This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from patsy import dmatrices | |
import numpy as np | |
import statsmodels.api as sm | |
import matplotlib.pyplot as plt | |
#Create a pandas DataFrame for the counts data set. | |
df = pd.read_csv('nyc_bb_bicyclist_counts.csv', header=0, infer_datetime_format=True, parse_dates=[0], index_col=[0]) | |
#We'll add a few derived regression variables to the X matrix. | |
ds = df.index.to_series() | |
df['MONTH'] = ds.dt.month | |
df['DAY_OF_WEEK'] = ds.dt.dayofweek | |
df['DAY'] = ds.dt.day | |
#Let's print out the first few rows of our data set to see how it looks like | |
print(df.head(10)) | |
#Let's create the training and testing data sets. | |
mask = np.random.rand(len(df)) < 0.8 | |
df_train = df[mask] | |
df_test = df[~mask] | |
print('Training data set length='+str(len(df_train))) | |
print('Testing data set length='+str(len(df_test))) | |
#Setup the regression expression in Patsy notation. | |
#We are telling patsy that BB_COUNT is our dependent variable y and it depends on the regression variables X: | |
#DAY, DAY_OF_WEEK, MONTH, HIGH_T, LOW_T and PRECIP. | |
expr = 'BB_COUNT ~ DAY + DAY_OF_WEEK + MONTH + HIGH_T + LOW_T + PRECIP' | |
#Let's use Patsy to carve out the X and y matrices for the training and testing data sets: | |
y_train, X_train = dmatrices(expr, df_train, return_type='dataframe') | |
y_test, X_test = dmatrices(expr, df_test, return_type='dataframe') | |
#Using the statsmodels GLM class, train the Poisson regression model on the training data set. | |
poisson_training_results = sm.GLM(y_train, X_train, family=sm.families.Poisson()).fit() | |
#Print the training summary. | |
print(poisson_training_results.summary()) | |
#Let's print out the variance and mean of the data set | |
print('variance='+str(df['BB_COUNT'].var())) | |
print('mean='+str(df['BB_COUNT'].mean())) | |
#Build Consul's Generalized Poison regression model, know as GP-1 | |
gen_poisson_gp1 = sm.GeneralizedPoisson(y_train, X_train, p=1) | |
#Fit the model | |
gen_poisson_gp1_results = gen_poisson_gp1.fit() | |
#print the results | |
print(gen_poisson_gp1_results.summary()) | |
#Get the model's predictions on the test data set | |
gen_poisson_gp1_predictions = gen_poisson_gp1_results.predict(X_test) | |
predicted_counts=gen_poisson_gp1_predictions | |
actual_counts = y_test['BB_COUNT'] | |
fig = plt.figure() | |
fig.suptitle('Predicted versus actual bicyclist counts on the Brooklyn bridge') | |
predicted, = plt.plot(X_test.index, predicted_counts, 'go-', label='Predicted counts') | |
actual, = plt.plot(X_test.index, actual_counts, 'ro-', label='Actual counts') | |
plt.legend(handles=[predicted, actual]) | |
plt.show() | |
#Build Famoye's Restricted Generalized Poison regression model, know as GP-2 | |
gen_poisson_gp2 = sm.GeneralizedPoisson(y_train, X_train, p=2) | |
#Fit the model | |
gen_poisson_gp2_results = gen_poisson_gp2.fit() | |
#print the results | |
print(gen_poisson_gp2_results.summary()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment