Skip to content

Instantly share code, notes, and snippets.

@roneyfraga
Created May 22, 2014 20:29
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save roneyfraga/ca682b6193c75e7be4bf to your computer and use it in GitHub Desktop.
Save roneyfraga/ca682b6193c75e7be4bf to your computer and use it in GitHub Desktop.
PT J
AU Lin, TH
Huang, CF
Guo, GL
Hwang, WS
Huang, SL
AF Lin, Ting-Hsiang
Huang, Chiung-Fang
Guo, Gia-Luen
Hwang, Wen-Song
Huang, Shir-Ly
TI Pilot-scale ethanol production from rice straw hydrolysates using
xylose-fermenting Pichia stipitis
SO BIORESOURCE TECHNOLOGY
LA English
DT Article
DE Ammonia solution neutralization; Cellulosic ethanol; Detoxification;
Ethanol production; Xylose fermentation
ID DILUTE-ACID PRETREATMENT; SACCHAROMYCES-CEREVISIAE; LIGNOCELLULOSIC
BIOMASS; CELLULOSIC ETHANOL; CANDIDA-SHEHATAE; FERMENTATION; GLUCOSE;
TOXICITY; YEAST; TECHNOLOGIES
AB Ethanol was produced at pilot scale from rice straw hydrolysates using a Pichia stipitis strain previously adapted to NaOH-neutralized hydrolysates. The highest ethanol yield was 0.44 +/- 0.02 g(p)/g(s) at an aeration rate of 0.05 vvm using overliming-detoxified hydrolysates. The yield with hydrolysates conditioned by ammonia and NaOH was 0.39 +/- 0.01 and 0.34 +/- 0.01 g(p)/g(s), respectively, were achieved at the same aeration rate. The actual ethanol yield from hydrolysate fermentation with ammonia neutralization was similar to that with overliming hydrolysate after taking into account the xylose loss resulting from these conditioning processes. Moreover, the ethanol yield from ammonia-neutralized hydrolysates could be further enhanced by increasing the initial cell density by two-fold or reducing the combined concentration of furfural and 5-hydroxymethyl furfural to 0.6 g/L by reducing the severity of operational conditions in pretreatment. This study demonstrated the potential for commercial ethanol production from rice straw via xylose fermentation. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Lin, Ting-Hsiang; Huang, Shir-Ly] Natl Cent Univ, Dept Life Sci, Jhongli 32001, Taoyuan County, Taiwan.
[Huang, Chiung-Fang; Guo, Gia-Luen; Hwang, Wen-Song] Inst Nucl Energy Res, Div Chem, Longtan Township 32546, Taoyuan County, Taiwan.
RP Huang, SL (reprint author), Natl Cent Univ, Dept Life Sci, 300 Jhongda Rd, Jhongli 32001, Taoyuan County, Taiwan.
EM slhuang@cc.ncu.edu.tw
CR Agbogbo FK, 2006, BIOTECHNOL LETT, V28, P2065, DOI 10.1007/s10529-006-9192-6
Agbogbo FK, 2008, BIOTECHNOL LETT, V30, P1515, DOI 10.1007/s10529-008-9728-z
Ahmed S, 2009, APPL MICROBIOL BIOT, V84, P19, DOI 10.1007/s00253-009-2079-4
Chen WH, 2011, BIORESOURCE TECHNOL, V102, P10451, DOI 10.1016/j.biortech.2011.08.118
Chen WS, 2011, BIORESOURCE TECHNOL, V102, P5406, DOI 10.1016/j.biortech.2010.11.007
Delgenes JP, 1996, ENZYME MICROB TECH, V19, P220, DOI 10.1016/0141-0229(95)00237-5
Eggeman T, 2005, BIORESOURCE TECHNOL, V96, P2019, DOI 10.1016/j.biortech.2005.01.017
Eken-Saracoglu N, 2000, BIOTECHNOL LETT, V22, P855, DOI 10.1023/A:1005663313597
GROOTJEN DRJ, 1991, ENZYME MICROB TECH, V13, P648, DOI 10.1016/0141-0229(91)90079-P
GROOTJEN DRJ, 1990, ENZYME MICROB TECH, V12, P20, DOI 10.1016/0141-0229(90)90174-O
Guo GL, 2008, BIORESOURCE TECHNOL, V99, P6046, DOI 10.1016/j.biortech.2007.12.047
Huang CF, 2009, BIORESOURCE TECHNOL, V100, P3914, DOI 10.1016/j.biortech.2009.02.064
Jeffries TW, 2007, NAT BIOTECHNOL, V25, P319, DOI 10.1038/nbt1290
Jeffries TW, 2000, ADV APPL MICROBIOL, V47, P221, DOI 10.1016/S0065-2164(00)47006-1
Katahira S, 2008, ENZYME MICROB TECH, V43, P115, DOI 10.1016/j.enzmictec.2008.03.001
Klinner U, 2005, APPL MICROBIOL BIOT, V67, P247, DOI 10.1007/s00253-004-1746-8
Martinez A, 2000, BIOTECHNOL BIOENG, V69, P526, DOI [10.1002/1097-0290(20000905)69:5<526::AID-BIT7>3.0.CO;2-E, 10.1002/1097-0290(20000905)69:5<526::AID-BIT7>3.3.CO;2-5]
Matsushika A, 2009, APPL MICROBIOL BIOT, V84, P37, DOI 10.1007/s00253-009-2101-x
Mohagheghi A, 2006, PROCESS BIOCHEM, V41, P1806, DOI 10.1016/j.procbio.2006.03.028
Mosier N, 2005, BIORESOURCE TECHNOL, V96, P673, DOI 10.1016/j.biortech.2004.06.025
MOZES N, 1994, COLLOID SURFACE B, V3, P63, DOI 10.1016/0927-7765(93)01113-6
Neureiter M, 2002, APPL BIOCHEM BIOTECH, V98, P49, DOI 10.1385/ABAB:98-100:1-9:49
Pienkos PT, 2009, CELLULOSE, V16, P743, DOI 10.1007/s10570-009-9309-x
Ranatunga TD, 2000, ENZYME MICROB TECH, V27, P240, DOI 10.1016/S0141-0229(00)00216-7
Saha BC, 2005, PROCESS BIOCHEM, V40, P3693, DOI 10.1016/j.procbio.2005.04.006
Sanchez OJ, 2008, BIORESOURCE TECHNOL, V99, P5270, DOI 10.1016/j.biortech.2007.11.013
Sun Y, 2002, BIORESOURCE TECHNOL, V83, P1, DOI 10.1016/S0960-8524(01)00212-7
Sun Y, 2005, BIORESOURCE TECHNOL, V96, P1599, DOI 10.1016/j.biortech.2004.12.022
Walton S, 2010, BIORESOURCE TECHNOL, V101, P1935, DOI 10.1016/j.biortech.2009.10.043
Yadav KS, 2011, BIORESOURCE TECHNOL, V102, P6473, DOI 10.1016/j.biortech.2011.03.019
NR 30
TC 6
Z9 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0960-8524
J9 BIORESOURCE TECHNOL
JI Bioresour. Technol.
PD JUL
PY 2012
VL 116
BP 314
EP 319
DI 10.1016/j.biortech.2012.03.089
PG 6
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA 963BP
UT WOS:000305595400048
ER
PT J
AU Brodeur-Campbell, M
Klinger, J
Shonnard, D
AF Brodeur-Campbell, Michael
Klinger, Jordan
Shonnard, David
TI Feedstock mixture effects on sugar monomer recovery following dilute
acid pretreatment and enzymatic hydrolysis
SO BIORESOURCE TECHNOLOGY
LA English
DT Article
DE Lignocellulosic biomass; Ethanol; Pretreatment; Enzymatic hydrolysis;
Optimization
ID KINETIC CHARACTERIZATION; ETHANOL-PRODUCTION; SWITCHGRASS; CELLULOSE;
SOFTWOOD; SACCHARIFICATION; YIELDS
AB This study seeks to investigate the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Aspen, a hardwood species well suited to biochemical processing, was chosen as the model species for this study. Balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content, were chosen as adjuncts. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. No synergism or antagonism was observed for any of the feedstock mixtures. Maximum glucose yield was 70% of theoretical for switchgrass and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental p-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%. Total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Brodeur-Campbell, Michael; Klinger, Jordan; Shonnard, David] Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA.
[Shonnard, David] Michigan Technol Univ, Sustainable Futures Inst, Houghton, MI 49931 USA.
RP Brodeur-Campbell, M (reprint author), Michigan Technol Univ, Dept Chem Engn, 1400 Townsend Dr, Houghton, MI 49931 USA.
EM mcampbel@mtu.edu
FU National Science Foundation through Material Use: Science, Engineering
and Society (MUSES) award [BES-0524872]; National Science Foundation
through Integrative Graduate Education and Research Traineeships (IGERT)
award [DGE-0333401]
FX The authors would like to thank the National Science Foundation for
support through a Material Use: Science, Engineering and Society (MUSES)
award (BES-0524872) and through the Integrative Graduate Education and
Research Traineeships (IGERT) award (DGE-0333401).
CR Allen SA, 2010, BIOTECHNOL BIOFUELS, V3, DOI 10.1186/1754-6834-3-2
Chung YC, 2005, APPL BIOCHEM BIOTECH, V121, P947
Dien BS, 2006, BIOMASS BIOENERG, V30, P880, DOI 10.1016/j.biombioe.2006.02.004
Grohmann K., 1986, BIOTECHNOL BIOENG S, V15, P59
Guo GL, 2008, BIORESOURCE TECHNOL, V99, P6046, DOI 10.1016/j.biortech.2007.12.047
Jensen J, 2008, AICHE J, V54, P1637, DOI 10.1002/aic.11467
Jensen JR, 2010, BIORESOURCE TECHNOL, V101, P2317, DOI 10.1016/j.biortech.2009.11.038
Kabel MA, 2007, BIORESOURCE TECHNOL, V98, P2034, DOI 10.1016/j.biortech.2006.08.006
Lloyd TA, 2005, BIORESOURCE TECHNOL, V96, P1967, DOI 10.1016/j.biortech.2005.01.011
LYND LR, 1987, BIOTECHNOL BIOENG, V29, P92, DOI 10.1002/bit.260290114
Martinez JM, 1997, IND ENG CHEM RES, V36, P688, DOI 10.1021/ie960048e
McMillan J.D., 1994, ENZYMATIC CONVERSION, P292
Morinelly JE, 2009, IND ENG CHEM RES, V48, P9877, DOI 10.1021/ie900793p
Sewalt VJH, 1997, J AGR FOOD CHEM, V45, P1823, DOI 10.1021/jf9608074
Tengborg C, 1998, APPL BIOCHEM BIOTECH, V70-2, P3, DOI 10.1007/BF02920119
Wyman CE, 2005, BIORESOURCE TECHNOL, V96, P1959, DOI 10.1016/j.biortech.2005.01.010
Yat SC, 2008, BIORESOURCE TECHNOL, V99, P3855, DOI 10.1016/j.biortech.2007.06.046
NR 17
TC 3
Z9 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0960-8524
J9 BIORESOURCE TECHNOL
JI Bioresour. Technol.
PD JUL
PY 2012
VL 116
BP 320
EP 326
DI 10.1016/j.biortech.2012.03.090
PG 7
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA 963BP
UT WOS:000305595400049
ER
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment