Skip to content

Instantly share code, notes, and snippets.

@roconnor
Created March 5, 2012 19:18
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save roconnor/1980459 to your computer and use it in GitHub Desktop.
Save roconnor/1980459 to your computer and use it in GitHub Desktop.
Implementation of Patrica Tries in Coq
Require Import Bvector.
Require Import Eqdep_dec.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Definition bCompare (x y : bool) : comparison :=
match x, y with
| false, false => Eq
| false, true => Lt
| true , false => Gt
| true , true => Eq
end.
Lemma bCompare_CompOpp : forall b1 b2, bCompare b1 b2 = CompOpp (bCompare b2 b1).
Proof. intros [|] [|]; reflexivity. Qed.
Lemma bCompare_refl : forall b, bCompare b b = Eq.
Proof. intros [|]; reflexivity. Qed.
Lemma bCompare_elim : forall P : bool -> bool -> comparison -> Type,
(forall b, P b b Eq) ->
(P false true Lt) ->
(P true false Gt) ->
forall b1 b2, P b1 b2 (bCompare b1 b2).
Proof.
intros P H0 H1 H2 [|] [|]; auto.
Qed.
Lemma vector_rect2:
forall (A : Type) (P : forall n : nat, vector A n -> vector A n -> Type),
P 0 (Vnil A) (Vnil A) ->
(forall (a1 a2 : A) (n : nat) (v1 v2 : vector A n),
P n v1 v2 -> P (S n) (Vcons A a1 n v1) (Vcons A a2 n v2)) ->
forall (n : nat) (v1 v2 : vector A n), P n v1 v2.
Proof.
intros A P H0 H1 n v1 v2.
change v2 with (eq_rect n (vector A) v2 n (eq_refl n)).
generalize (eq_refl n).
set (a:=n).
unfold a at 1 4.
revert v2.
induction v1; intros v2; dependent inversion v2; intros e.
replace e with (refl_equal 0);[|apply UIP_dec; decide equality].
assumption.
replace e with (refl_equal (S n));[|apply UIP_dec; decide equality].
apply H1.
apply (IHv1 v (refl_equal n)).
Qed.
Lemma vector_dec : forall A, (forall a1 a2 : A, {a1 = a2} + {a1 <> a2}) ->
forall n (v1 v2 : vector A n), {v1 = v2} + {v1 <> v2}.
Proof.
intros A A_dec.
set (P := fun n (v1 v2 : vector A n) => {v1 = v2} + {v1 <> v2}).
apply (vector_rect2 (A := A) (P := P)).
left; reflexivity.
intros a1 a2 n v1 v2 [IH|IH].
rewrite IH.
case (A_dec a1 a2); intros Ha.
rewrite Ha.
left; reflexivity.
right; intros H.
apply Ha.
injection H; auto.
right; intros H.
apply IH.
refine (@inj_pair2_eq_dec _ _ (fun n => vector A n) _ _ _ _).
decide equality.
injection H.
auto.
Defined.
Section PatriciaTrie.
Variable A:Set.
Inductive PatriciaTrieR : nat -> Set :=
| Tip : A -> PatriciaTrieR 0
| Arm : bool -> forall n, PatriciaTrieR n -> PatriciaTrieR (S n)
| Branch : forall n, PatriciaTrieR n -> PatriciaTrieR n -> PatriciaTrieR (S n).
Definition PatriciaTrie n := option (PatriciaTrieR n).
Fixpoint singletonR (n : nat) (k:Bvector n) (v:A) : PatriciaTrieR n :=
match k in vector _ n return PatriciaTrieR n with
| Vnil => Tip v
| Vcons r m k' => Arm r (singletonR k' v)
end.
Definition singleton n k v : PatriciaTrie n := option_map (singletonR k) v.
Fixpoint getR n (k:Bvector n) : PatriciaTrieR n -> option A :=
match k with
| Vnil => fun t =>
match t with
| Tip v => Some v
| _ => @id
end
| Vcons b n k' => fun t =>
match t with
| Arm b0 m t0 => fun rec =>
match bCompare b b0 with
| Eq => rec t0
| Lt | Gt => None
end
| Branch m t0 t1 => fun rec =>
if b then rec t1 else rec t0
end (fun t => getR k' t)
end.
Definition get n (k:Bvector n) (ot:PatriciaTrie n) : option A :=
match ot with
| Some t => getR k t
| None => None
end.
Fixpoint setR n (k:Bvector n) : PatriciaTrieR n -> option A -> PatriciaTrie n :=
match k with
| Vnil => fun t =>
match t with
| Tip v => option_map Tip
| _ => @id
end
| Vcons b n k' => fun t =>
match t with
| Arm b0 m t0 => fun k' rec =>
match bCompare b b0 with
| Lt => fun ov =>
match ov with
| None => Some (Arm b0 t0)
| Some v => Some (Branch (singletonR k' v) t0)
end
| Eq => fun ov => option_map (@Arm b0 m) (rec t0 ov)
| Gt => fun ov =>
match ov with
| None => Some (Arm b0 t0)
| Some v => Some (Branch t0 (singletonR k' v))
end
end
| Branch m t0 t1 => fun _ rec =>
if b
then
fun ov => Some
match rec t1 ov with
| None => Arm false t0
| Some t1' => Branch t0 t1'
end
else
fun ov => Some
match rec t0 ov with
| None => Arm true t1
| Some t0' => Branch t0' t1
end
end k' (fun t => setR k' t)
end.
Definition set n (k:Bvector n) (ot : PatriciaTrie n) : option A -> PatriciaTrie n :=
match ot with
| Some t => setR k t
| None => option_map (singletonR k)
end.
Lemma trieR_nonempty : forall n (t : PatriciaTrieR n), {p : (Bvector n*A) | getR (fst p) t = Some (snd p)}.
Proof.
intros n t.
induction t.
exists (pair (Vnil _) a).
reflexivity.
destruct IHt as [[k a] IHt].
exists (pair (Vcons _ b _ k) a).
simpl; rewrite bCompare_refl.
assumption.
destruct IHt1 as [[k a] IHt].
exists (pair (Vcons _ false _ k) a).
assumption.
Qed.
Lemma trie_ext : forall n (ot1 ot2 : PatriciaTrie n), (forall k, get k ot1 = get k ot2) -> ot1 = ot2.
Proof.
assert (L1 : forall n (t : PatriciaTrieR n), ~(forall k : Bvector n, getR k t = None)).
intros n t H.
destruct (trieR_nonempty t) as [[k a] Hk].
rewrite H in Hk.
discriminate.
intros n [t1|] [t2|] Hot;
[|elim (L1 _ t1)|elim (L1 _ t2);symmetry|reflexivity]; try firstorder.
apply f_equal.
revert Hot.
change t2 with (eq_rec n PatriciaTrieR t2 n (eq_refl n)).
generalize (eq_refl n).
set (a:=n).
unfold a at 1 8 11.
revert t2.
induction t1; dependent inversion_clear t2;
(intros E; elim E using K_dec_set; try decide equality; simpl; intros Hot).
generalize (Hot (Vnil _)); simpl; congruence.
generalize (fun (k : Bvector n) => Hot (Vcons _ b _ k)).
simpl.
rewrite bCompare_refl.
apply bCompare_elim; try (intros Hot'; elim (L1 _ t1); congruence).
intros b1 Hot'.
apply f_equal.
apply (IHt1 p (refl_equal n)).
assumption.
elim (L1 _ (if b then p else p0)).
intros k.
generalize (Hot (Vcons _ (negb b) _ k)).
case b; simpl; congruence.
elim (L1 _ (if b then t1_1 else t1_2)).
intros k.
generalize (Hot (Vcons _ (negb b) _ k)).
case b; simpl; congruence.
apply f_equal2.
apply (IHt1_1 _ (refl_equal n)).
intros k; apply (Hot (Vcons _ false _ k)).
apply (IHt1_2 _ (refl_equal n)).
intros k; apply (Hot (Vcons _ true _ k)).
Qed.
Lemma getR_singletonR : forall n (k : Bvector n) nv, getR k (singletonR k nv) = Some nv.
Proof.
intros n k nv.
induction k as [|b m k].
reflexivity.
case b; auto.
Qed.
Theorem lens2 : forall n (k : Bvector n) ot nv, get k (set k ot nv) = nv.
Proof.
intros n k [t|] nv; simpl;
[|destruct nv as [nv|]; simpl; auto using getR_singletonR].
change t with (eq_rec n PatriciaTrieR t n (eq_refl n)).
generalize (eq_refl n).
set (a:=n).
unfold a at 1 5.
revert t.
induction k as [|b m k].
intros t;dependent inversion t.
intros E; elim E using K_dec_set; try decide equality.
destruct nv; reflexivity.
intros t;dependent inversion t;
intros E; elim E using K_dec_set; try decide equality;
simpl (eq_rec _ _ _ _ _);
pose (IHkp := fun p => IHk p (refl_equal m));
simpl in IHkp.
case b; case b0;
destruct nv as [nv|]; simpl; try auto using getR_singletonR;
apply (fun x => eq_trans x (IHkp p));
case (setR _ _ _); reflexivity.
case b;
[apply (fun x => eq_trans x (IHkp p0))
|apply (fun x => eq_trans x (IHkp p))
]; simpl; case (setR _ _ _); reflexivity.
Qed.
Lemma getR_singletonR_indep : forall n (k1 k2 : Bvector n) nv, k1 <> k2 -> getR k1 (singletonR k2 nv) = None.
Proof.
set (P := fun n (k1 k2 : Bvector n) => forall nv : A,
k1 <> k2 -> getR k1 (singletonR k2 nv) = None).
apply (vector_rect2 (A:=bool) (P:=P)).
intros nv.
congruence.
unfold P; simpl.
intros b1 b2.
apply bCompare_elim; try reflexivity.
intros b n k1 k2 IH nv Hk.
apply IH.
congruence.
Qed.
Theorem get_indep : forall n (k1 k2 : Bvector n) ot nv, k1 <> k2 -> get k1 (set k2 ot nv) = get k1 ot.
Proof.
set (P := fun n (k1 k2 : Bvector n) => forall ot nv,
k1 <> k2 -> get k1 (set k2 ot nv) = get k1 ot).
apply (vector_rect2 (A:=bool) (P:=P)); unfold P.
congruence.
intros b1 b2 n k1 k2 IH [t|] nv Hk;
[|destruct nv as [nv|]; simpl;
[revert Hk; apply bCompare_elim|];
try (intros b Hk; apply getR_singletonR_indep);
congruence].
change t with (eq_rec (S n) PatriciaTrieR t (S n) (eq_refl (S n))).
generalize (eq_refl (S n)).
set (a:=(S n)).
unfold a at 1 6 10.
dependent inversion t;
intros E; elim E using K_dec_set; try decide equality;
simpl (eq_rec _ _ _ _ _).
revert Hk.
simpl.
apply bCompare_elim.
intros b0.
apply bCompare_elim.
intros b3 Hk.
assert (IHp := (IH (Some p) nv)).
simpl in IHp.
rewrite <- IHp by congruence.
destruct (setR k2 p nv);
[simpl; rewrite bCompare_refl|]; reflexivity.
destruct (setR k2 p nv); reflexivity.
destruct (setR k2 p nv); reflexivity.
destruct b1;
destruct nv; try reflexivity.
intros Hk.
apply getR_singletonR_indep.
congruence.
destruct b1;
destruct nv; try reflexivity.
intros Hk.
apply getR_singletonR_indep.
congruence.
unfold set.
destruct b1.
assert (IHp0 := (IH (Some p0) nv)).
simpl in IHp0.
destruct b2; simpl.
rewrite <- IHp0 by congruence.
destruct (setR k2 p0 nv); reflexivity.
destruct (setR k2 p nv); reflexivity.
assert (IHp := (IH (Some p) nv)).
simpl in IHp.
destruct b2; simpl.
destruct (setR k2 p0 nv); reflexivity.
rewrite <- IHp by congruence.
destruct (setR k2 p nv); reflexivity.
Qed.
Theorem lens1 : forall n (k : Bvector n) ot, set k ot (get k ot) = ot.
Proof.
intros n k ot.
apply trie_ext.
intros k'.
case (vector_dec bool_dec k k').
intros eq; rewrite <- eq; clear eq k'.
rewrite !lens2; reflexivity.
intros Hk.
rewrite !get_indep; congruence.
Qed.
Theorem lens3 : forall n (k : Bvector n) ot nv1 nv2, set k (set k ot nv1) nv2 = set k ot nv2.
Proof.
intros n k ot nv1 nv2.
apply trie_ext.
intros k'.
case (vector_dec bool_dec k k').
intros eq; rewrite <- eq; clear eq k'.
rewrite !lens2; reflexivity.
intros Hk.
rewrite !get_indep; congruence.
Qed.
Theorem set_indep : forall n (k1 k2 : Bvector n) ot nv1 nv2, k1 <> k2 ->
set k2 (set k1 ot nv1) nv2 = set k1 (set k2 ot nv2) nv1.
Proof.
intros n k1 k2 ot nv1 nv2 Hk.
apply trie_ext.
intros k3.
case (vector_dec bool_dec k3 k2); intros Hk'.
rewrite Hk'; clear k3 Hk'.
rewrite lens2, get_indep, lens2; congruence.
case (vector_dec bool_dec k3 k1); intros Hk''.
rewrite Hk''; clear k3 Hk' Hk''.
rewrite lens2, get_indep, lens2; congruence.
rewrite !get_indep; congruence.
Qed.
End PatriciaTrie.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment