Skip to content

Instantly share code, notes, and snippets.

roboreport roboreport

Block or report user

Report or block roboreport

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View plot_prediction.py
%matplotlib inline
import matplotlib.pyplot as plt
y_pred = model.predict(X_test_t, batch_size=32)
plt.scatter(y_test, y_pred)
plt.xlabel("Price Index: $Y_i$")
plt.ylabel("Predicted price Index: $\hat{Y}_i$")
plt.title("Prices vs Predicted price Index: $Y_i$ vs $\hat{Y}_i$")
View run_lstm.py
from keras.layers import LSTM
from keras.models import Sequential
from keras.layers import Dense
import keras.backend as K
from keras.callbacks import EarlyStopping
K.clear_session()
model = Sequential() # Sequeatial Model
model.add(LSTM(20, input_shape=(12, 1))) # (timestep, feature)
View make_train_test_data.py
print(type(X_train))
X_train = X_train.values
print(type(X_train))
X_test= X_test.values
y_train = y_train.values
y_test = y_test.values
print(X_train.shape)
print(y_train.shape)
View reshape.py
X_train_t = X_train.reshape(X_train.shape[0], 12, 1)
X_test_t = X_test.reshape(X_test.shape[0], 12, 1)
print("최종 DATA")
print(X_train_t.shape)
print(X_train_t)
print(y_train)
@roboreport
roboreport / postgres-cheatsheet.md
Created Sep 4, 2019 — forked from Kartones/postgres-cheatsheet.md
PostgreSQL command line cheatsheet
View postgres-cheatsheet.md

PSQL

Magic words:

psql -U postgres

Some interesting flags (to see all, use -h or --help depending on your psql version):

  • -E: will describe the underlaying queries of the \ commands (cool for learning!)
  • -l: psql will list all databases and then exit (useful if the user you connect with doesn't has a default database, like at AWS RDS)
View convert_window.py
for s in range(1, 13):
train_sc_df['shift_{}'.format(s)] = train_sc_df['trade_price_idx_value'].shift(s)
test_sc_df['shift_{}'.format(s)] = test_sc_df['trade_price_idx_value'].shift(s)
train_sc_df.head(13)
View convert_pd.py
train_sc_df = pd.DataFrame(train_sc, columns=['trade_price_idx_value'], index=train.index)
test_sc_df = pd.DataFrame(test_sc, columns=['trade_price_idx_value'], index=test.index)
train_sc_df.head()
View scale_data.py
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler()
train_sc = sc.fit_transform(train)
test_sc = sc.transform(test)
train_sc
View splitdata.py
# 2017/1/1 까지의 데이터를 트레이닝셋.
# 그 이후 데이터를 테스트셋으로 한다.
split_date = pd.Timestamp('01-01-2017')
train = df.loc[:split_date, ['trade_price_idx_value']]
test = df.loc[split_date:, ['trade_price_idx_value']]
ax = train.plot()
test.plot(ax=ax)
View importfile.py
# 파일 업로드 기능 실행
from google.colab import files
uploaded = files.upload()
for fn in uploaded.keys():
print('User uploaded file "{name}" with length {length} bytes'.format(name=fn, length=len(uploaded[fn])))
You can’t perform that action at this time.