{{ message }}

Instantly share code, notes, and snippets.

# Alex Ames stillyslalom

Last active Mar 17, 2021
View strangsplitting
 using LinearAlgebra, LoopVectorization, Test function f1(M, G, J, H, A, B, ϕ) for mm = 1:M tempmatr = A \ ( reshape( permutedims( ϕ[:, 2:G, :, M + 2 - mm], [2 1 3]), G - 1, :)
Created Oct 17, 2020
View tensoroperations.jl
 using TensorOperations, BenchmarkTools n = 20 Γ1 = rand(n, n, n); Γ2 = rand(n, n, n); f(Γ1, Γ2) = @tensor Γ[α, β, i, k] := Γ1[α, i, j] * Γ2[β, j, k] function g(Γ1, Γ2) n = size(Γ1, 1) Γ = zeros(n, n, n, n)
Created Oct 11, 2020
View broken_physics.jl
 ### A Pluto.jl notebook ### # v0.12.3 using Markdown using InteractiveUtils # ╔═╡ 99c1b230-0c05-11eb-2419-e33927196b61 md""" ``
Last active Sep 22, 2020
View pipefriction.jl
 ### A Pluto.jl notebook ### # v0.11.12 using Markdown using InteractiveUtils # ╔═╡ 40bb63d0-fd13-11ea-1996-6f1098e73e8f using ModelingToolkit, NLsolve, RuntimeGeneratedFunctions, BenchmarkTools # ╔═╡ ada7d960-fcff-11ea-3cf8-fddbf108a841
Created Sep 17, 2020
View Qb_mwe.jl
 # start Julia with the JULIA_NUM_THREADS environment variable set appropriately using QuadGK, Roots, ProgressMeter brent(f::F, a, b) where {F} = find_zero(f, (a, b), Roots.Brent()) @fastmath function Φ(r,σ) return (2/15*σ.^9*(1/(r-1)^9-1/(r+1)^9-9/8/r*(1/(r-1)^8-1/(r+1)^8))- σ.^3*(1/(r-1)^3-1/(r+1)^3-3/2/r*(1/(r-1)^2-1/(r+1)^2))) end
Created Aug 4, 2020
LoopVectorization Ryzen2 benchmarks
View avxryzen2.txt
 julia> include("driver.jl") WARNING: redefining constant COLORS WARNING: redefining constant COLOR_MAP64 logdet(LowerTriangular(A)) benchmark results: ┌──────┬─────────────────────┬─────────────────────┬─────────────────────┬─────────────────────┬─────────────────────┬─────────────────────┬─────────────────────┐ │ Size │ LoopVectorization │ Julia │ Clang │ GFortran │ icc │ ifort │ LinearAlgebra │ ├──────┼─────────────────────┼─────────────────────┼─────────────────────┼─────────────────────┼─────────────────────┼─────────────────────┼─────────────────────┤ │ 256 │ 0.355850622406639 │ 0.12190476190476192 │ 0.2115702479338843 │ 0.33668934240362813 │ 0.1532934131736527 │ 0.1532934131736527 │ 0.15609756097560976 │ │ 252 │ 0.36979591836734704 │ 0.1272727272727273 │ 0.21000000000000005 │ 0.3348837209302326 │ 0.15365853658536588 │ 0.15272727272727274 │ 0.15849056603773587 │ │ 250 │ 0.3869606003752346 │ 0.12626262626262627 │ 0.20
Last active Oct 10, 2018