Create a gist now

Instantly share code, notes, and snippets.

@rhymoid /IPerlin.lhs
Last active Dec 15, 2015

(Dependencies for this program: `vector --any` and `JuicyPixels >= 2`.)
\begin{code}
{-# LANGUAGE Haskell2010 #-}
{-# LANGUAGE BangPatterns #-}
import Control.Arrow
import Data.Bits
import Data.Vector.Unboxed ((!))
import Data.Word
import System.Environment (getArgs)
import qualified Codec.Picture as P
import qualified Data.ByteString as B
import qualified Data.Vector.Unboxed as V
\end{code}
I tried to port [Ken Perlin's improved noise](http://mrl.nyu.edu/~perlin/noise/)
to Haskell, but I'm not entirely sure that my method is correct. The main part
is something that should generalize nicely to higher and lower dimensions, but
that is something for later:
\begin{code}
perlin3 :: (Ord a, Num a, RealFrac a, V.Unbox a) => Permutation -> (a, a, a) -> a
perlin3 p (!x', !y', !z')
= let (!xX, xx@(SomeFraction !x)) = actuallyProperFraction x'
(!yY, yy@(SomeFraction !y)) = actuallyProperFraction y'
(!zZ, zz@(SomeFraction !z)) = actuallyProperFraction z'
!u = fade xx
!v = fade yy
!w = fade zz
!h = xX
!a = next p h + yY
!b = next p (h+1) + yY
!aa = next p a + zZ
!ab = next p (a+1) + zZ
!ba = next p b + zZ
!bb = next p (b+1) + zZ
!aaa = next p aa
!aab = next p (aa+1)
!aba = next p ab
!abb = next p (ab+1)
!baa = next p ba
!bab = next p (ba+1)
!bba = next p bb
!bbb = next p (bb+1)
in
lerp w
(lerp v
(lerp u
(grad aaa (x, y, z))
(grad baa (x-1, y, z)))
(lerp u
(grad aba (x, y-1, z))
(grad bba (x-1, y-1, z))))
(lerp v
(lerp u
(grad aab (x, y, z-1))
(grad bab (x-1, y, z-1)))
(lerp u
(grad abb (x, y-1, z-1))
(grad bbb (x-1, y-1, z-1))))
\end{code}
This is of course accompanied by a few functions mentioned in the `perlin3`
function, of which I hope they are as efficient as possible:
\begin{code}
newtype SomeFraction a = SomeFraction a
someFraction t | 0 <= t, t < 1 = SomeFraction t
fade :: (Ord a, Num a) => SomeFraction a -> SomeFraction a
fade (SomeFraction !t) = someFraction $ t * t * t * (t * (t * 6 - 15) + 10)
lerp :: (Ord a, Num a) => SomeFraction a -> a -> a -> a
lerp (SomeFraction !t) !a !b = a + t * (b - a)
grad :: (Bits hash, Integral hash, Num a, V.Unbox a) => hash -> (a, a, a) -> a
grad !hash (!x, !y, !z) = dot3 (vks `V.unsafeIndex` fromIntegral (hash .&. 15)) (x, y, z)
where
vks = V.fromList
[ (1,1,0), (-1,1,0), (1,-1,0), (-1,-1,0)
, (1,0,1), (-1,0,1), (1,0,-1), (-1,0,-1)
, (0,1,1), (0,-1,1), (0,1,-1), (0,-1,-1)
, (1,1,0), (-1,1,0), (0,-1,1), (0,-1,-1)
]
dot3 :: Num a => (a, a, a) -> (a, a, a) -> a
dot3 (!x0, !y0, !z0) (!x1, !y1, !z1) = x0 * x1 + y0 * y1 + z0 * z1
-- Unlike `properFraction`, `actuallyProperFraction` rounds as intended.
actuallyProperFraction :: (RealFrac a, Integral b) => a -> (b, SomeFraction a)
actuallyProperFraction x
= let (ipart, fpart) = properFraction x
in case () of
() | x >= 0 -> (ipart, someFraction fpart)
| fpart == 0 -> (ipart, someFraction 0)
| otherwise -> (ipart - 1, someFraction (1 + fpart))
\end{code}
For the permutation group, I just copied the one Perlin used on his website:
\begin{code}
newtype Permutation = Permutation (V.Vector Word8)
mkPermutation :: [Word8] -> Permutation
mkPermutation xs
| length xs >= 256
= Permutation . V.fromList $ xs
permutation :: Permutation
permutation = mkPermutation
[151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
]
next :: Permutation -> Word8 -> Word8
next (Permutation !v) !idx'
= v `V.unsafeIndex` (fromIntegral $ idx' .&. 0xFF)
\end{code}
And all this is tied together with JuicyPixels:
\begin{code}
main = do
[target] <- getArgs
let image = P.generateImage pixelRenderer 512 512
P.writePng target image
where
pixelRenderer, pixelRenderer' :: Int -> Int -> Word8
pixelRenderer !x !y
= floor $ ((perlin3 permutation ((fromIntegral x - 256) / 32,
(fromIntegral y - 256) / 32, 0 :: Double))+1)/2 * 128
-- This code is much more readable, but also much slower.
pixelRenderer' x y
= (\w -> floor $ ((w+1)/2 * 128)) -- w should be in [-1,+1]
. perlin3 permutation
. (\(x,y,z) -> ((x-256)/32, (y-256)/32, (z-256)/32))
$ (fromIntegral x, fromIntegral y, 0 :: Double)
\end{code}
My problem is that `perlin3` seems very slow to me. If I profile it, `pixelRenderer`
is getting a lot of time as well, but I'll ignore that for now. I don't know
how to optimize `perlin3`. I tried to hint GHC with bang patterns, which cuts
the execution time in half, so that's nice. Explicitly specializing and inlining
barely helps with `ghc -O`. Is `perlin3` supposed to be this slow?
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment