Skip to content
{{ message }}

Instantly share code, notes, and snippets.

# semihyagcioglu/test_numpy_so_bad.py

Last active Apr 27, 2017
 # !/usr/bin/env python import sys import numpy as np import numpy.random as npr from numpy.distutils.system_info import get_info import time if __name__ == '__main__': # Run diagnostics print("NumPy Version: %s" % np.__version__) print("Max int: %i\n" % sys.maxsize) info = get_info('blas_opt') print('BLAS info:') for kk, vv in info.items(): print(' * ' + kk + ' ' + str(vv)) print("\n") # Run Test 1 N = 1 n = 1000 A = npr.randn(n, n) B = npr.randn(n, n) t = time.time() for i in range(N): C = np.dot(A, B) td = time.time() - t print("Dot product of two (%d,%d) matrices took %0.1f ms" % (n, n, 1e3 * td / N)) # Run Test 2 N = 100 n = 2000 A = npr.randn(n) B = npr.randn(n) t = time.time() for i in range(N): C = np.dot(A, B) td = time.time() - t print("Dot product of two (%d) d vectors took %0.2f us" % (n, 1e6 * td / N)) # Run Test 3 m, n = (1000, 2000) A = npr.randn(m, n) t = time.time() [U, s, V] = np.linalg.svd(A, full_matrices=False) td = time.time() - t print("SVD of (%d,%d) matrix took %0.3f s" % (m, n, td)) # Run Test 4 n = 1000 A = npr.randn(n, n) t = time.time() w, v = np.linalg.eig(A) td = time.time() - t print("Eigen decomposion of (%d,%d) matrix took %0.3f s" % (n, n, td)) print("\n")
to join this conversation on GitHub. Already have an account? Sign in to comment