation of most
classes will be identical, with the exception of Sequence, Loop, and Program. Sequence has
no corresponding visit method; in its accept method, it instructs all its children to accept

the visitor in order. Loop and Program have a Node, called body. Program is a static class.

3http://pastebin.com/zdac5EQj

2

4. Write the following recursive method inside BF: private Sequence doParse (String str).
Use BF member variable i to track the location in str. doParse should return Sequence1 for
brainf—k program +[.+]:

Program

Sequence1

Increment1 Loop

Sequence2

Output Increment2

5. If the PrintVisitor prints the original Brainf—k program given to BF.parse, then you
correctly parsed the code.

6. Write an InterpreterVisitor inside BF. If it works correctly, you should see Hello World!

7. Test InterpreterVisitor using source code from:
http://esoteric.sange.fi/brainfuck/bf-source/prog/

8. Write a CompilerVisitor inside BF. Generate equivalent code in your choice of programming
language (e.g., Java, Python, C++). Be sure to test that this works, too!

4 Next steps

Complete any two of the following tasks.4

1. DebugVisitor. Write an interactive debugger for this language.5

2. AnimationVisitor. Render the contents of the 30,000 byte array as a 300×100 animation.6

3. AssemblyVisitor. Output assembly for the GNU assembler (as), the Netwide Assembler
(nasm), or the Microsoft Assembler (masm).

4. OptimizationVisitor. Write an optimizer that improves execution performance by replacing
runs of the same instruction with a single instruction.7

5. Write a program in Brainf—k that prints your name.

4To earn an additional 1 day extension or 25% extra credit, implement any four of the tasks.
5Support stepping through program execution and printing out the pointer and its content.
6The GUI should show the location of the pointer and the contents of the entire array.
7E.g., ++++ becomes a single Increment node with a count of 4.

3

