-
-
Save ryanburge/3ea74fee7adc0b7f40da193c10ac02f6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
gg <- cces %>% | |
filter(year >= 2021) %>% | |
group_by(year) %>% | |
mutate(gender = frcode(gender == 1 ~ "Male", | |
gender == 2 ~ "Female", | |
gender == 3 ~ "Non-\nbinary", | |
gender == 4 ~ "Other")) %>% | |
ct(gender, wt = weight, show_na = FALSE) %>% | |
filter(gender == "Non-\nbinary" | gender == "Other") | |
gg %>% | |
ggplot(., aes(x = gender, y = pct, fill = gender)) + | |
geom_col(color = "black") + | |
theme_rb() + | |
facet_wrap(~ year) + | |
geom_text(aes(y = pct + .0003, label = paste0(pct*100, '%')), position = position_dodge(width = .9), size = 6, family = "font") + | |
scale_fill_calc() + | |
scale_y_continuous(labels = percent) + | |
labs(x = "", y = "", title = "Share of the Sample That Does Not Identify\nas Male or Female", | |
caption = "@ryanburge\nData: Cooperative Election Study, 2021-2023") | |
save("non_bin_share_ces.png", wd = 5, ht = 8) | |
gg <- cces %>% | |
filter(year >= 2021) %>% | |
mutate(trans = case_when(gender == 3 | gender == 4 ~ 1, | |
gender == 1 | gender == 2 ~ 0)) %>% | |
group_by(birthyr) %>% | |
mean_ci(trans, wt = weight, ci = .84) | |
gg %>% | |
ggplot(., aes(x = birthyr, y = mean)) + | |
geom_point(stroke = 1, shape = 21, fill = "white", color = "azure4") + | |
geom_smooth(se = FALSE, color = "red") + | |
theme_rb() + | |
scale_y_continuous(labels = percent) + | |
labs(x = "Birth Year of Respondent", y = "", title = "Share Who Identify as Non-binary or Other by Birth Year", | |
caption = "@ryanburge\nData: Cooperative Election Study, 2021-2023") | |
save("trans_birthyear.png") | |
gg <- cces %>% | |
filter(year >= 2021) %>% | |
mutate(trans = case_when(gender == 3 | gender == 4 ~ 1, | |
gender == 1 | gender == 2 ~ 0)) %>% | |
mutate(gen = frcode(birthyr>= 1925 & birthyr <= 1945 ~ 'Silent', | |
birthyr>= 1946 & birthyr <= 1964 ~ 'Boomers', | |
birthyr>= 1965 & birthyr <= 1979 ~ 'Gen X', | |
birthyr>= 1980 & birthyr <= 1995 ~ 'Millennials', | |
birthyr>= 1996 & birthyr <= 2019 ~ 'Gen Z')) %>% | |
group_by(gen) %>% | |
mean_ci(trans, wt = weight) | |
gg %>% | |
ggplot(., aes(x = gen, y = mean, fill = gen)) + | |
geom_col(color = "black") + | |
theme_rb() + | |
geom_text(aes(y = mean + .0015, label = paste0(mean*100, '%')), position = position_dodge(width = .9), size = 9, family = "font") + | |
scale_fill_manual(values = met.brewer("Signac", 5)) + | |
scale_y_continuous(labels = percent) + | |
theme(axis.text.x = element_text(size = 20)) + | |
labs(x = "", y = "", title = "Share Who Identify as Non-binary or Other by Generation", | |
caption = "@ryanburge\nData: Cooperative Election Study, 2021-2023") | |
save("trans_by_gen.png", wd = 6) | |
gg1 <- cces %>% | |
filter(year >= 2021) %>% | |
filter(gender == 1 | gender == 2) %>% | |
mutate(relig = frcode(religion == 1 ~ "Protestant", | |
religion == 2 ~ "Catholic", | |
religion >= 3 & religion <= 8 ~ "Other World Religion", | |
religion == 9 ~ "Atheist", | |
religion == 10 ~ "Agnostic", | |
religion == 11 ~ "Nothing in Particular", | |
religion == 12 ~ "Something Else")) %>% | |
ct(relig, show_na = FALSE, wt = weight) %>% | |
mutate(type = "Male/\nFemale") | |
gg2 <- cces %>% | |
filter(year >= 2021) %>% | |
filter(gender == 3 | gender == 4) %>% | |
mutate(relig = frcode(religion == 1 ~ "Protestant", | |
religion == 2 ~ "Catholic", | |
religion >= 3 & religion <= 8 ~ "Other World Religion", | |
religion == 9 ~ "Atheist", | |
religion == 10 ~ "Agnostic", | |
religion == 11 ~ "Nothing in Particular", | |
religion == 12 ~ "Something Else")) %>% | |
ct(relig, show_na = FALSE, wt = weight) %>% | |
mutate(type = "Non-binary/\nOther") | |
both <- bind_rows(gg1, gg2) | |
both %>% | |
ggplot(., aes(x = type, y = pct, fill = type)) + | |
geom_col(color = "black") + | |
facet_wrap(~ relig) + | |
theme_rb() + | |
lab_bar(type = pct, above = TRUE, pos = .045, sz = 9) + | |
scale_fill_manual(values = c("#E93332", "#303180")) + | |
scale_y_continuous(labels = percent, limits = c(0, .39)) + | |
labs(x = "", y = "", title = "Religious Composition by Gender Identity", | |
caption = "@ryanburge\nData: Cooperative Election Study, 2021-2023") | |
save("gender_relig_comp.png", wd = 6, ht = 8) | |
gg1 <- cces %>% | |
filter(year >= 2021) %>% | |
filter(gender == 1 | gender == 2) %>% | |
cces_attend(pew_attendance) %>% | |
ct(att, show_na = FALSE, wt = weight) %>% | |
mutate(type = "Male/Female") | |
gg2 <- cces %>% | |
filter(year >= 2021) %>% | |
filter(gender == 3 | gender == 4) %>% | |
cces_attend(pew_attendance) %>% | |
ct(att, show_na = FALSE, wt = weight) %>% | |
mutate(type = "Non-binary/Other") | |
both <- bind_rows(gg1, gg2) | |
both %>% | |
mutate(lab = round(pct, 2)) %>% | |
ggplot(., aes(x = 1, y = pct, fill = fct_rev(att))) + | |
geom_col(color = "black") + | |
coord_flip() + | |
facet_wrap(~ type, ncol =1, strip.position = "left") + | |
theme_rb() + | |
scale_fill_manual(values = c(met.brewer("Egypt", 6))) + | |
theme(legend.position = "bottom") + | |
scale_y_continuous(labels = percent) + | |
theme(strip.text.y.left = element_text(angle=0)) + | |
guides(fill = guide_legend(reverse=T, nrow = 1)) + | |
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank()) + | |
theme(panel.grid.minor.y=element_blank(), panel.grid.major.y=element_blank()) + | |
geom_text(aes(label = ifelse(pct >.05, paste0(lab*100, '%'), '')), position = position_stack(vjust = 0.5), size = 10, family = "font", color = "white") + | |
geom_text(aes(label = ifelse(pct >.05 & att == "Never", paste0(lab*100, '%'), '')), position = position_stack(vjust = 0.5), size = 10, family = "font", color = "black") + | |
geom_text(aes(label = ifelse(pct >.05 & att == "Seldom", paste0(lab*100, '%'), '')), position = position_stack(vjust = 0.5), size = 10, family = "font", color = "black") + | |
theme(plot.title = element_text(size = 16)) + | |
theme(strip.text.y.left = element_text(angle = 0, hjust = 1)) + | |
theme(legend.text = element_text(size = 20)) + | |
labs(x = "", y = "", title = "Religious Attendance by Gender Identity", caption = "@ryanburge\nData: Cooperative Election Study, 2021-2023") | |
save("gender_id_relattend.png", wd = 10, ht = 3) | |
scale_01 <- function(df, cols = NULL) { | |
# If no specific columns are provided, scale all numeric columns | |
cols <- cols %||% names(df)[sapply(df, is.numeric)] | |
# Scale each specified column to 0-1 | |
df <- df %>% | |
mutate(across(all_of(cols), ~ (. - min(.)) / (max(.) - min(.)), .names = "scaled_{.col}")) | |
return(df) | |
} | |
regg <- cces %>% | |
filter(age <= 60) %>% | |
filter(year >= 2021) %>% | |
mutate(trans = case_when(gender == 3 | gender == 4 ~ 1, | |
gender == 1 | gender == 2 ~ 0)) %>% | |
mutate(att = 7 - pew_attendance) %>% | |
mutate(none = case_when(religion == 9 | religion == 10 | religion == 11 ~ 1, | |
TRUE ~ 0)) %>% | |
mutate(lib = case_when(ideo5 == 1 | ideo5 == 2 ~ 1, | |
ideo5 <= 5 ~ 0)) %>% | |
mutate(id3 = frcode(ideo5 == 1 | ideo5 == 2 ~ "Liberal", | |
ideo5 == 3 ~ "Moderate", | |
ideo5 == 4 | ideo5 == 5 ~ "Conservative")) %>% | |
select(age, educ, income, att, none, lib, trans, id3) | |
out <- glm(trans ~ ., data = regg) | |
library(jtools) | |
summ(out) | |
out <- glm(trans ~ I(age^2) * id3 + ., data = regg) | |
library(interactions) | |
pp <- interact_plot(out, pred= age, modx = id3, int.width = .76, interval = TRUE) | |
pp + | |
theme_rb(legend = TRUE) + | |
pid3_color() + | |
pid3_fill() + | |
scale_y_continuous(labels = percent) + | |
theme(plot.title = element_text(size = 26)) + | |
labs(x = "Age of Respondent", y = "", title = "Likelihood of Identifying as Non-binary/Other", | |
caption = "@ryanburge\nData: Cooperative Election Study, 2021-2023") | |
save("trans_interact_plot.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment