Skip to content

Instantly share code, notes, and snippets.

@simonw

simonw/whoa.md Secret

Last active May 8, 2025 05:59
Show Gist options
  • Save simonw/a5f0c1e8184f4ddc8b71b30890fe690c to your computer and use it in GitHub Desktop.
Save simonw/a5f0c1e8184f4ddc8b71b30890fe690c to your computer and use it in GitHub Desktop.

2025-04-20T06:11:41 conversation: 01js8xa2xy559a2s39gcx9p0wc id: 01js8xa2yt8gr0jcjqwgedk203

Model: gemini-2.5-pro-exp-03-25

Prompt

-- none --

Prompt fragments

llm -f github:simonw/llm -f issue:simonw/llm/938
  • f81e77f64971bae443e3367d6c9216aee0d8f2a4f03fd5db5137d22ee7b85b52
  • c71d239df91726fc519c6eb72d318ec65820627232b2f796219e87dcf35d0ab4
  • 82b28f6f074641dff51fd8e037b67215cc4e480b84145c3a62bcf169729b3b00
  • 1fafa3b21198affe944065163a8eeedf2abab9d33368be9d5663dfc689b10ee9
  • 3f59e0699854cbf6b86451b35eb62fe16b3d9a191fd0f508c0743399221c48af
  • 213bb0ae16d6fad28b730599286eb85bfd968127da101913755ccc57a90cee7f
  • 46e94c9beadbe7a4a1a960723d4f39937cbda973d7fbe1beda3aacbe25b96485
  • 1feb2e3d2256ca79f2817934e49db3d1c7f05f83961c0e6ce0c566e08355a56b
  • 3525808aee3b82d17a9a8aa64f324bf10fc8083c42d269499178a8e66a449090
  • 900b89ac1d940bd0abc3dddadbe79b5309e2eccf928f2434d63818e638f2a19e
  • 33a5705c8eaab89f37334aece6f177aaec3e2fb0aaf8ea698a267ad829f68f9b
  • e69a46596e50a0dd606c82fe0c9409a12b280f050389ba52e45a9510725de20b
  • 1d42063ca922e036840da4da0c2074baa19d0313db4b8553d1af0890a3a7aa38
  • 1466107adf32ea90be62ada75ff21b992ff09dc093035f8a49ff830b1e84ee66
  • 1707c0560032ea61ecd807d92e46f6a622e90db033bd0567226be773b0ecce6b
  • 69b94a5fe79bb777b0b5fdf6f9ed53e5579308e8fdb7a9d650b28d1e19f3e3fa
  • 461c0cef31e4a445d8e7f2d61d703a1f44e058e69387d14ed83ee1c1abd5bded
  • cafcd4676c03b4495a8d3241bd44f69d88d37ae05b9ff90753989605968fd3f0
  • aa7dfbf1a991ff8f903f6ad15a479d622fa041ce9b0346974a3a5b72aa5fc41a
  • 520d292f33d4bc0f40ebe4f785635ffa95e0049cd96faeb7925c6f099c0f4804
  • e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
  • c6f47a1426a735601c9a8e01d391e8d574349ca03f8681615b4f0f233474fc75
  • f210ed5a568564adb82a17cdabf64a82d5ea607b034037adba4382325b1b5b44
  • e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
  • 1850994d449635bf02739cda473029ecdb795a6ab0aabde253a4990005a481bd
  • 6b1831241ba34a2d1c7e0e6653d3ea157d7ae1af57c7ddb0caacfefe4d0a7bd7
  • 443c551de0f720ad2bb0da591a6b562cf6294e517e82f5eba041d59c048e486f
  • e0fb0c70da679cbd102300a5665f96330a03acccd172bd2f38e3da176d17e7e7
  • 478ea76ca169e493ad9e4451da104af9bf798212c2723cabb2175f20235a8b51
  • c185e066ffd27c97ff653819e93d5c380960d68407b8a949e9a158eff0d24cea
  • b3ccb31cb942a4ebb1253ecd7d2b8c5b35e26791acfaa64c7f05251fe6b4d69b
  • aa7bd00359c420f939f97ec41894b5eb342e88eb8e309f25158374e421bb83d0
  • 4ee8f9138131298bf6724fbe017eb5097e2d2709829f93783c99471b8a7e566b
  • 79abc41cfc8917094f117a3b0d350dc22bd156409a4e237ab2a22230c53a1c7a
  • 8a73ee544a8f36bbf868b864d56089ff7601e1609a91a2af66641c5e4b46517a
  • fe2482a4c39826ac28be995416025d3adfb1cdb7a788b84ab78c0e8eb18dc438
  • b656a12b481c6ef8a6354584eb8bf94423a3aac54ff2291687679f0c52d19ed7
  • 0a7bdaee40f7fd97ca6f2132d6be8a8d2fc3e45c7079303083a9ed44d227ac8d
  • d83bd027c07108f02eca676721bf00f4667b9c7e12ee2c395e1ae9f851d52504
  • dd6c9de742c8f2d08777430d46b475de47f6343d9effcce291c79d7c1e8c72fc
  • 438cc2acb833782a9c17e5d7b2ae42bc95ad86c674ef9853cd727bff28621abe
  • 779f23377885bca5f8ddae4736f380b9ecd28a5cdaadde2ad7e6539d3d123c94
  • b5e5f6fa8f47c343d4ba5ec80395a7b2dd6c00b2a18a224d87c76c398997b994
  • 740eda164f6501d88410c059c5f545ccd0ea5f7f9f48bbf1993a92fc74d44500
  • 82027875df5233212f79efe501232808035df1ce9a6853150669f8e290dded01
  • a2e315a8cb6b804ff5d63269cc6f671656d689b61d9fd046e88ae273e5158914
  • 889abcb03d6c631d99c2e8a528d5b6587ed9b4c34c14d5e1c83cc3f0f287b153
  • ad3d836b19c45d0ccc75df51b932ce38f005e385abd29e6417eacdf41f1aff36
  • 150a31f17d9a69fea410d02979fbdf3c916a196d6a1ec9f31831f4c8644ff1aa
  • 392944fdb6c86454e01d096aba2178cb4ecdf0514c4de5029d44259b2c840344
  • 95f7355a5a9938b289e6d084132a157fb86ee048db0eb12faa6652bf5b1f518d
  • b4d2ae4f9963d546a1a666e9cc094fc6fa16b0994509e49393d68d0268d52e2c
  • 7c0c4ceaa382112ab91cbdbd56a2eb7db951d6d311ac86f433258b6ae5ed524f
  • 08d8789ff486e94876595c801932745100d6f52140a5f7c144f332d8ae632330
  • 68c1726e3dc842999ed1fc52dc363b031002790ab471b763fdba9911410b2b64
  • a22b5ea0459915eaddb1552bc097148d95152b5ca1ec5e09d9ec3962f4d4cd42
  • 7f1e16da099541d7948944366e418905bd5e39591b5e009ef17b9be9d4bfdf30
  • fde6e46547307ef7e718427de6b7e3d65c6804d77a104f59bed39cec5b1b7c51
  • f8a7f206f61ad0e7c6fafcdf542a81b14d9386f5859272480b1da1ed5db2cb90
  • 10039406a53b55ba7b24403202f6462df3cd97590120aded789d3c1c600b44d2
  • 5c0a1b67f1733f8ec7c02ecef204e6f31bb2f8bd4c0330930bce94037ad8038b
  • dbf5de14ddb489ca4cd5eaf32f71f10a0c8f76959cd4a53cb449495c59a86dfa
  • afddcd243091c60091ddc77d69acf34d55ecacd9216489735c0dd27fcb978137
  • 96bf244518b07ba0bc82373ef838c5fe7c3ca717241aca9865e5483ef4c9f98a
  • 185d93f3a0e33103a9b52b2365236b70814d74650be8de99e1a98176b4bbdbe8
  • 7e64ee2a8227a536b8a5f9d9afa5b3790a5ed880fc0097254c7b78c26bb3949a
  • 69cb1dbbd68c71172253a123dce9289765cb2a7809c3b42148c54c4472171b4c
  • 6448de731a566420d4bf732ba9990fa0d66c6ec5ae1dbb5d86f5c3c131a39324
  • 24a6dce80da6f898cec4fb4fda3f5ee0f7a6303700e7dbd675346ab85f2838c5
  • aa8d49adaf8e9a8cd4834580f1e0b276ca2a6d5b45ed491092f65a53fd6e5d96
  • 51f8597fec5e16fbff339b24dbafffe942d7ab0db68b74841d722d26da7c8fb8
  • 28af846cdb9be4319784fbef529b78e6041e7affc82abfdfb226450d0e081325
  • 307394a2cbacac9f7e73b5cdc01126e78fc54e6419cc6e5e0243f256b4a36145
  • a29000c40c840de752c30478362693a237ae086dcb927c6a62ec03af43cc2422
  • c27af1ab52980f551a2a4dadbbe9d4c617d3f7bb53c635c7b1d08f3a14cfa059
  • 15ef0e69dcdea5b86f4a351807ad138979b9068689932e6fe8a54c7330ee2140
  • 2dee83d8e6eff73de7ab1eaf7945aaf0572b4135ef7205506e9642e1fe2b28bc
  • f71638adfd2d91b8a24368a213809e095dbc8a2730cde88296af7c56231fbd99
  • a8c770eeaf9233da213632d58551d3ccf676c22de60fe5ee9450261d5054000c
  • 52e4f82fb2713c0a1616b8595afec9ea7311017db29f7d7e12d96d030f43a299
  • bc8f9338be2fe096f6acf9d8dda0c10c3960efd658d77c0d847d2adea3a47947
  • 2ca7c5673f173c0137315d4a7de14912e29f95da24f010cb6ef889b5f2aa8458
  • 2588765294af2ad7ae51cefd08cf08b097c89a3e03c3c78d466b8bb9ef4763dc
  • 59a4f1e58a7cf16cb9df3f0a16da96ddf87895f3cec36fe6e84b50700612072e

System

muse on this issue, then propose a whole bunch of code to help implement it

Response

Okay, let's muse on this.

Musing on Replacing Conversation with reply_to_id

The core idea here is shifting from an explicit Conversation object that holds a linear list of Response objects to a more implicit, potentially tree-like structure where each Response can point to the Response it's replying to using a reply_to_id.

Pros:

  1. More Natural Structure: Real conversations often branch. A user might ask a follow-up to an earlier point, not just the immediately preceding one. A tree structure (reply_to_id) models this much more naturally than a strictly linear list (Conversation.responses).
  2. Tool Integration: As Simon notes, this seems much cleaner for implementing tools. An LLM might make a "tool call" request (a Response), the system executes the tool and generates results, and then provides those results back as a reply to that specific tool call request. Linking them directly via reply_to_id makes tracking this request/response pairing explicit and straightforward.
  3. Simpler In-Memory API: For users of the Python library who aren't using the SQLite logging, creating follow-up prompts becomes simpler. Instead of managing a Conversation object, they can just call response.reply(...) on the previous response object.
  4. Potential Caching/Efficiency Gains: If a large document is processed in the first turn (e.g., using fragments), subsequent replies that branch off might reuse cached intermediate states or embeddings associated with that initial response, potentially saving computation (though this depends heavily on the model implementation).
  5. Database Normalization: It feels slightly more normalized. Instead of a separate conversations table primarily for grouping, the relationship is inherent in the responses table itself via the foreign key.

Cons:

  1. Retrieving Linear History: Getting the full linear history that led to a specific response now requires traversing the reply_to_id chain backwards, potentially using recursive SQL queries (like SQLite CTEs) or Python loops. This is slightly more complex than just iterating conversation.responses.
  2. Breaking Change for Plugins: This is the big one. The execute() signature for all models currently accepts conversation. Removing this or changing its meaning will break existing plugins unless a compatibility layer is introduced. Building the prompt history (like the messages list for OpenAI) currently relies on iterating conversation.responses. This logic needs to shift to traversing the reply_to chain.
  3. Defining a "Conversation": How do we define a "conversation" in the UI or for grouping logs? Is it everything reachable by traversing reply_to_id back from a leaf node? What's the root? The current conversation_id provides a simple grouping mechanism which might still be useful, even if it represents a tree rather than a line. Maybe the conversation_id becomes the ID of the root response?
  4. Migration Complexity: Requires adding a column and foreign key to the responses table. Existing data won't have reply_to_id populated, though maybe the linear history in conversation.responses could be used to backfill it for existing logs upon migration?
  5. UI/UX: How does the CLI represent this? -c/--continue currently continues the last conversation. The proposed -r/--reply would reply to the last response. This seems sensible. --cid would need clarification - does it mean reply to the latest response within that old conversation ID's tree, or reply to the root response of that conversation? --reply-to ID is clear.

Compatibility Strategy for Plugins:

The least disruptive path would be:

  1. Introduce the reply_to mechanism internally.
  2. Modify llm core to build the history by traversing the reply_to chain if available, falling back to the old conversation.responses if needed (e.g., for older log entries).
  3. When calling a plugin's execute method, check its signature.
    • If it doesn't accept conversation, pass conversation=None and expect it to use the prompt.reply_to chain (the new way).
    • If it does accept conversation, construct a temporary Conversation object containing the linear history derived from the reply_to chain and pass that in (the old way).
  4. Deprecate passing conversation and encourage plugin authors to update to the new signature and use the prompt.reply_to chain.

Decision:

The benefits, especially for tool integration and a more natural conversation flow representation, seem significant. The main hurdle is the breaking change for plugins. A compatibility strategy makes this feasible. The added complexity of retrieving linear history seems manageable. Let's proceed with outlining the code changes needed.


Proposed Code Implementation

Here's a bunch of code snippets illustrating the required changes across different files.

1. Database Migration (migrations.py)

# llm/migrations.py
# ... (other migrations)

@migration
def m017_replies(db):
    """Add reply_to_id for response threading."""
    if "reply_to_id" not in db["responses"].columns_dict:
        db["responses"].add_column("reply_to_id", str, fk="responses", fk_col="id")
        # Add a default column order including the new column near the start
        # Adjust columns based on the *actual* current schema before this migration
        existing_columns = db["responses"].columns_names
        # Define desired order (example, needs refinement based on actual order)
        desired_order = [
            "id", "reply_to_id", "model", "prompt", "system",
            "prompt_json", "options_json", "response", "response_json",
            "conversation_id", # Keep for grouping/backward compat?
            "duration_ms", "datetime_utc", "input_tokens", "output_tokens",
            "token_details", "schema_id"
        ]
        # Ensure all existing columns are included, handling potential additions/removals
        current_set = set(existing_columns)
        final_order = [col for col in desired_order if col in current_set]
        # Add any unexpected columns to the end
        final_order.extend([col for col in existing_columns if col not in desired_order])

        db["responses"].transform(column_order=tuple(final_order))

    # Consider backfilling reply_to_id based on conversation_id and datetime_utc
    # for existing linear logs, but this could be complex and might be skipped.
    # Example (conceptual, needs refinement):
    # try:
    #     db.execute("""
    #         WITH NumberedResponses AS (
    #             SELECT
    #                 id,
    #                 conversation_id,
    #                 datetime_utc,
    #                 LAG(id) OVER (PARTITION BY conversation_id ORDER BY datetime_utc, id) AS prev_id
    #             FROM responses
    #         )
    #         UPDATE responses
    #         SET reply_to_id = (SELECT prev_id FROM NumberedResponses WHERE NumberedResponses.id = responses.id)
    #         WHERE responses.reply_to_id IS NULL;
    #     """)
    # except Exception as e:
    #     print(f"Could not backfill reply_to_id: {e}")

2. Core Model Changes (models.py)

# llm/models.py
import asyncio
import base64
from dataclasses import dataclass, field
import datetime
# ... other imports ...
from typing import (
    Any, AsyncGenerator, Callable, Dict, Iterable, Iterator, List, Optional, Set, Union
)

# --- Prompt Class ---
@dataclass
class Prompt:
    _prompt: Optional[str]
    model: "Model"
    fragments: Optional[List[str]]
    attachments: Optional[List[Attachment]]
    _system: Optional[str]
    system_fragments: Optional[List[str]]
    prompt_json: Optional[str]
    schema: Optional[Union[Dict, type[BaseModel]]]
    options: "Options"
    reply_to: Optional["_BaseResponse"] = None # ADDED: Reference to the response being replied to

    def __init__(
        self,
        prompt,
        model,
        *,
        fragments=None,
        attachments=None,
        system=None,
        system_fragments=None,
        prompt_json=None,
        options=None,
        schema=None,
        reply_to: Optional["_BaseResponse"] = None, # ADDED
    ):
        self._prompt = prompt
        self.model = model
        self.attachments = list(attachments or [])
        self.fragments = fragments or []
        self._system = system
        self.system_fragments = system_fragments or []
        self.prompt_json = prompt_json
        if schema and not isinstance(schema, dict) and issubclass(schema, BaseModel):
            schema = schema.model_json_schema()
        self.schema = schema
        self.options = options or {}
        self.reply_to = reply_to # ADDED

    # ... (existing properties like prompt, system) ...

# --- _BaseResponse Class ---
class _BaseResponse:
    # ... (existing attributes) ...
    prompt: "Prompt" # This prompt will now have the reply_to attribute
    # Keep conversation for now for grouping / backward compat? Or phase out?
    # Let's keep it for now but maybe don't pass it to execute()
    conversation: Optional["_BaseConversation"] = None

    def __init__(
        self,
        prompt: Prompt,
        model: "_BaseModel",
        stream: bool,
        conversation: Optional[_BaseConversation] = None, # Keep param for now
        key: Optional[str] = None,
    ):
        # ... (existing init code) ...
        self.prompt = prompt
        self.model = model
        self.stream = stream
        self._key = key
        # ... (rest of init) ...
        # If conversation is None but prompt.reply_to has one, maybe inherit it?
        if conversation is None and prompt.reply_to and prompt.reply_to.conversation:
             self.conversation = prompt.reply_to.conversation
        else:
             self.conversation = conversation

    # ... (existing methods like set_usage, from_row, token_usage) ...

    def get_history(self) -> List["_BaseResponse"]:
        """Traverses the reply_to chain to get the linear history."""
        history = []
        current = self
        while current is not None:
            history.append(current)
            # Access the prompt that LED TO this response
            # Then access the response that prompt replied to
            current = current.prompt.reply_to
        return history[::-1] # Reverse to get chronological order

    def log_to_db(self, db):
        # ... (logic to ensure conversation exists or create one) ...
        # Fetch or create conversation record (maybe use root response ID?)
        root_response = self.get_history()[0] if self.prompt.reply_to else self
        # For now, keep using the existing conversation mechanism or create one
        conversation = self.conversation
        if not conversation:
             # If no conversation explicitly set, create one based on root response
             conversation = Conversation(model=self.model, id=root_response.id) # Tentative ID choice
             self.conversation = conversation

        # ... (rest of conversation insert logic) ...

        # Ensure schema is logged
        # ... (schema handling) ...

        response_id = str(ULID()).lower()
        self.id = response_id # Store the generated ID on the response object

        # Persist fragments (no change needed here)
        # ... (fragment logging) ...

        # Determine reply_to_id
        reply_to_id_val = None
        if self.prompt.reply_to and hasattr(self.prompt.reply_to, 'id') and self.prompt.reply_to.id:
            reply_to_id_val = self.prompt.reply_to.id

        response_data = {
            "id": response_id,
            "reply_to_id": reply_to_id_val, # ADDED
            "model": self.model.model_id,
            "prompt": self.prompt._prompt,
            "system": self.prompt._system,
            # ... (rest of the fields: prompt_json, options_json, response, etc.) ...
            "conversation_id": conversation.id, # Still log conversation for grouping
            # ... (duration, datetime, tokens, schema_id) ...
        }
        db["responses"].insert(response_data)

        # Persist attachments (no change needed here)
        # ... (attachment logging) ...


# --- Response Class ---
class Response(_BaseResponse):
    # ... (existing methods) ...

    def reply(
        self,
        prompt: Optional[str] = None,
        *,
        fragments: Optional[List[str]] = None,
        attachments: Optional[List[Attachment]] = None,
        system: Optional[str] = None, # System prompt likely inherited or ignored in replies? Decide policy.
        schema: Optional[Union[dict, type[BaseModel]]] = None,
        system_fragments: Optional[List[str]] = None,
        stream: bool = True,
        key: Optional[str] = None,
        **options,
    ) -> "Response":
        """Creates a new prompt that replies to this response."""
        # Ensure the current response is finished before replying
        self._force()
        # Decide how to handle system prompts in replies - maybe inherit?
        # For now, let's assume a reply doesn't usually set a new system prompt.
        # Or maybe it replaces the system prompt context for that branch? Needs thought.
        # Let's allow overriding it for now.

        # Ensure options are validated against the model's options
        prompt_options = self.model.Options(**options)

        new_prompt = Prompt(
            prompt,
            model=self.model,
            fragments=fragments,
            attachments=attachments,
            system=system, # Pass system if provided
            schema=schema,
            system_fragments=system_fragments,
            options=prompt_options,
            reply_to=self # Link back to this response
        )
        # Create the new Response object, potentially inheriting the conversation
        # The model's prompt method handles creating the Response object
        return self.model.prompt(
             prompt=new_prompt._prompt, # Pass components to model.prompt
             fragments=new_prompt.fragments,
             attachments=new_prompt.attachments,
             system=new_prompt._system,
             schema=new_prompt.schema,
             system_fragments=new_prompt.system_fragments,
             stream=stream,
             key=key,
             conversation=self.conversation, # Pass conversation along for grouping
             reply_to=self, # Explicitly pass reply_to here too
             **dict(prompt_options) # Pass validated options
         )

    def __iter__(self) -> Iterator[str]:
        # ... (start timer etc) ...

        # --- Compatibility Layer ---
        # Check the signature of the plugin's execute method
        execute_sig = inspect.signature(self.model.execute)
        accepts_conversation = 'conversation' in execute_sig.parameters

        # Prepare args for execute
        execute_args = {
            "prompt": self.prompt,
            "stream": self.stream,
            "response": self,
        }
        if isinstance(self.model, KeyModel):
             execute_args["key"] = self.model.get_key(self._key)

        if accepts_conversation:
             # Old way: Construct a Conversation object (might need refinement)
             # For now, pass the existing conversation object if it exists
             execute_args["conversation"] = self.conversation
        else:
             # New way: Plugin expected to use prompt.reply_to
             pass # No conversation arg needed

        model_iterator = self.model.execute(**execute_args)
        # --- End Compatibility Layer ---

        for chunk in model_iterator:
            yield chunk
            self._chunks.append(chunk)

        # If no conversation exists AND we weren't replying, create one
        if self.conversation is None and self.prompt.reply_to is None:
             self.conversation = Conversation(model=self.model, id=self.id) # Use response ID as conv ID for root

        # Append to conversation *responses* list for backward compat/grouping?
        # Or rely solely on reply_to chain? For now, let's keep appending.
        if self.conversation and self not in self.conversation.responses:
            self.conversation.responses.append(self)

        self._end = time.monotonic()
        self._done = True
        self._on_done()
        # ...

# --- AsyncResponse Class ---
# Similar changes: add reply() method, adjust __anext__ for compatibility layer
class AsyncResponse(_BaseResponse):

    async def reply(
        self,
        prompt: Optional[str] = None,
        *,
        fragments: Optional[List[str]] = None,
        attachments: Optional[List[Attachment]] = None,
        system: Optional[str] = None,
        schema: Optional[Union[dict, type[BaseModel]]] = None,
        system_fragments: Optional[List[str]] = None,
        stream: bool = True,
        key: Optional[str] = None,
        **options,
    ) -> "AsyncResponse":
        """Creates a new prompt that replies to this response."""
        await self._force() # Ensure current response is finished
        # (Similar logic as sync reply for system prompt, options etc.)
        prompt_options = self.model.Options(**options)

        new_prompt = Prompt(
            prompt,
            model=self.model,
            fragments=fragments,
            attachments=attachments,
            system=system,
            schema=schema,
            system_fragments=system_fragments,
            options=prompt_options,
            reply_to=self
        )
        # Call the async model's prompt method
        return self.model.prompt(
             prompt=new_prompt._prompt,
             fragments=new_prompt.fragments,
             attachments=new_prompt.attachments,
             system=new_prompt._system,
             schema=new_prompt.schema,
             system_fragments=new_prompt.system_fragments,
             stream=stream,
             key=key,
             conversation=self.conversation, # Pass conversation along
             reply_to=self, # Pass reply_to
             **dict(prompt_options)
         )


    async def __anext__(self) -> str:
        # ... (check if done, etc) ...

        if not hasattr(self, "_generator"):
            # --- Compatibility Layer ---
            execute_sig = inspect.signature(self.model.execute)
            accepts_conversation = 'conversation' in execute_sig.parameters

            execute_args = {
                "prompt": self.prompt,
                "stream": self.stream,
                "response": self,
            }
            if isinstance(self.model, AsyncKeyModel):
                execute_args["key"] = self.model.get_key(self._key)

            if accepts_conversation:
                execute_args["conversation"] = self.conversation
            else:
                pass # New way

            self._generator = self.model.execute(**execute_args)
            # --- End Compatibility Layer ---

        # ... (rest of __anext__ logic) ...
        # Update conversation handling as in sync __iter__


# --- Model / KeyModel / AsyncModel / AsyncKeyModel ---
# Need to update the base .prompt() methods to accept reply_to
class _Model(_BaseModel):
    def prompt(
        self,
        prompt: Optional[str] = None,
        *,
        fragments: Optional[List[str]] = None,
        attachments: Optional[List[Attachment]] = None,
        system: Optional[str] = None,
        system_fragments: Optional[List[str]] = None,
        stream: bool = True,
        schema: Optional[Union[dict, type[BaseModel]]] = None,
        conversation: Optional[Conversation] = None, # Keep accepting for now
        reply_to: Optional[Response] = None, # ADDED
        **options,
    ) -> Response:
        key = options.pop("key", None)
        self._validate_attachments(attachments)
        # Create the Prompt object, including reply_to
        prompt_obj = Prompt(
            prompt,
            fragments=fragments,
            attachments=attachments,
            system=system,
            schema=schema,
            system_fragments=system_fragments,
            model=self,
            options=self.Options(**options),
            reply_to=reply_to # Pass it here
        )
        # Create the Response object
        return Response(
            prompt_obj,
            self,
            stream,
            conversation=conversation, # Pass conversation if provided
            key=key,
        )
    # Redefine execute with new signature (breaking change for plugins)
    # @abstractmethod
    # def execute(
    #     self,
    #     prompt: Prompt,
    #     stream: bool,
    #     response: Response,
    #     # REMOVED: conversation: Optional[Conversation],
    #     # ADDED (for KeyModel): key: Optional[str] = None
    # ) -> Iterator[str]:
    #      pass

class Model(_Model):
     # Define execute with NEW signature if not using compat layer
     @abstractmethod
     def execute(
         self,
         prompt: Prompt,
         stream: bool,
         response: Response,
         # REMOVED: conversation: Optional[Conversation],
     ) -> Iterator[str]:
         pass

class KeyModel(_Model):
     # Define execute with NEW signature if not using compat layer
     @abstractmethod
     def execute(
         self,
         prompt: Prompt,
         stream: bool,
         response: Response,
         # REMOVED: conversation: Optional[Conversation],
         key: Optional[str],
     ) -> Iterator[str]:
         pass

# Similar changes for _AsyncModel, AsyncModel, AsyncKeyModel, updating their
# .prompt() methods and defining execute() with the new signature.

3. CLI Changes (cli.py)

# llm/cli.py
import inspect # Need this for compatibility layer

# ... other imports ...

def get_response_by_id(db: sqlite_utils.Database, response_id: str, async_=False) -> Optional[_BaseResponse]:
    """Helper to fetch a specific response object by ID."""
    try:
        row = db["responses"].get(response_id)
        # Need to reconstruct the *full* response object, including potentially
        # its prompt and reply_to chain. This might get complex or we might
        # just return a simplified object if only the ID is needed by the caller.
        # For now, let's assume we can reconstruct it if needed.
        response_class = AsyncResponse if async_ else Response
        # This from_row needs enhancing to handle the reply_to chain reconstruction
        # if we want the full object. For now, it might be partial.
        return response_class.from_row(db, row, _async=async_)
    except sqlite_utils.db.NotFoundError:
        return None


@cli.command(name="prompt")
@click.argument("prompt", required=False)
# ... other options ...
@click.option(
    "_continue", # RENAME this variable internally if needed due to keyword clash
    "-c",
    "--continue",
    is_flag=True,
    flag_value=-1, # Keep flag_value for now, logic changes below
    help="Continue the most recent conversation (reply to last response).", # Updated help
)
# --cid is now ambiguous. Let's rename it to --conversation-group or similar
# and maybe deprecate it later, or clarify its meaning (e.g., reply to latest in that group)
@click.option(
    "conversation_id", # Keep variable name, but behavior might change
    "--cid",
    "--conversation",
    help="Continue conversation with root ID (replies to latest in thread).", # Clarify help
)
@click.option( # NEW
    "reply_to_id",
    "-r", "--reply-to",
    help="Reply to the specified response ID.",
)
@click.option( # NEW alias for -c
    "--reply-to-latest",
    is_flag=True,
    help="Reply to the latest response overall.",
)
# ... rest of options ...
def prompt(
    prompt,
    system,
    model_id,
    database,
    # ... other params ...
    _continue, # Keep internal name for now
    conversation_id,
    reply_to_id, # NEW
    reply_to_latest, # NEW
    key,
    save,
    async_,
    usage,
    extract,
    extract_last,
):
    # ... (db setup) ...

    # --- Determine reply_to_response ---
    reply_to_response: Optional[_BaseResponse] = None
    # Precedence: --reply-to > --reply-to-latest > -c > --cid
    if reply_to_id:
        reply_to_response = get_response_by_id(db, reply_to_id, async_=async_)
        if not reply_to_response:
            raise click.ClickException(f"Response ID not found: {reply_to_id}")
    elif reply_to_latest or _continue: # Treat -c as alias for --reply-to-latest now
        # Find the absolute latest response ID
        latest_rows = list(db["responses"].rows_where(order_by="rowid desc", limit=1))
        if latest_rows:
             latest_id = latest_rows[0]["id"]
             reply_to_response = get_response_by_id(db, latest_id, async_=async_)
             # Need error handling if get_response_by_id fails somehow
        elif _continue: # Only error if -c was explicitly used and no logs exist
             raise click.ClickException("No previous response to continue from.")
    elif conversation_id:
         # Find latest response within the specified conversation group
         latest_in_conv = list(db["responses"].rows_where(
             "conversation_id = ?", [conversation_id], order_by="rowid desc", limit=1
         ))
         if latest_in_conv:
             latest_id = latest_in_conv[0]["id"]
             reply_to_response = get_response_by_id(db, latest_id, async_=async_)
             if not reply_to_response:
                 raise click.ClickException(f"Could not load latest response for conversation {conversation_id}")
         else:
             raise click.ClickException(f"No responses found for conversation ID: {conversation_id}")

    # --- Conversation Handling (Backward Compat / Grouping) ---
    # If we are replying, inherit the conversation ID for grouping
    conversation_obj = None
    if reply_to_response and reply_to_response.conversation:
        conversation_obj = reply_to_response.conversation
    # (Need to decide if a new Conversation object should ever be created here,
    # or if it's purely handled during logging based on root node)

    # --- Model Selection ---
    if model_id is None:
        if reply_to_response:
             model_id = reply_to_response.model.model_id # Inherit model from response being replied to
        # ... (else use template model or default model logic) ...
    # ... (resolve model object) ...

    # --- Template Handling ---
    # ... (template loading, applying params, potentially overriding system/options) ...
    # Be careful how templates interact with replies - does a template override the context?

    # --- Execute Prompt ---
    # Pass reply_to_response to the model's prompt method
    prompt_method = model.prompt

    # The conversation_obj is passed mainly for logging/grouping now,
    # not necessarily for history reconstruction by the execute method itself.
    # However, the compat layer in Response.__iter__ might still use it.
    response = prompt_method(
        prompt,
        # ... fragments, attachments, system, schema ...
        reply_to=reply_to_response, # Pass the actual response object
        conversation=conversation_obj, # Pass for grouping/compat
        key=key,
        **kwargs, # validated_options etc.
    )

    # --- Process Response ---
    # (Streaming/non-streaming logic, logging call)
    # log_to_db now handles storing reply_to_id
    if (logs_on() or log) and not no_log:
         # For async, need to await first or log in a callback
         if async_:
              async def log_async_response(res):
                  sync_res = await res.to_sync_response()
                  sync_res.log_to_db(db)
              response.on_done(log_async_response)
         else:
              response.log_to_db(db)

    # ... (rest of command) ...


@cli.command()
# ... (chat options - similar changes needed for -c, --cid) ...
# Remove --continue? Or make it an alias for --reply-to-latest?
# Let's keep -c for now as alias for replying to latest overall response.
def chat(
    system,
    model_id,
    _continue,
    conversation_id,
    template,
    param,
    options,
    no_stream,
    key,
):
    # ... (db setup, model resolution) ...

    current_response = None # Track the last response object

    # Initial setup based on -c or --cid
    if _continue:
        # Find latest response overall
        latest_rows = list(db["responses"].rows_where(order_by="rowid desc", limit=1))
        if latest_rows:
             current_response = get_response_by_id(db, latest_rows[0]["id"])
             model_id = current_response.model.model_id # Use model from last response
             click.echo(f"Continuing conversation {current_response.conversation.id} (last response {current_response.id})")
        else:
             click.echo("No previous conversation found to continue.")
    elif conversation_id:
         # Find latest response in specified conversation group
        latest_in_conv = list(db["responses"].rows_where(
             "conversation_id = ?", [conversation_id], order_by="rowid desc", limit=1
         ))
        if latest_in_conv:
             current_response = get_response_by_id(db, latest_in_conv[0]["id"])
             model_id = current_response.model.model_id
             click.echo(f"Continuing conversation {conversation_id} (last response {current_response.id})")
        else:
             raise click.ClickException(f"No responses found for conversation ID: {conversation_id}")

    # Resolve model if not determined by conversation continuation
    if not current_response:
        if model_id is None:
            # ... (handle template model or default model) ...
            model_id = get_default_model()
    try:
        model = get_model(model_id)
    except UnknownModelError as ex:
        raise click.ClickException(str(ex))

    # ... (validate options, setup kwargs) ...

    click.echo(f"Chatting with {model.model_id}")
    # ... (instructions) ...

    initial_system = system # Store initial system prompt

    while True:
        # ... (handle multiline input) ...
        prompt_text = click.prompt(...)
        if prompt_text.strip() in ("exit", "quit"):
            break

        # Apply template logic if needed (careful with context)
        # ...

        current_system = initial_system if not current_response else None # Only use system for first message

        if current_response:
            # Reply to the previous response
            response = current_response.reply(
                 prompt=prompt_text, system=current_system, **kwargs
             )
        else:
            # Start a new conversation thread
            response = model.prompt(
                 prompt=prompt_text, system=current_system, **kwargs
             )

        # Process the response (streaming, logging)
        accumulated_response_text = ""
        for chunk in response:
             print(chunk, end="")
             sys.stdout.flush()
             accumulated_response_text += chunk
        print("") # Newline after response

        response.log_to_db(db) # Log after streaming complete
        current_response = response # Update for the next loop
        initial_system = None # Don't apply initial system prompt again

4. Plugin Example Changes (e.g., openai_models.py)

# llm/default_plugins/openai_models.py
import inspect # Add this

# ... other imports ...

class _Shared:
    # ... (existing init) ...

    def build_messages(self, prompt: Prompt) -> List[Dict[str, Any]]:
        """Builds messages list from prompt reply chain."""
        # Traverse the reply chain
        history = []
        current_prompt = prompt
        while current_prompt is not None:
            history.append(current_prompt)
            current_response = current_prompt.reply_to
            if current_response:
                 # We need the prompt that *generated* the current_response
                 history.append(current_response.prompt)
                 current_prompt = current_response.prompt
            else:
                 current_prompt = None # Reached the root

        history.reverse() # Chronological order

        messages = []
        current_system = None

        for item in history:
            # item is either a Prompt or a Response object (derived from _BaseResponse)
            if isinstance(item, Prompt):
                 # This is a 'user' turn (or the final prompt)
                 if item.system and item.system != current_system:
                     messages.append({"role": "system", "content": item.system})
                     current_system = item.system
                 # Handle attachments for this user prompt
                 if not item.attachments:
                     messages.append({"role": "user", "content": item.prompt or ""})
                 else:
                     attachment_message = []
                     if item.prompt:
                         attachment_message.append({"type": "text", "text": item.prompt})
                     for attachment in item.attachments:
                         attachment_message.append(_attachment(attachment))
                     messages.append({"role": "user", "content": attachment_message})
            elif isinstance(item, _BaseResponse):
                 # This is an 'assistant' turn
                 # Need to ensure response text is available
                 # This might be tricky if called *during* execution of an earlier part of the chain.
                 # Assume text_or_raise() works or adapt logic.
                 messages.append({"role": "assistant", "content": item.text_or_raise()})
                 # We also need to apply the system prompt associated *with this response's prompt*
                 if item.prompt.system and item.prompt.system != current_system:
                    # Insert system prompt *before* the assistant message if it changed
                    # Find where the preceding user message was added
                    for i in range(len(messages) - 2, -1, -1):
                        if messages[i]['role'] == 'user':
                            messages.insert(i, {"role": "system", "content": item.prompt.system})
                            break
                    current_system = item.prompt.system


        # Filter out empty user messages if needed (e.g. initial system prompt only)
        messages = [m for m in messages if m.get("content")]
        return messages

    # ... rest of _Shared class ...

class Chat(_Shared, KeyModel):
    # ... (Options definition) ...

    # Use NEW execute signature (without conversation)
    def execute(self, prompt: Prompt, stream: bool, response: Response, key=None):
        # Build messages using the new method that traverses prompt.reply_to
        messages = self.build_messages(prompt)
        if not messages: # Handle cases like system-prompt only initial prompts?
            # Decide policy - maybe raise error or return empty?
             return iter([])

        # ... (rest of the method is similar, using self.build_kwargs, self.get_client) ...
        # It NO LONGER needs the 'conversation' argument.

# --- AsyncChat ---
class AsyncChat(_Shared, AsyncKeyModel):
     # ... (Options definition) ...

     # Use NEW async execute signature (without conversation)
     async def execute(
         self, prompt: Prompt, stream: bool, response: AsyncResponse, key=None
     ) -> AsyncGenerator[str, None]:
         # Build messages using the new method
         messages = self.build_messages(prompt)
         if not messages:
              yield "" # Need to yield something for async generator
              return

         # ... (rest of the method is similar, using self.build_kwargs, self.get_client) ...
         # It NO LONGER needs the 'conversation' argument.

This is a substantial refactoring, touching core data structures, database interactions, the CLI, and plugin interfaces. The backward compatibility layer for plugins adds complexity but is likely necessary for a smoother transition. Careful testing, especially around edge cases (first prompt, replies with system prompts, error handling) would be crucial.

Token usage:

202,680 input, 10,460 output, {"promptTokensDetails": [{"modality": "TEXT", "tokenCount": 202680}], "thoughtsTokenCount": 1859}

62.989 cents: https://www.llm-prices.com/#it=202680&ot=12319&ic=2.5&oc=10

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment