Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Exercises.ipynb
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": "# Ex2 - Filtering and Sorting Data"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 1. Import the necessary libraries"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/jokecamp/FootballData/master/Euro%202012/Euro%202012%20stats%20TEAM.csv). "
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 3. Assign it to a variable called euro12."
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 4. Select only the Goal column."
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 5. How many team participated in the Euro2012?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 6. What is the number of columns in the dataset?"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 8. Sort the teams by Red Cards, then to Yellow Cards"
},
{
"metadata": {
"scrolled": true,
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 9. Calculate the mean Yellow Cards given per Team"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 10. Filter teams that scored more than 6 goals"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 11. Select the teams that start with G"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 12. Select the first 7 columns"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 13. Select all columns except the last 3."
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Step 14. Present only the Shooting Accuracy from England, Italy and Russia"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.3",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "",
"data": {
"description": "Exercises.ipynb",
"public": true
}
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment