PyCallで機械学習
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'pycall/import' | |
include PyCall::Import | |
pyimport "pandas", as: :pd | |
# kaggleのtitanicのデータで機械学習 | |
# https://www.kaggle.com/c/titanic | |
# データの読み込み(トレーニングデータとテストデータにすでに分かれていることに注目) | |
df_train = pd.read_csv.('./data/train.csv') | |
df_test = pd.read_csv.('./data/test.csv') | |
# SexId を追加 | |
sex_dict = PyCall::Dict.new({'male': 1, 'female': 0}) | |
df_train['SexId'] = df_train['Sex'].map.(sex_dict) | |
df_test['SexId'] = df_test['Sex'].map.(sex_dict) | |
# FamilySize = SibSp + Parch | |
df_train['FamilySize'] = df_train['SibSp'] + df_train['Parch'] | |
df_test['FamilySize'] = df_test['SibSp'] + df_test['Parch'] | |
# Ageの欠損値保管 | |
df_train['AgeNull'] = df_train['Age'].isnull.() | |
age_median = df_train['Age'].median.() | |
df_train['Age'].fillna.(age_median, inplace: true) | |
df_test['Age'].fillna.(age_median, inplace: true) | |
inputs = ['FamilySize', 'SexId', 'Age'] | |
X_train = df_train[inputs].values.astype.('float32') | |
X_test = df_test[inputs].values.astype.('float32') | |
y_train = df_train['Survived'].values | |
# ランダムフォレスト | |
pyfrom 'sklearn.ensemble', import: 'RandomForestClassifier' | |
model = RandomForestClassifier.(random_state: 42) | |
# 学習 | |
model.fit.(X_train, y_train) | |
# 予測 | |
score = model.score.(X_train, y_train) | |
puts "RandomForestClassifier pred: #{score}" | |
# 正規化したデータをCSVで残しておく | |
# df_train.to_csv.('data/train_formatted.csv') | |
# df_test.to_csv.('data/test_formatted.csv') | |
# シリアライズ(保存) | |
# pyfrom 'sklearn.externals', import: 'joblib' | |
# joblib.dump.(model, 'model/rf.pkl') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment