Are Born-Again Republicans Different than Republicans in General?
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(socsci) | |
library(car) | |
source("D://theme.R") | |
dfp <- read_csv("D://dfp/data.csv") | |
## Specific Issues #### | |
ddd1 <- dfp %>% mean_fun(ICE, "Abolish ICE") | |
ddd2 <- dfp %>% mean_fun(BAIL_item, "End Cash Bail") | |
ddd3 <- dfp %>% mean_fun(WELTEST, "Drug Test for Welfare") | |
ddd4 <- dfp %>% mean_fun(PUBLICINT, "Create Public Internet Co.") | |
ddd5 <- dfp %>% mean_fun(GREENJOB, "Give Green Jobs to Unemployed") | |
ddd6 <- dfp %>% mean_fun(POLFEE, "Charge Pollution Fees") | |
ddd7 <- dfp %>% mean_fun(PUBLICGEN, "Govt. Produce Generic Drugs") | |
ddd8 <- dfp %>% mean_fun(BOND, "Savings Bond for New Babies") | |
ddd9 <- dfp %>% mean_fun(FREECOLL, "Free College for All") | |
ddd10 <- dfp %>% mean_fun(WEALTH, "Wealth Tax") | |
ddd11 <- dfp %>% mean_fun(AVR, "Automatic Voter Registration") | |
ddd12 <- dfp %>% mean_fun(M4A, "Medicare for All") | |
ddd13 <- dfp %>% mean_fun(MARREP, "Marijuana Tax for Drug Treatment") | |
ddd14 <- dfp %>% mean_fun(MARAM, "Release Marijuana Related Prisoners") | |
ddd15 <- dfp %>% mean_fun(MARLEG, "Legalizing Marijuana") | |
ddd16 <- dfp %>% mean_fun(YEMEN, "End US Support of Saudi Arabia in Yemen") | |
ddd17 <- dfp %>% mean_fun(SOLITARY, "End Solitary Confinement") | |
graph <- bind_df("ddd") | |
graph %>% | |
ggplot(., aes(y=mean, x= fct_reorder(issue, mean), color = group)) + | |
geom_point(position=position_dodge(width=0.5), size =4) + | |
geom_errorbar(aes(ymin = lower, ymax=upper), position=position_dodge(0.5), size = 1, width = .25) + | |
coord_flip() + | |
theme_gg("Abel") + | |
labs(title = "Where Do White Evangelicals Diverge from Republicans?", x = "", y = "", caption = "Data: Data for Progress (2018)") + | |
scale_y_continuous(limits = c(0.85,5.25), breaks = c(1,2,3,4,5), labels = c("Strongly\nDisagree", "Somewhat\nDisagree", "Neither Agree\nor Disagree", "Somewhat\nAgree", "Strongly\nAgree")) + | |
scale_color_jama() + | |
theme(legend.position = "bottom") + | |
theme(legend.title=element_blank()) + | |
theme(text=element_text(size=28, family="font")) + | |
ggsave("D://dfp/all_issues.png", height = 8, width =18) | |
## Racial Animus #### | |
rrr1 <- dfp %>% mean_fun(GENERATIONS, "Generations of Slavery Created Conditions\nThat Make It Difficult for AAs to Get Ahead") | |
rrr2 <- dfp %>% mean_fun(FAVORS, "Italy, Irish, Jewish Immigrants Overcame\nPrejudice, Black Should Do the Same") | |
rrr3 <- dfp %>% mean_fun(INSTITUTION, "White People Have Advantages\nBecause of their Skin Color") | |
rrr4 <- dfp %>% mean_fun(SYSTEM, "Racial Problems in the U.S.\n Are Rare, Isolated Situations") | |
rrr5 <- dfp %>% mean_fun(EMPATHY, "I am Angry That Racism Exists") | |
graph <- bind_df("rrr") | |
graph %>% | |
ggplot(., aes(y=mean, x= fct_reorder(issue, mean), color = group)) + | |
geom_point(position=position_dodge(width=0.5), size =4) + | |
geom_errorbar(aes(ymin = lower, ymax=upper), position=position_dodge(0.5), size = 1, width = .25) + | |
coord_flip() + | |
theme_gg("Abel") + | |
labs(title = "Racial Animus Questions", x = "", y = "", caption = "Data: Data for Progress (2018)") + | |
scale_y_continuous(limits = c(0.85,5.25), breaks = c(1,2,3,4,5), labels = c("Strongly\nDisagree", "Somewhat\nDisagree", "Neither Agree\nor Disagree", "Somewhat\nAgree", "Strongly\nAgree")) + | |
scale_color_jama() + | |
theme(legend.position = "bottom") + | |
theme(legend.title=element_blank()) + | |
theme(text=element_text(size=28, family="font")) + | |
ggsave("D://dfp/animus_issues.png", height = 8, width =18) | |
## Fear of Demographic Changes #### | |
mean_fun <- function(df, var, ques){ | |
var <- enquo(var) | |
df1 <- df %>% | |
filter(religpew == 1) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(race ==1) %>% | |
mutate(var = car::recode(!! var, "1=5; 2=4; 3=3; 4=2; 5=1; else = NA")) %>% | |
mean_ci(var) %>% | |
mutate(group = "White BA Prots.") %>% | |
mutate(issue = ques) | |
df2 <- df %>% | |
filter(pid3 ==2) %>% | |
filter(pew_bornagain !=1) %>% | |
# filter(race ==1) %>% | |
mutate(var = car::recode(!! var, "1=5; 2=4; 3=3; 4=2; 5=1; else = NA")) %>% | |
mean_ci(var) %>% | |
mutate(group = "Not Born Again Republicans") %>% | |
mutate(issue = ques) | |
df3 <- df %>% | |
filter(pid3 ==2) %>% | |
mutate(var = car::recode(!! var, "1=5; 2=4; 3=3; 4=2; 5=1; else = NA")) %>% | |
mean_ci(var) %>% | |
mutate(group = "Republican Sample") %>% | |
mutate(issue = ques) | |
df4 <- df %>% | |
filter(religpew ==1) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(race ==1) %>% | |
filter(pid3 ==2) %>% | |
mutate(var = car::recode(!! var, "1=5; 2=4; 3=3; 4=2; 5=1; else = NA")) %>% | |
mean_ci(var) %>% | |
mutate(group = "White BA Republicans") %>% | |
mutate(issue = ques) | |
bind_rows(df1, df2, df3, df4) | |
} | |
eee1 <- dfp %>% mean_fun(CUSTOMS, "Newcomers Threaten\nAmerican Customs") | |
eee2 <- dfp %>% mean_fun(SPEAK, "Bothers Me When Someone\nDoesn't Speak English") | |
eee3 <- dfp %>% mean_fun(ENRICH, "Exposure To Different Cultures\n Will Enrich Americans") | |
eee4 <- dfp %>% mean_fun(SERVICES, "Demographic Change Will\nStrain Govt. Services") | |
eee5 <- dfp %>% mean_fun(JOBS, "Growth in PoC Will\nLead to Jobs Shortage") | |
graph <- bind_df("eee") | |
graph %>% | |
ggplot(., aes(y=mean, x= fct_reorder(issue, mean), color = group)) + | |
geom_point(position=position_dodge(width=0.5), size =4) + | |
geom_errorbar(aes(ymin = lower, ymax=upper), position=position_dodge(0.5), size = 1, width = .25) + | |
coord_flip() + | |
theme_gg("Abel") + | |
labs(title = "Fear of Demographic Changes", x = "", y = "", caption = "Data: Data for Progress (2018)") + | |
scale_y_continuous(limits = c(0.85,5.25), breaks = c(1,2,3,4,5), labels = c("Strongly Disagree", "Somewhat Disagree", "Neither Agree\nor Disagree", "Somewhat Agree", "Strongly Agree")) + | |
scale_color_jama() + | |
theme(legend.position = "bottom") + | |
theme(legend.title=element_blank()) + | |
theme(text=element_text(size=28, family="font")) + | |
ggsave("D://dfp/race_issue.png", height = 8, width =16) | |
## Race Lazy Intelligent ##### | |
mean_fun <- function(df, var, ques){ | |
var <- enquo(var) | |
df1 <- df %>% | |
filter(religpew == 1) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(race ==1) %>% | |
mean_ci(!! var) %>% | |
mutate(group = "White BA Prots.") %>% | |
mutate(issue = ques) | |
df2 <- df %>% | |
filter(pid3 ==2) %>% | |
filter(pew_bornagain !=1) %>% | |
# filter(race ==1) %>% | |
mean_ci(!! var) %>% | |
mutate(group = "Not Born Again Republicans") %>% | |
mutate(issue = ques) | |
df3 <- df %>% | |
filter(pid3 ==2) %>% | |
mean_ci(!! var) %>% | |
mutate(group = "Republican Sample") %>% | |
mutate(issue = ques) | |
df4 <- df %>% | |
filter(religpew ==1) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(race ==1) %>% | |
filter(pid3 ==2) %>% | |
mean_ci(!! var) %>% | |
mutate(group = "White BA Republicans") %>% | |
mutate(issue = ques) | |
bind_rows(df1, df2, df3, df4) | |
} | |
ggg1 <- dfp %>% mean_fun(LAZY_Whites, "Whites") | |
ggg2 <- dfp %>% mean_fun(LAZY_Blacks, "Blacks") | |
ggg3 <- dfp %>% mean_fun(LAZY_Latinos, "Latinos") | |
graph <- bind_df("ggg") | |
graph$issue <- factor(graph$issue, levels = c("Whites", "Blacks", "Latinos")) | |
g1 <- graph %>% | |
ggplot(., aes(y=mean, x= fct_rev(issue), color = group)) + | |
geom_point(position=position_dodge(width=0.5), size =4) + | |
geom_errorbar(aes(ymin = lower, ymax=upper), position=position_dodge(0.5), size = 1, width = .25) + | |
coord_flip() + | |
theme_gg("Abel") + | |
labs(title = "How Hardworking Are These Groups?", x = "", y = "", caption = "") + | |
scale_y_continuous(limits = c(0.85,7.25), breaks = c(1,2,3,4,5,6,7), labels = c("Very\nLazy", "Lazy", "Somewhat\nLazy", "Neither", "Somewhat\nHardworking", "Hardworking", "Very\nHardworking")) + | |
scale_color_jama() + | |
theme(legend.position = "bottom") + | |
theme(legend.title=element_blank()) + | |
theme(text=element_text(size=28, family="font")) + | |
ggsave("D://dfp/lazy.png", height = 8, width =18) | |
mean_fun_rev <- function(df, var, ques){ | |
var <- enquo(var) | |
df1 <- df %>% | |
filter(religpew == 1) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(race ==1) %>% | |
mutate(var = recode(!! var, "1=7; 2=6; 3=5; 4=4; 5=3; 6=2; 7=1")) %>% | |
mean_ci(var) %>% | |
mutate(group = "White Evangelicals") %>% | |
mutate(issue = ques) | |
df2 <- df %>% | |
filter(pid3 ==2) %>% | |
filter(pew_bornagain !=1) %>% | |
# filter(race ==1) %>% | |
mutate(var = recode(!! var, "1=7; 2=6; 3=5; 4=4; 5=3; 6=2; 7=1")) %>% | |
mean_ci(var) %>% | |
mutate(group = "Not Born Again Republicans") %>% | |
mutate(issue = ques) | |
df3 <- df %>% | |
filter(pid3 ==2) %>% | |
mutate(var = recode(!! var, "1=7; 2=6; 3=5; 4=4; 5=3; 6=2; 7=1")) %>% | |
mean_ci(var) %>% | |
mutate(group = "Republican Sample") %>% | |
mutate(issue = ques) | |
df4 <- df %>% | |
filter(religpew ==1) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(race ==1) %>% | |
filter(pid3 ==2) %>% | |
mutate(var = recode(!! var, "1=7; 2=6; 3=5; 4=4; 5=3; 6=2; 7=1")) %>% | |
mean_ci(var) %>% | |
mutate(group = "White BA Republicans") %>% | |
mutate(issue = ques) | |
bind_rows(df1, df2, df3, df4) | |
} | |
ggg1 <- dfp %>% mean_fun_rev(INTELLIGENT_Whites, "Whites") | |
ggg2 <- dfp %>% mean_fun_rev(INTELLIGENT_Blacks, "Blacks") | |
ggg3 <- dfp %>% mean_fun_rev(INTELLIGENT_Latinos, "Latinos") | |
graph <- bind_df("ggg") | |
graph$issue <- factor(graph$issue, levels = c("Whites", "Blacks", "Latinos")) | |
g2 <- graph %>% | |
ggplot(., aes(y=mean, x= fct_rev(issue), color = group)) + | |
geom_point(position=position_dodge(width=0.5), size =4) + | |
geom_errorbar(aes(ymin = lower, ymax=upper), position=position_dodge(0.5), size = 1, width = .25) + | |
coord_flip() + | |
theme_gg("Abel") + | |
labs(title = "How Intelligent Are These Groups?", x = "", y = "", caption = "Data: Data for Progress (2018)") + | |
scale_y_continuous(limits = c(0.85,7.25), breaks = c(1,2,3,4,5,6,7), labels = c("Very\nUnintelligent", "Unintelligent", "Somewhat\nUnintelligent", "Neither", "Somewhat\nIntelligent", "Intelligent", "Very\nIntelligent")) + | |
scale_color_jama() + | |
theme(legend.position = "bottom") + | |
theme(legend.title=element_blank()) + | |
theme(text=element_text(size=28, family="font")) + | |
ggsave("D://dfp/intel.png", height = 8, width =18) | |
library(patchwork) | |
all <- g1 + g2 + plot_layout(ncol = 1) | |
ggsave("D://dfp/patch_intel_lazy.png", all, height = 10, width =14) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment