Created
June 2, 2025 13:33
-
-
Save tanayaai/ea0873eeef35f8020aea1eaabb1bead9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "2a5aab2b", | |
"metadata": { | |
"tags": [], | |
"id": "2a5aab2b" | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "bfedde5d", | |
"metadata": { | |
"id": "bfedde5d" | |
}, | |
"source": [ | |
"MEMBACA FILE CSV" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from google.colab import files\n", | |
"import pandas as pd\n", | |
"\n", | |
"# Unggah file\n", | |
"uploaded = files.upload()\n", | |
"\n", | |
"# Membaca file Excel (gunakan nama file yang diunggah)\n", | |
"df = pd.read_excel(\"DATA COVID 19.xlsx\")\n", | |
"df.head()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 537 | |
}, | |
"id": "9lWMT4EFwDMN", | |
"outputId": "f9085cff-886e-45e2-d033-9b8b70a84f9e" | |
}, | |
"id": "9lWMT4EFwDMN", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <input type=\"file\" id=\"files-dc698136-7231-46b9-990d-bbee37a700dd\" name=\"files[]\" multiple disabled\n", | |
" style=\"border:none\" />\n", | |
" <output id=\"result-dc698136-7231-46b9-990d-bbee37a700dd\">\n", | |
" Upload widget is only available when the cell has been executed in the\n", | |
" current browser session. Please rerun this cell to enable.\n", | |
" </output>\n", | |
" <script>// Copyright 2017 Google LLC\n", | |
"//\n", | |
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n", | |
"// you may not use this file except in compliance with the License.\n", | |
"// You may obtain a copy of the License at\n", | |
"//\n", | |
"// http://www.apache.org/licenses/LICENSE-2.0\n", | |
"//\n", | |
"// Unless required by applicable law or agreed to in writing, software\n", | |
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n", | |
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", | |
"// See the License for the specific language governing permissions and\n", | |
"// limitations under the License.\n", | |
"\n", | |
"/**\n", | |
" * @fileoverview Helpers for google.colab Python module.\n", | |
" */\n", | |
"(function(scope) {\n", | |
"function span(text, styleAttributes = {}) {\n", | |
" const element = document.createElement('span');\n", | |
" element.textContent = text;\n", | |
" for (const key of Object.keys(styleAttributes)) {\n", | |
" element.style[key] = styleAttributes[key];\n", | |
" }\n", | |
" return element;\n", | |
"}\n", | |
"\n", | |
"// Max number of bytes which will be uploaded at a time.\n", | |
"const MAX_PAYLOAD_SIZE = 100 * 1024;\n", | |
"\n", | |
"function _uploadFiles(inputId, outputId) {\n", | |
" const steps = uploadFilesStep(inputId, outputId);\n", | |
" const outputElement = document.getElementById(outputId);\n", | |
" // Cache steps on the outputElement to make it available for the next call\n", | |
" // to uploadFilesContinue from Python.\n", | |
" outputElement.steps = steps;\n", | |
"\n", | |
" return _uploadFilesContinue(outputId);\n", | |
"}\n", | |
"\n", | |
"// This is roughly an async generator (not supported in the browser yet),\n", | |
"// where there are multiple asynchronous steps and the Python side is going\n", | |
"// to poll for completion of each step.\n", | |
"// This uses a Promise to block the python side on completion of each step,\n", | |
"// then passes the result of the previous step as the input to the next step.\n", | |
"function _uploadFilesContinue(outputId) {\n", | |
" const outputElement = document.getElementById(outputId);\n", | |
" const steps = outputElement.steps;\n", | |
"\n", | |
" const next = steps.next(outputElement.lastPromiseValue);\n", | |
" return Promise.resolve(next.value.promise).then((value) => {\n", | |
" // Cache the last promise value to make it available to the next\n", | |
" // step of the generator.\n", | |
" outputElement.lastPromiseValue = value;\n", | |
" return next.value.response;\n", | |
" });\n", | |
"}\n", | |
"\n", | |
"/**\n", | |
" * Generator function which is called between each async step of the upload\n", | |
" * process.\n", | |
" * @param {string} inputId Element ID of the input file picker element.\n", | |
" * @param {string} outputId Element ID of the output display.\n", | |
" * @return {!Iterable<!Object>} Iterable of next steps.\n", | |
" */\n", | |
"function* uploadFilesStep(inputId, outputId) {\n", | |
" const inputElement = document.getElementById(inputId);\n", | |
" inputElement.disabled = false;\n", | |
"\n", | |
" const outputElement = document.getElementById(outputId);\n", | |
" outputElement.innerHTML = '';\n", | |
"\n", | |
" const pickedPromise = new Promise((resolve) => {\n", | |
" inputElement.addEventListener('change', (e) => {\n", | |
" resolve(e.target.files);\n", | |
" });\n", | |
" });\n", | |
"\n", | |
" const cancel = document.createElement('button');\n", | |
" inputElement.parentElement.appendChild(cancel);\n", | |
" cancel.textContent = 'Cancel upload';\n", | |
" const cancelPromise = new Promise((resolve) => {\n", | |
" cancel.onclick = () => {\n", | |
" resolve(null);\n", | |
" };\n", | |
" });\n", | |
"\n", | |
" // Wait for the user to pick the files.\n", | |
" const files = yield {\n", | |
" promise: Promise.race([pickedPromise, cancelPromise]),\n", | |
" response: {\n", | |
" action: 'starting',\n", | |
" }\n", | |
" };\n", | |
"\n", | |
" cancel.remove();\n", | |
"\n", | |
" // Disable the input element since further picks are not allowed.\n", | |
" inputElement.disabled = true;\n", | |
"\n", | |
" if (!files) {\n", | |
" return {\n", | |
" response: {\n", | |
" action: 'complete',\n", | |
" }\n", | |
" };\n", | |
" }\n", | |
"\n", | |
" for (const file of files) {\n", | |
" const li = document.createElement('li');\n", | |
" li.append(span(file.name, {fontWeight: 'bold'}));\n", | |
" li.append(span(\n", | |
" `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n", | |
" `last modified: ${\n", | |
" file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n", | |
" 'n/a'} - `));\n", | |
" const percent = span('0% done');\n", | |
" li.appendChild(percent);\n", | |
"\n", | |
" outputElement.appendChild(li);\n", | |
"\n", | |
" const fileDataPromise = new Promise((resolve) => {\n", | |
" const reader = new FileReader();\n", | |
" reader.onload = (e) => {\n", | |
" resolve(e.target.result);\n", | |
" };\n", | |
" reader.readAsArrayBuffer(file);\n", | |
" });\n", | |
" // Wait for the data to be ready.\n", | |
" let fileData = yield {\n", | |
" promise: fileDataPromise,\n", | |
" response: {\n", | |
" action: 'continue',\n", | |
" }\n", | |
" };\n", | |
"\n", | |
" // Use a chunked sending to avoid message size limits. See b/62115660.\n", | |
" let position = 0;\n", | |
" do {\n", | |
" const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n", | |
" const chunk = new Uint8Array(fileData, position, length);\n", | |
" position += length;\n", | |
"\n", | |
" const base64 = btoa(String.fromCharCode.apply(null, chunk));\n", | |
" yield {\n", | |
" response: {\n", | |
" action: 'append',\n", | |
" file: file.name,\n", | |
" data: base64,\n", | |
" },\n", | |
" };\n", | |
"\n", | |
" let percentDone = fileData.byteLength === 0 ?\n", | |
" 100 :\n", | |
" Math.round((position / fileData.byteLength) * 100);\n", | |
" percent.textContent = `${percentDone}% done`;\n", | |
"\n", | |
" } while (position < fileData.byteLength);\n", | |
" }\n", | |
"\n", | |
" // All done.\n", | |
" yield {\n", | |
" response: {\n", | |
" action: 'complete',\n", | |
" }\n", | |
" };\n", | |
"}\n", | |
"\n", | |
"scope.google = scope.google || {};\n", | |
"scope.google.colab = scope.google.colab || {};\n", | |
"scope.google.colab._files = {\n", | |
" _uploadFiles,\n", | |
" _uploadFilesContinue,\n", | |
"};\n", | |
"})(self);\n", | |
"</script> " | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Saving DATA COVID 19.xlsx to DATA COVID 19.xlsx\n" | |
] | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Tanggal Kode ISO Lokasi Lokasi Kasus Baru \\\n", | |
"0 2020-04-03 00:00:00 ID-RI Riau 0 \n", | |
"1 2020-05-03 00:00:00 ID-JK DKI Jakarta 0 \n", | |
"2 2020-05-03 00:00:00 IDN Indonesia 0 \n", | |
"3 2020-05-03 00:00:00 ID-JB Jawa Barat 1 \n", | |
"4 2020-05-03 00:00:00 ID-RI Riau 0 \n", | |
"\n", | |
" Kematian Baru Baru Pulih Kasus Aktif Baru Total Kasus Total Kematian \\\n", | |
"0 0 0 0 1 0 \n", | |
"1 1 0 -1 45 21 \n", | |
"2 0 0 0 2 0 \n", | |
"3 0 0 1 3 1 \n", | |
"4 0 0 0 1 0 \n", | |
"\n", | |
" Total Pulih ... Lintang Kasus Baru per Juta Total Kasus per Juta \\\n", | |
"0 1 ... 0.511648 0.00 0.16 \n", | |
"1 75 ... -6.204699 0.00 4.15 \n", | |
"2 0 ... -0.789275 0.00 0.01 \n", | |
"3 60 ... -6.920432 0.02 0.07 \n", | |
"4 1 ... 0.511648 0.00 0.16 \n", | |
"\n", | |
" Kematian Baru per Juta Total Kematian per Juta Total Kematian per 100rb \\\n", | |
"0 0.00 0.00 0.00 \n", | |
"1 0.09 1.94 0.19 \n", | |
"2 0.00 0.00 0.00 \n", | |
"3 0.00 0.02 0.00 \n", | |
"4 0.00 0.00 0.00 \n", | |
"\n", | |
" Tingkat Kasus Kematian Tingkat Pemulihan Kasus \\\n", | |
"0 0.0000 1.0000 \n", | |
"1 0.4667 1.6667 \n", | |
"2 0.0000 0.0000 \n", | |
"3 0.3333 20.0000 \n", | |
"4 0.0000 1.0000 \n", | |
"\n", | |
" Faktor Pertumbuhan Kasus Baru Faktor Pertumbuhan Kematian Baru \n", | |
"0 1.0 1.0 \n", | |
"1 0.0 NaN \n", | |
"2 1.0 1.0 \n", | |
"3 1.0 1.0 \n", | |
"4 1.0 1.0 \n", | |
"\n", | |
"[5 rows x 38 columns]" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-a708b6ad-df65-4897-aa80-94d8f498e2c2\" class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Tanggal</th>\n", | |
" <th>Kode ISO Lokasi</th>\n", | |
" <th>Lokasi</th>\n", | |
" <th>Kasus Baru</th>\n", | |
" <th>Kematian Baru</th>\n", | |
" <th>Baru Pulih</th>\n", | |
" <th>Kasus Aktif Baru</th>\n", | |
" <th>Total Kasus</th>\n", | |
" <th>Total Kematian</th>\n", | |
" <th>Total Pulih</th>\n", | |
" <th>...</th>\n", | |
" <th>Lintang</th>\n", | |
" <th>Kasus Baru per Juta</th>\n", | |
" <th>Total Kasus per Juta</th>\n", | |
" <th>Kematian Baru per Juta</th>\n", | |
" <th>Total Kematian per Juta</th>\n", | |
" <th>Total Kematian per 100rb</th>\n", | |
" <th>Tingkat Kasus Kematian</th>\n", | |
" <th>Tingkat Pemulihan Kasus</th>\n", | |
" <th>Faktor Pertumbuhan Kasus Baru</th>\n", | |
" <th>Faktor Pertumbuhan Kematian Baru</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2020-04-03 00:00:00</td>\n", | |
" <td>ID-RI</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>0.511648</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.16</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0000</td>\n", | |
" <td>1.0</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>-1</td>\n", | |
" <td>45</td>\n", | |
" <td>21</td>\n", | |
" <td>75</td>\n", | |
" <td>...</td>\n", | |
" <td>-6.204699</td>\n", | |
" <td>0.00</td>\n", | |
" <td>4.15</td>\n", | |
" <td>0.09</td>\n", | |
" <td>1.94</td>\n", | |
" <td>0.19</td>\n", | |
" <td>0.4667</td>\n", | |
" <td>1.6667</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>IDN</td>\n", | |
" <td>Indonesia</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.789275</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.01</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-JB</td>\n", | |
" <td>Jawa Barat</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>60</td>\n", | |
" <td>...</td>\n", | |
" <td>-6.920432</td>\n", | |
" <td>0.02</td>\n", | |
" <td>0.07</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.02</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.3333</td>\n", | |
" <td>20.0000</td>\n", | |
" <td>1.0</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-RI</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>0.511648</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.16</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0000</td>\n", | |
" <td>1.0</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 38 columns</p>\n", | |
"</div>\n", | |
" <div class=\"colab-df-buttons\">\n", | |
"\n", | |
" <div class=\"colab-df-container\">\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a708b6ad-df65-4897-aa80-94d8f498e2c2')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
"\n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" .colab-df-buttons div {\n", | |
" margin-bottom: 4px;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-a708b6ad-df65-4897-aa80-94d8f498e2c2 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-a708b6ad-df65-4897-aa80-94d8f498e2c2');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
"\n", | |
"<div id=\"df-3a075d67-039d-40f7-bf19-06feebd01a1e\">\n", | |
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-3a075d67-039d-40f7-bf19-06feebd01a1e')\"\n", | |
" title=\"Suggest charts\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <g>\n", | |
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
" </g>\n", | |
"</svg>\n", | |
" </button>\n", | |
"\n", | |
"<style>\n", | |
" .colab-df-quickchart {\n", | |
" --bg-color: #E8F0FE;\n", | |
" --fill-color: #1967D2;\n", | |
" --hover-bg-color: #E2EBFA;\n", | |
" --hover-fill-color: #174EA6;\n", | |
" --disabled-fill-color: #AAA;\n", | |
" --disabled-bg-color: #DDD;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-quickchart {\n", | |
" --bg-color: #3B4455;\n", | |
" --fill-color: #D2E3FC;\n", | |
" --hover-bg-color: #434B5C;\n", | |
" --hover-fill-color: #FFFFFF;\n", | |
" --disabled-bg-color: #3B4455;\n", | |
" --disabled-fill-color: #666;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart {\n", | |
" background-color: var(--bg-color);\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: var(--fill-color);\n", | |
" height: 32px;\n", | |
" padding: 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart:hover {\n", | |
" background-color: var(--hover-bg-color);\n", | |
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: var(--button-hover-fill-color);\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart-complete:disabled,\n", | |
" .colab-df-quickchart-complete:disabled:hover {\n", | |
" background-color: var(--disabled-bg-color);\n", | |
" fill: var(--disabled-fill-color);\n", | |
" box-shadow: none;\n", | |
" }\n", | |
"\n", | |
" .colab-df-spinner {\n", | |
" border: 2px solid var(--fill-color);\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" animation:\n", | |
" spin 1s steps(1) infinite;\n", | |
" }\n", | |
"\n", | |
" @keyframes spin {\n", | |
" 0% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" border-left-color: var(--fill-color);\n", | |
" }\n", | |
" 20% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 30% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 40% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 60% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 80% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" 90% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" }\n", | |
"</style>\n", | |
"\n", | |
" <script>\n", | |
" async function quickchart(key) {\n", | |
" const quickchartButtonEl =\n", | |
" document.querySelector('#' + key + ' button');\n", | |
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
" quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
" try {\n", | |
" const charts = await google.colab.kernel.invokeFunction(\n", | |
" 'suggestCharts', [key], {});\n", | |
" } catch (error) {\n", | |
" console.error('Error during call to suggestCharts:', error);\n", | |
" }\n", | |
" quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
" }\n", | |
" (() => {\n", | |
" let quickchartButtonEl =\n", | |
" document.querySelector('#df-3a075d67-039d-40f7-bf19-06feebd01a1e button');\n", | |
" quickchartButtonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
" })();\n", | |
" </script>\n", | |
"</div>\n", | |
" </div>\n", | |
" </div>\n" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "dataframe", | |
"variable_name": "df" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 7 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3ff359c5", | |
"metadata": { | |
"id": "3ff359c5" | |
}, | |
"source": [ | |
"MELIHAT JUMLAH BARIS DAN KOLOM PADA DATASET" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "67dbf3e5", | |
"metadata": { | |
"scrolled": false, | |
"id": "67dbf3e5", | |
"outputId": "a6e97e25-b3a6-4dd2-f75b-10c6879e05bc", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
} | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"RangeIndex: 31811 entries, 0 to 31810\n", | |
"Data columns (total 38 columns):\n", | |
" # Column Non-Null Count Dtype \n", | |
"--- ------ -------------- ----- \n", | |
" 0 Tanggal 31811 non-null object \n", | |
" 1 Kode ISO Lokasi 31811 non-null object \n", | |
" 2 Lokasi 31811 non-null object \n", | |
" 3 Kasus Baru 31811 non-null int64 \n", | |
" 4 Kematian Baru 31811 non-null int64 \n", | |
" 5 Baru Pulih 31811 non-null int64 \n", | |
" 6 Kasus Aktif Baru 31811 non-null int64 \n", | |
" 7 Total Kasus 31811 non-null int64 \n", | |
" 8 Total Kematian 31811 non-null int64 \n", | |
" 9 Total Pulih 31811 non-null int64 \n", | |
" 10 Total Kasus Aktif 31811 non-null int64 \n", | |
" 11 Tingkat Lokasi 31811 non-null object \n", | |
" 12 Kota atau Kabupaten 0 non-null float64\n", | |
" 13 Provinsi 30885 non-null object \n", | |
" 14 Negara 31811 non-null object \n", | |
" 15 Benua 31811 non-null object \n", | |
" 16 Pulau 30885 non-null object \n", | |
" 17 Time Zone 30885 non-null object \n", | |
" 18 Status Khusus 4554 non-null object \n", | |
" 19 Total Kabupaten 31811 non-null int64 \n", | |
" 20 Jumlah Kota 30910 non-null float64\n", | |
" 21 Total Distrik 31811 non-null int64 \n", | |
" 22 Total Kelurahan 30907 non-null float64\n", | |
" 23 Total Desa Pedesaan 30886 non-null float64\n", | |
" 24 Area (km2) 31811 non-null int64 \n", | |
" 25 Populasi 31811 non-null int64 \n", | |
" 26 Kepadatan Penduduk 31811 non-null float64\n", | |
" 27 Bujur 31811 non-null float64\n", | |
" 28 Lintang 31811 non-null float64\n", | |
" 29 Kasus Baru per Juta 31811 non-null float64\n", | |
" 30 Total Kasus per Juta 31811 non-null float64\n", | |
" 31 Kematian Baru per Juta 31811 non-null float64\n", | |
" 32 Total Kematian per Juta 31811 non-null float64\n", | |
" 33 Total Kematian per 100rb 31811 non-null float64\n", | |
" 34 Tingkat Kasus Kematian 31811 non-null float64\n", | |
" 35 Tingkat Pemulihan Kasus 31811 non-null float64\n", | |
" 36 Faktor Pertumbuhan Kasus Baru 29876 non-null float64\n", | |
" 37 Faktor Pertumbuhan Kematian Baru 28368 non-null float64\n", | |
"dtypes: float64(16), int64(12), object(10)\n", | |
"memory usage: 9.2+ MB\n" | |
] | |
} | |
], | |
"source": [ | |
"df.info()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3d9e7a57", | |
"metadata": { | |
"id": "3d9e7a57" | |
}, | |
"source": [ | |
"Mengambil kolom yang diperlukan sesuai dengan epidiologi" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "066c297f", | |
"metadata": { | |
"scrolled": true, | |
"id": "066c297f", | |
"outputId": "67b81532-31ec-4312-e7d5-0c718743701f", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 828 | |
} | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Tanggal Kode ISO Lokasi Lokasi Kasus Baru \\\n", | |
"0 2020-04-03 00:00:00 ID-RI Riau 0 \n", | |
"1 2020-05-03 00:00:00 ID-JK DKI Jakarta 0 \n", | |
"2 2020-05-03 00:00:00 IDN Indonesia 0 \n", | |
"3 2020-05-03 00:00:00 ID-JB Jawa Barat 1 \n", | |
"4 2020-05-03 00:00:00 ID-RI Riau 0 \n", | |
"5 2020-06-03 00:00:00 ID-BT Banten 1 \n", | |
"6 2020-06-03 00:00:00 ID-JK DKI Jakarta 0 \n", | |
"7 2020-06-03 00:00:00 IDN Indonesia 2 \n", | |
"8 2020-06-03 00:00:00 ID-JB Jawa Barat 1 \n", | |
"9 2020-06-03 00:00:00 ID-RI Riau 0 \n", | |
"10 2020-07-03 00:00:00 ID-BT Banten 0 \n", | |
"\n", | |
" Kematian Baru Baru Pulih Kasus Aktif Baru Total Kasus Total Kematian \\\n", | |
"0 0 0 0 1 0 \n", | |
"1 1 0 -1 45 21 \n", | |
"2 0 0 0 2 0 \n", | |
"3 0 0 1 3 1 \n", | |
"4 0 0 0 1 0 \n", | |
"5 0 1 0 1 5 \n", | |
"6 0 0 0 45 21 \n", | |
"7 0 0 2 4 0 \n", | |
"8 0 0 1 4 1 \n", | |
"9 0 0 0 1 0 \n", | |
"10 0 0 0 1 5 \n", | |
"\n", | |
" Total Pulih Total Kasus Aktif Provinsi Total Kasus per Juta \\\n", | |
"0 1 0 Riau 0.16 \n", | |
"1 75 -51 DKI Jakarta 4.15 \n", | |
"2 0 2 NaN 0.01 \n", | |
"3 60 -58 Jawa Barat 0.07 \n", | |
"4 1 0 Riau 0.16 \n", | |
"5 111 -115 Banten 0.09 \n", | |
"6 75 -51 DKI Jakarta 4.15 \n", | |
"7 0 4 NaN 0.02 \n", | |
"8 60 -57 Jawa Barat 0.09 \n", | |
"9 1 0 Riau 0.16 \n", | |
"10 111 -115 Banten 0.09 \n", | |
"\n", | |
" Total Kematian per Juta Tingkat Kasus Kematian Tingkat Pemulihan Kasus \n", | |
"0 0.00 0.0000 1.0000 \n", | |
"1 1.94 0.4667 1.6667 \n", | |
"2 0.00 0.0000 0.0000 \n", | |
"3 0.02 0.3333 20.0000 \n", | |
"4 0.00 0.0000 1.0000 \n", | |
"5 0.47 5.0000 111.0000 \n", | |
"6 1.94 0.4667 1.6667 \n", | |
"7 0.00 0.0000 0.0000 \n", | |
"8 0.02 0.2500 15.0000 \n", | |
"9 0.00 0.0000 1.0000 \n", | |
"10 0.47 5.0000 111.0000 " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-e269a2d3-aeb8-428d-8b09-4c0c23f6fd7d\" class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Tanggal</th>\n", | |
" <th>Kode ISO Lokasi</th>\n", | |
" <th>Lokasi</th>\n", | |
" <th>Kasus Baru</th>\n", | |
" <th>Kematian Baru</th>\n", | |
" <th>Baru Pulih</th>\n", | |
" <th>Kasus Aktif Baru</th>\n", | |
" <th>Total Kasus</th>\n", | |
" <th>Total Kematian</th>\n", | |
" <th>Total Pulih</th>\n", | |
" <th>Total Kasus Aktif</th>\n", | |
" <th>Provinsi</th>\n", | |
" <th>Total Kasus per Juta</th>\n", | |
" <th>Total Kematian per Juta</th>\n", | |
" <th>Tingkat Kasus Kematian</th>\n", | |
" <th>Tingkat Pemulihan Kasus</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2020-04-03 00:00:00</td>\n", | |
" <td>ID-RI</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0.16</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>-1</td>\n", | |
" <td>45</td>\n", | |
" <td>21</td>\n", | |
" <td>75</td>\n", | |
" <td>-51</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>4.15</td>\n", | |
" <td>1.94</td>\n", | |
" <td>0.4667</td>\n", | |
" <td>1.6667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>IDN</td>\n", | |
" <td>Indonesia</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.01</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>0.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-JB</td>\n", | |
" <td>Jawa Barat</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>60</td>\n", | |
" <td>-58</td>\n", | |
" <td>Jawa Barat</td>\n", | |
" <td>0.07</td>\n", | |
" <td>0.02</td>\n", | |
" <td>0.3333</td>\n", | |
" <td>20.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-RI</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0.16</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>2020-06-03 00:00:00</td>\n", | |
" <td>ID-BT</td>\n", | |
" <td>Banten</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>5</td>\n", | |
" <td>111</td>\n", | |
" <td>-115</td>\n", | |
" <td>Banten</td>\n", | |
" <td>0.09</td>\n", | |
" <td>0.47</td>\n", | |
" <td>5.0000</td>\n", | |
" <td>111.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>2020-06-03 00:00:00</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>45</td>\n", | |
" <td>21</td>\n", | |
" <td>75</td>\n", | |
" <td>-51</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>4.15</td>\n", | |
" <td>1.94</td>\n", | |
" <td>0.4667</td>\n", | |
" <td>1.6667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>2020-06-03 00:00:00</td>\n", | |
" <td>IDN</td>\n", | |
" <td>Indonesia</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>4</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.02</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>0.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>2020-06-03 00:00:00</td>\n", | |
" <td>ID-JB</td>\n", | |
" <td>Jawa Barat</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>4</td>\n", | |
" <td>1</td>\n", | |
" <td>60</td>\n", | |
" <td>-57</td>\n", | |
" <td>Jawa Barat</td>\n", | |
" <td>0.09</td>\n", | |
" <td>0.02</td>\n", | |
" <td>0.2500</td>\n", | |
" <td>15.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>2020-06-03 00:00:00</td>\n", | |
" <td>ID-RI</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0.16</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>2020-07-03 00:00:00</td>\n", | |
" <td>ID-BT</td>\n", | |
" <td>Banten</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>5</td>\n", | |
" <td>111</td>\n", | |
" <td>-115</td>\n", | |
" <td>Banten</td>\n", | |
" <td>0.09</td>\n", | |
" <td>0.47</td>\n", | |
" <td>5.0000</td>\n", | |
" <td>111.0000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <div class=\"colab-df-buttons\">\n", | |
"\n", | |
" <div class=\"colab-df-container\">\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e269a2d3-aeb8-428d-8b09-4c0c23f6fd7d')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
"\n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" .colab-df-buttons div {\n", | |
" margin-bottom: 4px;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-e269a2d3-aeb8-428d-8b09-4c0c23f6fd7d button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-e269a2d3-aeb8-428d-8b09-4c0c23f6fd7d');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
"\n", | |
"<div id=\"df-e5ea647d-a07b-4bc8-89a5-c0bf0d05aa1f\">\n", | |
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-e5ea647d-a07b-4bc8-89a5-c0bf0d05aa1f')\"\n", | |
" title=\"Suggest charts\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <g>\n", | |
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
" </g>\n", | |
"</svg>\n", | |
" </button>\n", | |
"\n", | |
"<style>\n", | |
" .colab-df-quickchart {\n", | |
" --bg-color: #E8F0FE;\n", | |
" --fill-color: #1967D2;\n", | |
" --hover-bg-color: #E2EBFA;\n", | |
" --hover-fill-color: #174EA6;\n", | |
" --disabled-fill-color: #AAA;\n", | |
" --disabled-bg-color: #DDD;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-quickchart {\n", | |
" --bg-color: #3B4455;\n", | |
" --fill-color: #D2E3FC;\n", | |
" --hover-bg-color: #434B5C;\n", | |
" --hover-fill-color: #FFFFFF;\n", | |
" --disabled-bg-color: #3B4455;\n", | |
" --disabled-fill-color: #666;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart {\n", | |
" background-color: var(--bg-color);\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: var(--fill-color);\n", | |
" height: 32px;\n", | |
" padding: 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart:hover {\n", | |
" background-color: var(--hover-bg-color);\n", | |
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: var(--button-hover-fill-color);\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart-complete:disabled,\n", | |
" .colab-df-quickchart-complete:disabled:hover {\n", | |
" background-color: var(--disabled-bg-color);\n", | |
" fill: var(--disabled-fill-color);\n", | |
" box-shadow: none;\n", | |
" }\n", | |
"\n", | |
" .colab-df-spinner {\n", | |
" border: 2px solid var(--fill-color);\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" animation:\n", | |
" spin 1s steps(1) infinite;\n", | |
" }\n", | |
"\n", | |
" @keyframes spin {\n", | |
" 0% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" border-left-color: var(--fill-color);\n", | |
" }\n", | |
" 20% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 30% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 40% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 60% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 80% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" 90% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" }\n", | |
"</style>\n", | |
"\n", | |
" <script>\n", | |
" async function quickchart(key) {\n", | |
" const quickchartButtonEl =\n", | |
" document.querySelector('#' + key + ' button');\n", | |
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
" quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
" try {\n", | |
" const charts = await google.colab.kernel.invokeFunction(\n", | |
" 'suggestCharts', [key], {});\n", | |
" } catch (error) {\n", | |
" console.error('Error during call to suggestCharts:', error);\n", | |
" }\n", | |
" quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
" }\n", | |
" (() => {\n", | |
" let quickchartButtonEl =\n", | |
" document.querySelector('#df-e5ea647d-a07b-4bc8-89a5-c0bf0d05aa1f button');\n", | |
" quickchartButtonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
" })();\n", | |
" </script>\n", | |
"</div>\n", | |
" </div>\n", | |
" </div>\n" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "dataframe", | |
"variable_name": "df_selected", | |
"summary": "{\n \"name\": \"df_selected\",\n \"rows\": 31811,\n \"fields\": [\n {\n \"column\": \"Tanggal\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2020-01-04 00:00:00\",\n \"max\": \"2022-12-09 00:00:00\",\n \"num_unique_values\": 927,\n \"samples\": [\n \"8/16/2020\",\n \"2021-08-05 00:00:00\",\n \"2020-03-04 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kode ISO Lokasi\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 35,\n \"samples\": [\n \"ID-KU\",\n \"ID-SN\",\n \"ID-SB\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Lokasi\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 35,\n \"samples\": [\n \"Kalimantan Utara\",\n \"Sulawesi Selatan\",\n \"Sumatera Barat\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kasus Baru\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2321,\n \"min\": 0,\n \"max\": 64718,\n \"num_unique_values\": 2591,\n \"samples\": [\n 1065,\n 2167,\n 1257\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kematian Baru\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 64,\n \"min\": 0,\n \"max\": 2069,\n \"num_unique_values\": 405,\n \"samples\": [\n 44,\n 103,\n 568\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Baru Pulih\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2200,\n \"min\": 0,\n \"max\": 61361,\n \"num_unique_values\": 2541,\n \"samples\": [\n 1333,\n 507,\n 11422\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kasus Aktif Baru\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1219,\n \"min\": -29938,\n \"max\": 39165,\n \"num_unique_values\": 2562,\n \"samples\": [\n 6267,\n -1941,\n -1940\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kasus\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 626544,\n \"min\": 1,\n \"max\": 6405044,\n \"num_unique_values\": 22951,\n \"samples\": [\n 316621,\n 33985,\n 31769\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kematian\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17696,\n \"min\": 0,\n \"max\": 157876,\n \"num_unique_values\": 6419,\n \"samples\": [\n 935,\n 640,\n 15880\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Pulih\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 595950,\n \"min\": 0,\n \"max\": 6218708,\n \"num_unique_values\": 21124,\n \"samples\": [\n 53082,\n 33652,\n 70231\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kasus Aktif\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 28542,\n \"min\": -2343,\n \"max\": 586113,\n \"num_unique_values\": 8412,\n \"samples\": [\n 2819,\n 713,\n 264\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Provinsi\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 34,\n \"samples\": [\n \"Papua\",\n \"Kalimantan Tengah\",\n \"Kalimantan Barat\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kasus per Juta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16478.850124485787,\n \"min\": 0.01,\n \"max\": 130231.62,\n \"num_unique_values\": 27295,\n \"samples\": [\n 8279.95,\n 1077.47,\n 44538.43\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kematian per Juta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 363.4518217983632,\n \"min\": 0.0,\n \"max\": 1632.6,\n \"num_unique_values\": 13212,\n \"samples\": [\n 237.27,\n 92.85,\n 1425.11\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Tingkat Kasus Kematian\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.14375060971696763,\n \"min\": 0.0,\n \"max\": 10.0,\n \"num_unique_values\": 1325,\n \"samples\": [\n 0.0067,\n 0.22,\n 0.0465\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Tingkat Pemulihan Kasus\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3782162929409016,\n \"min\": 0.0,\n \"max\": 111.0,\n \"num_unique_values\": 6165,\n \"samples\": [\n 0.7917,\n 0.2011,\n 0.7851\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 9 | |
} | |
], | |
"source": [ | |
"df_selected = df[ [ 'Tanggal', 'Kode ISO Lokasi', 'Lokasi', 'Kasus Baru', 'Kematian Baru', 'Baru Pulih', 'Kasus Aktif Baru',\n", | |
" 'Total Kasus', 'Total Kematian', 'Total Pulih', 'Total Kasus Aktif','Provinsi',\n", | |
" 'Total Kasus per Juta', 'Total Kematian per Juta',\n", | |
" 'Tingkat Kasus Kematian', 'Tingkat Pemulihan Kasus' ]]\n", | |
"df_selected.head(11)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "1bb3fab3", | |
"metadata": { | |
"scrolled": true, | |
"id": "1bb3fab3", | |
"outputId": "76825fbb-ecd3-46d0-ee28-11c7a8eae23a", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
} | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"RangeIndex: 31811 entries, 0 to 31810\n", | |
"Data columns (total 16 columns):\n", | |
" # Column Non-Null Count Dtype \n", | |
"--- ------ -------------- ----- \n", | |
" 0 Tanggal 31811 non-null object \n", | |
" 1 Kode ISO Lokasi 31811 non-null object \n", | |
" 2 Lokasi 31811 non-null object \n", | |
" 3 Kasus Baru 31811 non-null int64 \n", | |
" 4 Kematian Baru 31811 non-null int64 \n", | |
" 5 Baru Pulih 31811 non-null int64 \n", | |
" 6 Kasus Aktif Baru 31811 non-null int64 \n", | |
" 7 Total Kasus 31811 non-null int64 \n", | |
" 8 Total Kematian 31811 non-null int64 \n", | |
" 9 Total Pulih 31811 non-null int64 \n", | |
" 10 Total Kasus Aktif 31811 non-null int64 \n", | |
" 11 Provinsi 30885 non-null object \n", | |
" 12 Total Kasus per Juta 31811 non-null float64\n", | |
" 13 Total Kematian per Juta 31811 non-null float64\n", | |
" 14 Tingkat Kasus Kematian 31811 non-null float64\n", | |
" 15 Tingkat Pemulihan Kasus 31811 non-null float64\n", | |
"dtypes: float64(4), int64(8), object(4)\n", | |
"memory usage: 3.9+ MB\n" | |
] | |
} | |
], | |
"source": [ | |
"df_selected.info()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Mengambil Daftar Kota pada Dataset" | |
], | |
"metadata": { | |
"id": "plwEFy151MKG" | |
}, | |
"id": "plwEFy151MKG" | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import pandas as pd\n", | |
"\n", | |
"\n", | |
"# Mengambil kota-kota unik dari kolom 'kota'\n", | |
"unique_cities = df_selected['Lokasi'].unique()\n", | |
"\n", | |
"# Menampilkan daftar kota unik\n", | |
"print(\"Daftar kota unik dalam data:\")\n", | |
"for city in unique_cities:\n", | |
" print(city)\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "AtKma792yigj", | |
"outputId": "837e5f49-05d2-444f-b800-29c63d61fdb1" | |
}, | |
"id": "AtKma792yigj", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Daftar kota unik dalam data:\n", | |
"Riau\n", | |
"DKI Jakarta\n", | |
"Indonesia\n", | |
"Jawa Barat\n", | |
"Banten\n", | |
"Jawa Tengah\n", | |
"Sulawesi Tenggara\n", | |
"Bali\n", | |
"Kalimantan Timur\n", | |
"Daerah Istimewa Yogyakarta\n", | |
"Sumatera Utara\n", | |
"Jawa Timur\n", | |
"Kepulauan Riau\n", | |
"Sulawesi Selatan\n", | |
"Jambi\n", | |
"Maluku\n", | |
"Papua\n", | |
"Maluku Utara\n", | |
"Sumatera Selatan\n", | |
"Aceh\n", | |
"Kalimantan Tengah\n", | |
"Lampung\n", | |
"Sulawesi Tengah\n", | |
"Sulawesi Utara\n", | |
"Sumatera Barat\n", | |
"Papua Barat\n", | |
"Kalimantan Utara\n", | |
"Sulawesi Barat\n", | |
"Kalimantan Barat\n", | |
"Kalimantan Selatan\n", | |
"Kepulauan Bangka Belitung\n", | |
"Bengkulu\n", | |
"Nusa Tenggara Barat\n", | |
"Nusa Tenggara Timur\n", | |
"Gorontalo\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Mengelompokkan Data berdasarkan lokasi dan Jumlah Total Kasus per Juta" | |
], | |
"metadata": { | |
"id": "-TrqF_qV1UpB" | |
}, | |
"id": "-TrqF_qV1UpB" | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"# Mengelompokkan data berdasarkan 'lokasi' dan menjumlahkan 'total_kasus_perjuta' untuk setiap lokasi\n", | |
"total_kasus_per_lokasi = df_selected.groupby('Lokasi')['Total Kasus per Juta'].sum().reset_index()\n", | |
"\n", | |
"# Menampilkan hasil dari pengelompokkan\n", | |
"print(\"Total jumlah kasus per juta pada setiap lokasi:\")\n", | |
"print(total_kasus_per_lokasi)\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "ZNsoDV2ty78k", | |
"outputId": "853bb905-c936-4807-d799-5c610682bc87" | |
}, | |
"id": "ZNsoDV2ty78k", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Total jumlah kasus per juta pada setiap lokasi:\n", | |
" Lokasi Total Kasus per Juta\n", | |
"0 Aceh 3804307.45\n", | |
"1 Bali 15712745.83\n", | |
"2 Banten 9382065.69\n", | |
"3 Bengkulu 6175164.26\n", | |
"4 DKI Jakarta 50322568.94\n", | |
"5 Daerah Istimewa Yogyakarta 23709680.90\n", | |
"6 Gorontalo 5713937.68\n", | |
"7 Indonesia 9576255.38\n", | |
"8 Jambi 4494424.49\n", | |
"9 Jawa Barat 9725047.98\n", | |
"10 Jawa Tengah 7508688.80\n", | |
"11 Jawa Timur 5926839.78\n", | |
"12 Kalimantan Barat 4315719.11\n", | |
"13 Kalimantan Selatan 9814756.84\n", | |
"14 Kalimantan Tengah 9923893.86\n", | |
"15 Kalimantan Timur 25218935.15\n", | |
"16 Kalimantan Utara 28967342.86\n", | |
"17 Kepulauan Bangka Belitung 19288396.45\n", | |
"18 Kepulauan Riau 15053306.69\n", | |
"19 Lampung 3176460.47\n", | |
"20 Maluku 4897769.52\n", | |
"21 Maluku Utara 5185783.88\n", | |
"22 Nusa Tenggara Barat 3014549.91\n", | |
"23 Nusa Tenggara Timur 6414398.89\n", | |
"24 Papua 5134507.31\n", | |
"25 Papua Barat 11952779.75\n", | |
"26 Riau 11293022.45\n", | |
"27 Sulawesi Barat 4400704.99\n", | |
"28 Sulawesi Selatan 7099084.05\n", | |
"29 Sulawesi Tengah 8185757.91\n", | |
"30 Sulawesi Tenggara 4645914.12\n", | |
"31 Sulawesi Utara 8219873.89\n", | |
"32 Sumatera Barat 8930959.83\n", | |
"33 Sumatera Selatan 4196273.89\n", | |
"34 Sumatera Utara 4094969.80\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Mengurutkan dari Terbesar ke terkecil" | |
], | |
"metadata": { | |
"id": "aKfKr_Ls1dMQ" | |
}, | |
"id": "aKfKr_Ls1dMQ" | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"\n", | |
"# Mengurutkan data dari terbesar ke terkecil berdasarkan 'total_kasus_perjuta'\n", | |
"total_kasus_per_lokasi_sorted = total_kasus_per_lokasi.sort_values(by='Total Kasus per Juta', ascending=False)\n", | |
"\n", | |
"# Menampilkan hasil\n", | |
"print(\"Total jumlah kasus per juta pada setiap lokasi (diurutkan dari terbesar ke terkecil):\")\n", | |
"print(total_kasus_per_lokasi_sorted)\n", | |
"\n", | |
"# Menyimpan hasil ke dalam file 'total_kasus_per_lokasi_sorted.csv' (opsional)\n", | |
"total_kasus_per_lokasi_sorted.to_csv('total_kasus_per_lokasi_sorted.csv', index=False)\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "9XKUU7kzz97K", | |
"outputId": "1426e33b-37ae-41cc-c7eb-6be496030dde" | |
}, | |
"id": "9XKUU7kzz97K", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Total jumlah kasus per juta pada setiap lokasi (diurutkan dari terbesar ke terkecil):\n", | |
" Lokasi Total Kasus per Juta\n", | |
"4 DKI Jakarta 50322568.94\n", | |
"16 Kalimantan Utara 28967342.86\n", | |
"15 Kalimantan Timur 25218935.15\n", | |
"5 Daerah Istimewa Yogyakarta 23709680.90\n", | |
"17 Kepulauan Bangka Belitung 19288396.45\n", | |
"1 Bali 15712745.83\n", | |
"18 Kepulauan Riau 15053306.69\n", | |
"25 Papua Barat 11952779.75\n", | |
"26 Riau 11293022.45\n", | |
"14 Kalimantan Tengah 9923893.86\n", | |
"13 Kalimantan Selatan 9814756.84\n", | |
"9 Jawa Barat 9725047.98\n", | |
"7 Indonesia 9576255.38\n", | |
"2 Banten 9382065.69\n", | |
"32 Sumatera Barat 8930959.83\n", | |
"31 Sulawesi Utara 8219873.89\n", | |
"29 Sulawesi Tengah 8185757.91\n", | |
"10 Jawa Tengah 7508688.80\n", | |
"28 Sulawesi Selatan 7099084.05\n", | |
"23 Nusa Tenggara Timur 6414398.89\n", | |
"3 Bengkulu 6175164.26\n", | |
"11 Jawa Timur 5926839.78\n", | |
"6 Gorontalo 5713937.68\n", | |
"21 Maluku Utara 5185783.88\n", | |
"24 Papua 5134507.31\n", | |
"20 Maluku 4897769.52\n", | |
"30 Sulawesi Tenggara 4645914.12\n", | |
"8 Jambi 4494424.49\n", | |
"27 Sulawesi Barat 4400704.99\n", | |
"12 Kalimantan Barat 4315719.11\n", | |
"33 Sumatera Selatan 4196273.89\n", | |
"34 Sumatera Utara 4094969.80\n", | |
"0 Aceh 3804307.45\n", | |
"19 Lampung 3176460.47\n", | |
"22 Nusa Tenggara Barat 3014549.91\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"\n", | |
"# pembuatan Grafik sesuai dengan Dataset\n", | |
"plt.figure(figsize=(12, 8))\n", | |
"sns.barplot(x='Total Kasus per Juta', y='Lokasi', data=total_kasus_per_lokasi_sorted, palette='coolwarm_r')\n", | |
"plt.title('Total Kasus Per Juta pada Setiap Lokasi')\n", | |
"plt.xlabel('Total Kasus Per Juta')\n", | |
"plt.ylabel('Lokasi')\n", | |
"plt.tight_layout()\n", | |
"\n", | |
"# Menyimpan grafik ke file\n", | |
"plt.savefig('total_kasus_per_lokasi_sorted.png')\n", | |
"\n", | |
"# Menampilkan grafik\n", | |
"plt.show()\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 914 | |
}, | |
"id": "MeoZj5hk1Jxj", | |
"outputId": "406acfee-ab1f-4bd7-b2d7-1af1ad97d31e" | |
}, | |
"id": "MeoZj5hk1Jxj", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"<ipython-input-19-c5e5c368846f>:6: FutureWarning: \n", | |
"\n", | |
"Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", | |
"\n", | |
" sns.barplot(x='Total Kasus per Juta', y='Lokasi', data=total_kasus_per_lokasi_sorted, palette='coolwarm_r')\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1200x800 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhNV////+dJyDyRhgSRQWIeYi6KUD4JjalVtIooSklb2pQqqRiDGhpTtZSgblFq6B1FTYkhaqqo3saGiLZRpZUIbZCc3x9+zrdHDDE0g74e17Wv21577bXea5+TXM37Xmttg9FoNCIiIiIiIiIiIpKPLAo6ABERERERERER+fdRUkpERERERERERPKdklIiIiIiIiIiIpLvlJQSEREREREREZF8p6SUiIiIiIiIiIjkOyWlREREREREREQk3ykpJSIiIiIiIiIi+U5JKRERERERERERyXdKSomIiIiIiIiISL5TUkpERETkb+Lj4zEYDMTHxxd0KPIvFBgYSGBgYEGH8VAiIyMxGAwFHcYjMxgMhIWF5Vt/T8pzExF5GEpKiYiISIEzGAx5OvKSKJowYQJr1qz5x2OOiYnBYDCwf/9+s/L09HQaNGiAjY0NGzZs+MfjeNxujevWYWNjQ8WKFQkLC+PXX3/9x/u/9Qf6hQsXHvjeX375hcjISJKSkh5/YEVUTk4OixcvpmHDhpQsWRJHR0cqVqxIz549+fbbbx+4vatXrxIZGVnokrb5nUgSEZHHo1hBByAiIiKyZMkSs/PFixezadOmXOVVqlS5b1sTJkygc+fOdOzY8XGGmCcZGRn83//9H99//z2rV68mODg432N4XMaMGYOPjw9//fUXO3fu5OOPP+brr7/mhx9+wM7OrqDDu6NffvmF0aNH4+3tTUBAQEGHUyi8+eabzJ49mw4dOtC9e3eKFSvG8ePHWb9+Pb6+vjz99NMP1N7Vq1cZPXo0QK4ZXSNHjuS99957XKH/a+i5ici/mZJSIiIiUuBeeeUVs/Nvv/2WTZs25SovzC5fvkxQUBBJSUmsWrWKNm3aFHRIj6RNmzbUq1cPgL59++Lq6sq0adNYu3YtL7300iO1ffXq1UKb2HqS/Prrr8yZM4d+/frx6aefml376KOP+O233x5rf8WKFaNYMf158aD03ETk30zL90RERKRIuHLlCu+88w6enp5YW1tTqVIlpkyZgtFoNNUxGAxcuXKFRYsWmZafhYaGAnDmzBkGDhxIpUqVsLW1xdXVlRdffJGUlJRHji0zM5Pg4GC+++47vvzyS5577jmz62vXruW5556jTJkyWFtbU6FCBcaOHUt2drZZvZMnT/LCCy/g7u6OjY0N5cqVo1u3bqSnpwOQkpKCwWAgJiYmVwwGg4HIyEjT+eXLlxk8eDDe3t5YW1tTqlQpWrduzXffffdQY2zZsiUAp0+fNpV9/vnn1K1bF1tbW0qWLEm3bt04e/as2X2BgYFUr16dAwcO0KxZM+zs7Hj//fcfqG9vb2/T53h727dm68THx1O/fn0Aevfubfr8bz2rHTt28OKLL1K+fHmsra3x9PRkyJAh/Pnnn/ft/9aSxu3bt9O/f39cXV1xcnKiZ8+e/PHHH2Z18/pZA3z66adUqFABW1tbGjRowI4dO3LVuXbtGh988AF169bF2dkZe3t7mjZtyrZt2+4b9+nTpzEajTRp0iTXNYPBQKlSpczKLl26xODBg00/Y35+fkyaNImcnBzg5vfPzc0NgNGjR5ue8a3v3Z32Rlq4cCEtW7akVKlSWFtbU7VqVT7++ONc8Xh7exMSEsI333xDQEAANjY2VK1alVWrVt13nHmVl98hdzNu3DgsLCyYOXMmkPffJ9evX2f06NH4+/tjY2ODq6srzzzzDJs2bTLV0Z5SIvJvppS8iIiIFHpGo5H27duzbds2+vTpQ0BAABs3buTdd9/l559/Zvr06cDNZYB9+/alQYMGvPbaawBUqFABgH379pGYmEi3bt0oV64cKSkpfPzxxwQGBnLkyJGHnrlz5coV2rRpw759+1i5ciUhISG56sTExODg4MDbb7+Ng4MDW7du5YMPPiAjI4MPP/wQuJl8CAoKIisrizfeeAN3d3d+/vln4uLiuHTpEs7Ozg8U14ABA1i5ciVhYWFUrVqVixcvsnPnTo4ePUqdOnUeeJzJyckAuLq6AjB+/HgiIiLo0qULffv25bfffmPmzJk0a9aMgwcP4uLiYrr34sWLtGnThm7duvHKK69QunTpB+7/fqpUqcKYMWP44IMPeO2112jatCkAjRs3BmDFihVcvXqV119/HVdXV/bu3cvMmTP56aefWLFiRZ76CAsLw8XFhcjISI4fP87HH3/MmTNnTJvjQ94+a4DPPvuM/v3707hxYwYPHsypU6do3749JUuWxNPT01QvIyOD+fPn89JLL9GvXz8uX77MZ599RlBQEHv37r3nMkUvLy/T2F988cV7fsevXr1K8+bN+fnnn+nfvz/ly5cnMTGR4cOHk5aWxkcffYSbmxsff/wxr7/+Op06deL5558HoGbNmndt9+OPP6ZatWq0b9+eYsWK8d///peBAweSk5PDoEGDzOqePHmSrl27MmDAAHr16sXChQt58cUX2bBhA61bt777B5MHef0dcicjR45kwoQJfPLJJ/Tr1w/I+++TyMhIoqKiTL+XMjIy2L9/P999990jj0lE5IlgFBERESlkBg0aZPz7f6asWbPGCBjHjRtnVq9z585Gg8Fg/PHHH01l9vb2xl69euVq8+rVq7nKdu/ebQSMixcvNpVt27bNCBi3bdt2zxgXLlxoBIxeXl7G4sWLG9esWXPXunfqu3///kY7OzvjX3/9ZTQajcaDBw8aAeOKFSvu2s7p06eNgHHhwoW5rgHGUaNGmc6dnZ2NgwYNuucY7uTWuDZv3mz87bffjGfPnjXGxsYaXV1djba2tsaffvrJmJKSYrS0tDSOHz/e7N7Dhw8bixUrZlbevHlzI2CcO3dunvofNWqUETD+9ttvpjIvL687fqbNmzc3Nm/e3HS+b9++uz6fO30GUVFRRoPBYDxz5sw9Y7r1TOrWrWu8du2aqXzy5MlGwLh27dp79nP7Z33t2jVjqVKljAEBAcasrCxTvU8//dQImI3pxo0bZnWMRqPxjz/+MJYuXdr46quv3jNuo9Fo7NmzpxEwlihRwtipUyfjlClTjEePHs1Vb+zYsUZ7e3vjiRMnzMrfe+89o6WlpTE1NdVoNBqNv/32W67v2i23Pru/u9PzCAoKMvr6+pqVeXl5GQHjl19+aSpLT083enh4GGvXrn3fcQL3/L4/yO+Qv7f1zjvvGC0sLIwxMTH3Hdedfp/UqlXL+Nxzz90z9js9NxGRfwst3xMREZFC7+uvv8bS0pI333zTrPydd97BaDSyfv36+7Zha2tr+vf169e5ePEifn5+uLi4PPSSNri5b4+NjY3Z7JZ79X358mUuXLhA06ZNuXr1KseOHQMwzYTauHEjV69efeh4bnFxcWHPnj388ssvD3V/q1atcHNzw9PTk27duuHg4MDq1aspW7Ysq1atIicnhy5dunDhwgXT4e7ujr+/f66lZdbW1vTu3fuRx/Qo/v4ZXLlyhQsXLtC4cWOMRiMHDx7MUxuvvfYaxYsXN52//vrrFCtWjK+//vqO/dzts96/fz/nz59nwIABWFlZmeqHhobmmhFnaWlpqpOTk8Pvv//OjRs3qFevXp6+twsXLmTWrFn4+PiwevVqwsPDqVKlCs8++yw///yzqd6KFSto2rQpJUqUMPtMW7VqRXZ2Ntu3b8/TM7rd359Heno6Fy5coHnz5pw6dcq0LPWWMmXK0KlTJ9P5rSWSBw8e5Ny5cw/V/y0P+jvEaDQSFhZGdHQ0n3/+Ob169brruO71+8TFxYX//e9/nDx58pHiFxF5UikpJSIiIoXemTNnKFOmDI6Ojmblt97Gd+bMmfu28eeff/LBBx+Y9pN56qmncHNz49KlS7n+OH4Qn3zyCVZWVgQHB3P8+PE71vnf//5Hp06dcHZ2xsnJCTc3N9Mm7rf69vHx4e2332b+/Pk89dRTBAUFMXv27IeObfLkyfzwww94enrSoEEDIiMjOXXqVJ7vnz17Nps2bWLbtm0cOXKEU6dOERQUBNxcZmU0GvH398fNzc3sOHr0KOfPnzdrq2zZsmbJl4KQmppKaGgoJUuWxMHBATc3N5o3bw6Q52fs7+9vdu7g4ICHh4fZPkJ5+axvfV9vb6948eL4+vrm6nfRokXUrFnTtCeRm5sb69aty1PcFhYWDBo0iAMHDnDhwgXWrl1LmzZt2Lp1K926dTPVO3nyJBs2bMj1ebZq1Qog12eaV7t27aJVq1bY29vj4uKCm5ubaU+x2+P38/PLtbdSxYoVAR5577cH/R2yePFiZs+ezcyZM++4sX9ef5+MGTOGS5cuUbFiRWrUqMG7777L999//0hjERF5kmhPKREREflXeOONN1i4cCGDBw+mUaNGODs7YzAY6Natm2kj54dRtWpVvv76a5599llat27Nrl27zGZNXbp0iebNm+Pk5MSYMWOoUKECNjY2fPfddwwbNsys76lTpxIaGsratWv55ptvePPNN4mKiuLbb7+lXLlyd90M+U6baHfp0oWmTZuyevVqvvnmGz788EMmTZqU5zcDNmjQwPT2vdvl5ORgMBhYv349lpaWua47ODiYnf99VsnDuNe479T/neq1bt2a33//nWHDhlG5cmXs7e35+eefCQ0NfaTP/+8e5LPOq88//5zQ0FA6duzIu+++S6lSpbC0tCQqKsq0z1deubq60r59e9q3b09gYCAJCQmcOXMGLy8vcnJyaN26NUOHDr3jvbeSQw8iOTmZZ599lsqVKzNt2jQ8PT2xsrLi66+/Zvr06Y/tuf8TmjRpQlJSErNmzaJLly6ULFnS7Hpef580a9aM5ORk08/0/PnzmT59OnPnzqVv3775PSwRkUJHSSkREREp9Ly8vNi8eTOXL182m+lwaznUrQ2d4e4JjJUrV9KrVy+mTp1qKvvrr7+4dOnSI8fXoEED1qxZw3PPPUfr1q3ZsWOH6S1l8fHxXLx4kVWrVtGsWTPTPX9/i93f1ahRgxo1ajBy5EgSExNp0qQJc+fOZdy4cZQoUQIgV8x3mynm4eHBwIEDGThwIOfPn6dOnTqMHz8+T0mpe6lQoQJGoxEfH5+HSlY8qBIlStzxczpz5ozZzKK7ffaHDx/mxIkTLFq0iJ49e5rK//4GtLw4efIkLVq0MJ1nZmaSlpZG27Ztgbx/1re+rydPnjS91RBuLgM7ffo0tWrVMpWtXLkSX19fVq1aZTa+UaNGPVDst6tXrx4JCQmkpaXh5eVFhQoVyMzMNM2MupsHeUvcf//7X7Kysvjqq68oX768qfxubw788ccfMRqNZn2cOHECuPl2vkfxIL9D4OasrcmTJxMYGEhwcDBbtmwxu+9Bfp+ULFmS3r1707t3bzIzM2nWrBmRkZFKSomIoOV7IiIiUgS0bduW7OxsZs2aZVY+ffp0DAaDWZLF3t7+jn8YWlpa5nr1+8yZM+84y+hhPPvssyxbtowff/yR4OBgMjIyTP0CZn1fu3aNOXPmmN2fkZHBjRs3zMpq1KiBhYUFWVlZwM09dp566qlc+/vc3lZ2dnaupVGlSpWiTJkyprYexfPPP4+lpSWjR4/O9UyNRiMXL1585D7+rkKFCnz77bdcu3bNVBYXF8fZs2fN6tnb2wO5k3Z3+gyMRiPR0dEPFMenn37K9evXTecff/wxN27cMH3/8vpZ16tXDzc3N+bOnWs2ppiYmDzFvmfPHnbv3n3feM+dO8eRI0dylV+7do0tW7ZgYWGBn58fcHNm3e7du9m4cWOu+pcuXTJ9N2+9VS4vydw7xZ6ens7ChQvvWP+XX35h9erVpvOMjAwWL15MQEAA7u7u9+3vXh7kd8gtNWvW5Ouvv+bo0aO0a9eOP//802xsefl9cvvPgoODA35+fo/l51BE5EmgmVIiIiJS6LVr144WLVowYsQIUlJSqFWrFt988w1r165l8ODBVKhQwVS3bt26bN68mWnTplGmTBl8fHxo2LAhISEhLFmyBGdnZ6pWrcru3bvZvHkzrq6ujy3OTp06MW/ePF599VXat2/Phg0baNy4MSVKlKBXr168+eabGAwGlixZkusP2q1btxIWFsaLL75IxYoVuXHjBkuWLMHS0pIXXnjBVK9v375MnDiRvn37Uq9ePbZv326aTXLL5cuXKVeuHJ07d6ZWrVo4ODiwefNm9u3bZzaz42FVqFCBcePGMXz4cFJSUujYsSOOjo6cPn2a1atX89prrxEeHv7I/dzSt29fVq5cSXBwMF26dCE5OZnPP//c7HO/FZeLiwtz587F0dERe3t7GjZsSOXKlalQoQLh4eH8/PPPODk58eWXX/LHH388UBzXrl3j2WefpUuXLhw/fpw5c+bwzDPP0L59e4A8f9bFixdn3Lhx9O/fn5YtW9K1a1dOnz7NwoULc+0pFRISwqpVq+jUqRPPPfccp0+fZu7cuVStWpXMzMx7xvvTTz/RoEEDWrZsybPPPou7uzvnz59n2bJlHDp0iMGDB/PUU08B8O677/LVV18REhJCaGgodevW5cqVKxw+fJiVK1eSkpLCU089ha2tLVWrVmX58uVUrFiRkiVLUr16dapXr56r///7v//DysqKdu3a0b9/fzIzM5k3bx6lSpUiLS0tV/2KFSvSp08f9u3bR+nSpVmwYAG//vrrXZNYt9u/fz/jxo3LVR4YGPhAv0P+7umnn2bt2rW0bduWzp07s2bNGooXL57n3ydVq1YlMDCQunXrUrJkSfbv38/KlSsJCwvL05hERJ54+fy2PxEREZH7GjRoUK5XpF++fNk4ZMgQY5kyZYzFixc3+vv7Gz/88ENjTk6OWb1jx44ZmzVrZrS1tTUCxl69ehmNRqPxjz/+MPbu3dv41FNPGR0cHIxBQUHGY8eOGb28vEx1jEajcdu2bUbAuG3btnvGuHDhQiNg3LdvX65rU6ZMMQLGkJAQ4/Xr1427du0yPv3000ZbW1tjmTJljEOHDjVu3LjRrJ9Tp04ZX331VWOFChWMNjY2xpIlSxpbtGhh3Lx5s1nbV69eNfbp08fo7OxsdHR0NHbp0sV4/vx5I2AcNWqU0Wg0GrOysozvvvuusVatWkZHR0ejvb29sVatWsY5c+bc99nfa1y3+/LLL43PPPOM0d7e3mhvb2+sXLmycdCgQcbjx4+b6jRv3txYrVq1+7Z1ywcffGAEjL///rtZ+dSpU41ly5Y1WltbG5s0aWLcv3+/sXnz5sbmzZub1Vu7dq2xatWqxmLFihkB48KFC41Go9F45MgRY6tWrYwODg7Gp556ytivXz/joUOHzOrcza1nkpCQYHzttdeMJUqUMDo4OBi7d+9uvHjxolndvHzWt8yZM8fo4+NjtLa2NtarV8+4ffv2XGPKyckxTpgwwejl5WW0trY21q5d2xgXF2fs1auX0cvL655xZ2RkGKOjo41BQUHGcuXKGYsXL250dHQ0NmrUyDhv3rxcPzuXL182Dh8+3Ojn52e0srIyPvXUU8bGjRsbp0yZYrx27ZqpXmJiorFu3bpGKysrs+/dqFGjcv3cfvXVV8aaNWsabWxsjN7e3sZJkyYZFyxYYASMp0+fNtXz8vIyPvfcc8aNGzcaa9asabS2tjZWrlzZuGLFinuO8RbgrsfYsWNN48vL7xDAOGjQILOytWvXGosVK2bs2rWrMTs7O8+/T8aNG2ds0KCB0cXFxWhra2usXLmycfz48WbP807PTUTk38JgNN72f92IiIiIiBSQt99+m+joaP766y+KFy9e0OEAN5fV9e7dm3379t1183d5NN7e3lSvXp24uLiCDkVERPKR9pQSERERkUJj3759+Pn5FZqElIiIiPxzlJQSERERkQK3cOFCevTowc6dO+nVq1dBhyMiIiL5QBudi4iIiEiB69OnD+7u7gwdOpRhw4YVdDgiIiKSD7SnlIiIiIiIiIiI5Dst3xMRERERERERkXynpJSIiIiIiIiIiOQ77SklUgTl5OTwyy+/4OjoiMFgKOhwREREREREREyMRiOXL1+mTJkyWFjcfT6UklIiRdAvv/yCp6dnQYchIiIiIiIicldnz56lXLlyd72upJRIEeTo6Ajc/AF3cnIq4GhERERERERE/p+MjAw8PT1Nf7vejZJSIkXQrSV7Wzt2w66YfoxFRERERESeZJ2/jS/oEB7K/bab0UbnIiIiIiIiIiKS75SUEhERERERERGRfKeklAg3pxSuWbOmoMMQERERERER+ddQUkr+caGhoRgMBgwGA8WLF6d06dK0bt2aBQsWkJOTY1bX29ubjz76yHRuNBoJDw/HycmJ+Pj4O9a5XWRkJAEBAY9/IA8hMDCQwYMHF3QYIiIiIiIiIoWOklKSL4KDg0lLSyMlJYX169fTokUL3nrrLUJCQrhx48Yd78nOzqZPnz4sXryYbdu2ERgYmL9BP4Jr164VdAgiIiIiIiIihZqSUpIvrK2tcXd3p2zZstSpU4f333+ftWvXsn79emJiYnLVz8rK4sUXX2Tz5s3s2LGDunXrPnTf+/bto3Xr1jz11FM4OzvTvHlzvvvuu3veM2rUKDw8PPj+++8BGDZsGBUrVsTOzg5fX18iIiK4fv26qf6t2Vnz58/Hx8cHGxsbQkNDSUhIIDo62jRTLCUlxZRs8/HxwdbWlkqVKhEdHf3Q4xMREREREREpivQueSkwLVu2pFatWqxatYq+ffuayjMzM3nuuef46aef2LVrF56eno/Uz+XLl+nVqxczZ87EaDQydepU2rZty8mTJ3F0dDSrazQaefPNN4mLi2PHjh34+fkB4OjoSExMDGXKlOHw4cP069cPR0dHhg4darr3xx9/5Msvv2TVqlVYWlri5eXFiRMnqF69OmPGjAHAzc2NnJwcypUrx4oVK3B1dSUxMZHXXnsNDw8PunTpcscxZGVlkZWVZTrPyMh4pGciIiIiIiIiUtCUlJICVblyZdNspFvGjh2Lo6MjR48exc3N7ZH7aNmypdn5p59+iouLCwkJCYSEhJjKb9y4wSuvvMLBgwfZuXMnZcuWNV0bOXKk6d/e3t6Eh4cTGxtrlpS6du0aixcvNovZysoKOzs73N3dTWWWlpaMHj3adO7j48Pu3bv54osv7pqUioqKMrtHREREREREpKjT8j0pUEajEYPBYFb2f//3f1y5coUJEyY8lj5+/fVX+vXrh7+/P87Ozjg5OZGZmUlqaqpZvSFDhrBnzx62b99ulpACWL58OU2aNMHd3R0HBwdGjhyZ634vL688J9Fmz55N3bp1cXNzw8HBgU8//TRXe383fPhw0tPTTcfZs2fzOHoRERERERGRwklJKSlQR48excfHx6zs2WefZe3atcydO5e33nrrkfvo1asXSUlJREdHk5iYSFJSEq6urrk2I2/dujU///wzGzduNCvfvXs33bt3p23btsTFxXHw4EFGjBiR6357e/s8xRMbG0t4eDh9+vThm2++ISkpid69e99zc3Rra2ucnJzMDhEREREREZGiTMv3pMBs3bqVw4cPM2TIkFzX/u///o///ve/tG/fHqPRyIwZMx66n127djFnzhzatm0LwNmzZ7lw4UKueu3bt6ddu3a8/PLLWFpa0q1bNwASExPx8vJixIgRprpnzpzJU99WVlZkZ2fniqdx48YMHDjQVJacnPzA4xIREREREREpypSUknyRlZXFuXPnyM7O5tdff2XDhg1ERUUREhJCz54973hPq1atiIuLo127duTk5DBr1qyH6tvf358lS5ZQr149MjIyePfdd7G1tb1j3U6dOrFkyRJ69OhBsWLF6Ny5M/7+/qSmphIbG0v9+vVZt24dq1evzlPf3t7e7Nmzh5SUFBwcHChZsiT+/v4sXryYjRs34uPjw5IlS9i3b1+uGWMiIiIiIiIiTzIt35N8sWHDBjw8PPD29iY4OJht27YxY8YM1q5di6Wl5V3va9myJevWrSMmJoZBgwZhNBrv21dOTg7Fiv2/fOtnn33GH3/8QZ06dejRowdvvvkmpUqVuuv9nTt3ZtGiRfTo0YNVq1bRvn17hgwZQlhYGAEBASQmJhIREZGncYeHh2NpaUnVqlVxc3MjNTWV/v378/zzz9O1a1caNmzIxYsXzWZNiYiIiIiIiPwbGIx5+StfpAgZMGAAP/30E3FxcQUdyj8mIyMDZ2dnFtVtgl0xTXgUERERERF5knX+Nr6gQ3ggt/5mTU9Pv+eeyJopJU+My5cvs337dlatWkWrVq0KOhwRERERERERuQdNsZAnxgcffMDSpUvp1KkTAwYMKOhw8kXHrV/rTXwiIiIiIiJSJGn5nkgRlNepkCIiIiIiIiL5Tcv3RERERERERESk0FJSSkRERERERERE8p32lBIpwjZ1fgG74voxFhER+bdqs259QYcgIiLy0DRTSkRERERERERE8p2SUiIiIiIiIiIiku+UlPoXiomJwcXFxXQeGRlJQEBAgcUjIiIiIiIiIv8+SkoVMaGhoXTs2NGsbOXKldjY2DB16tSHajM8PJwtW7Y8hugeXWBgIIMHD86Xvu6WjEtJScFgMJCUlATkTuKJiIiIiIiIyKPTDslF3Pz58xk0aBBz586ld+/eD9WGg4MDDg4OjzkyuZ3RaCQ7O5tixfRjJyIiIiIiIqKZUkXY5MmTeeONN4iNjTVLSE2bNo0aNWpgb2+Pp6cnAwcOJDMz867t3D5j6NZsrAkTJlC6dGlcXFwYM2YMN27c4N1336VkyZKUK1eOhQsXmrUzbNgwKlasiJ2dHb6+vkRERHD9+vVc/SxZsgRvb2+cnZ3p1q0bly9fNvWbkJBAdHQ0BoMBg8FASkoK2dnZ9OnTBx8fH2xtbalUqRLR0dFmfd+KecqUKXh4eODq6sqgQYPM+n8Y8fHx9O7dm/T0dFNMkZGRACxZsoR69erh6OiIu7s7L7/8MufPnze712AwsH79eurWrYu1tTU7d+4kOTmZDh06ULp0aRwcHKhfvz6bN29+pDhFREREREREiholpYqoYcOGMXbsWOLi4ujUqZPZNQsLC2bMmMH//vc/Fi1axNatWxk6dOgDtb9161Z++eUXtm/fzrRp0xg1ahQhISGUKFGCPXv2MGDAAPr3789PP/1kusfR0ZGYmBiOHDlCdHQ08+bNY/r06WbtJicns2bNGuLi4oiLiyMhIYGJEycCEB0dTaNGjejXrx9paWmkpaXh6elJTk4O5cqVY8WKFRw5coQPPviA999/ny+++MKs7W3btpGcnMy2bdtYtGgRMTExxMTEPNC4b9e4cWM++ugjnJycTDGFh4cDcP36dcaOHcuhQ4dYs2YNKSkphIaG5mrjvffeY+LEiRw9epSaNWuSmZlJ27Zt2bJlCwcPHiQ4OJh27dqRmpr6SLGKiIiIiIiIFCVaR1QErV+/nrVr17JlyxZatmyZ6/rf92Ty9vZm3LhxDBgwgDlz5uS5j5IlSzJjxgwsLCyoVKkSkydP5urVq7z//vsADB8+nIkTJ7Jz5066desGwMiRI836DQ8PJzY21iwhlpOTQ0xMDI6OjgD06NGDLVu2MH78eJydnbGyssLOzg53d3fTPZaWlowePdp07uPjw+7du/niiy/o0qWLqbxEiRLMmjULS0tLKleuzHPPPceWLVvo169fnsd9OysrK5ydnTEYDGYxAbz66qumf/v6+jJjxgzq169PZmam2XLIMWPG0Lp1a9N5yZIlqVWrlul87NixrF69mq+++oqwsLA7xpGVlUVWVpbpPCMj46HHJCIiIiIiIlIYaKZUEVSzZk28vb0ZNWrUHZflbd68mWeffZayZcvi6OhIjx49uHjxIlevXs1zH9WqVcPC4v99PUqXLk2NGjVM55aWlri6upotV1u+fDlNmjTB3d0dBwcHRo4cmWv2j7e3tykhBeDh4WHWxt3Mnj2bunXr4ubmhoODA59++mmutqtVq4alpeUDt/2wDhw4QLt27ShfvjyOjo40b94cIFdc9erVMzvPzMwkPDycKlWq4OLigoODA0ePHr3nTKmoqCicnZ1Nh6en5+MfkIiIiIiIiEg+UlKqCCpbtizx8fH8/PPPBAcHm/ZkgptvjgsJCaFmzZp8+eWXHDhwgNmzZwNw7dq1PPdRvHhxs3ODwXDHspycHAB2795N9+7dadu2LXFxcRw8eJARI0bk6vNebdxNbGws4eHh9OnTh2+++YakpCR69+79yG07OTmRnp6eq/zSpUsAODs73/XeK1euEBQUhJOTE0uXLmXfvn2sXr0ayP2c7e3tzc7Dw8NZvXo1EyZMYMeOHSQlJVGjRo17fj7Dhw8nPT3ddJw9e/audUVERERERESKAi3fK6K8vLxISEigRYsWBAcHs2HDBhwdHTlw4AA5OTlMnTrVNNPp9r2X/gmJiYl4eXkxYsQIU9mZM2ceuB0rKyuys7PNynbt2kXjxo0ZOHCgqSw5Ofnhg/3/VapUiZ9++olff/2V0qVLm8q/++47bGxsKF++/F1jOnbsGBcvXmTixImmWUv79+/PU7+7du0iNDTUtBdYZmYmKSkp97zH2toaa2vrvA5NREREREREpNDTTKkizNPTk/j4eM6fP09QUBAZGRn4+flx/fp1Zs6cyalTp1iyZAlz5879x2Px9/cnNTWV2NhYkpOTmTFjhmnm0IPw9vZmz549pKSkcOHCBXJycvD392f//v1s3LiREydOEBERwb59+x455qCgICpVqsRLL71EYmIip06dYuXKlYwcOZK33nrLtBTQ29ubzMxMtmzZwoULF7h69Srly5fHysrK9Jy/+uorxo4dm6d+/f39WbVqFUlJSRw6dIiXX375vrPFRERERERERJ40SkoVceXKlSM+Pp4LFy4QFBSEj48P06ZNY9KkSVSvXp2lS5cSFRX1j8fRvn17hgwZQlhYGAEBASQmJhIREfHA7YSHh2NpaUnVqlVxc3MjNTWV/v378/zzz9O1a1caNmzIxYsXzWZNPaxixYrxzTffUL58eV566SWqV6/OqFGjeOutt8wSTI0bN2bAgAF07doVNzc3Jk+ejJubGzExMaxYsYKqVasyceJEpkyZkqd+p02bRokSJWjcuDHt2rUjKCiIOnXqPPJ4RERERERERIoSg9FoNBZ0ECLyYDIyMnB2dmZl61bYFdcqXBERkX+rNuvWF3QIIiIiudz6mzU9PR0nJ6e71tNMKRERERERERERyXdKSomIiIiIiIiISL7Tuh+RIqz1yi/vORVSREREREREpLDSTCkREREREREREcl3SkqJiIiIiIiIiEi+U1JKRERERERERETynfaUEinCdvTpjn3x4gUdhoiISL4K/M+qgg5BREREHgPNlBIRERERERERkXynpNS/TExMDC4uLqbzyMhIAgICCiyewur25yQiIiIiIiIij5eSUkVIaGgoHTt2NCtbuXIlNjY2TJ069aHaDA8PZ8uWLY8hukcXGBjI4MGD86Ufg8Fw1yMwMJCuXbty4sSJfzwWERERERERkX8r7SlVhM2fP59BgwYxd+5cevfu/VBtODg44ODg8JgjK9xWrVrFtWvXADh79iwNGjRg8+bNVKtWDQArKytsbW2xtbXN99iMRiPZ2dkUK6YfTREREREREXmyaaZUETV58mTeeOMNYmNjzRJS06ZNo0aNGtjb2+Pp6cnAgQPJzMy8azu3L9+7NRtrwoQJlC5dGhcXF8aMGcONGzd49913KVmyJOXKlWPhwoVm7QwbNoyKFStiZ2eHr68vERERXL9+PVc/S5YswdvbG2dnZ7p168bly5dN/SYkJBAdHW2asZSSkkJ2djZ9+vTBx8cHW1tbKlWqRHR0tFnft2KeMmUKHh4euLq6MmjQILP+/65kyZK4u7vj7u6Om5sbAK6urqaykiVL3nWZ44IFCyhfvjwODg4MHDiQ7OxsJk+ejLu7O6VKlWL8+PGme1JSUjAYDCQlJZnKLl26hMFgID4+HoD4+HgMBgPr16+nbt26WFtbs3Pnzrt+XiIiIiIiIiJPCk3HKIKGDRvGnDlziIuL49lnnzW7ZmFhwYwZM/Dx8eHUqVMMHDiQoUOHMmfOnDy3v3XrVsqVK8f27dvZtWsXffr0ITExkWbNmrFnzx6WL19O//79ad26NeXKlQPA0dGRmJgYypQpw+HDh+nXrx+Ojo4MHTrU1G5ycjJr1qwhLi6OP/74gy5dujBx4kTGjx9PdHQ0J06coHr16owZMwYANzc3cnJyKFeuHCtWrMDV1ZXExERee+01PDw86NKli6ntbdu24eHhwbZt2/jxxx/p2rUrAQEB9OvX71EetZnk5GTWr1/Phg0bSE5OpnPnzpw6dYqKFSuSkJBAYmIir776Kq1ataJhw4YP1PZ7773HlClT8PX1pUSJEo8tZhEREREREZHCSkmpImb9+vWsXbuWLVu20LJly1zX/74nk7e3N+PGjWPAgAEPlJQqWbIkM2bMwMLCgkqVKjF58mSuXr3K+++/D8Dw4cOZOHEiO3fupFu3bgCMHDnSrN/w8HBiY2PNklI5OTnExMTg6OgIQI8ePdiyZQvjx4/H2dkZKysr7OzscHd3N91jaWnJ6NGjTec+Pj7s3r2bL774wiwpVaJECWbNmoWlpSWVK1fmueeeY8uWLY81KZWTk8OCBQtwdHSkatWqtGjRguPHj/P111+bntWkSZPYtm3bAyelxowZQ+vWre96PSsri6ysLNN5RkbGQ49DREREREREpDBQUqqIqVmzJhcuXGDUqFE0aNAg135QmzdvJioqimPHjpGRkcGNGzf466+/uHr1KnZ2dnnqo1q1alhY/L+VnaVLl6Z69eqmc0tLS1xdXTl//rypbPny5cyYMYPk5GQyMzO5ceMGTk5OZu16e3ubElIAHh4eZm3czezZs1mwYAGpqan8+eefXLt2LdcbA6tVq4alpaVZ24cPH87TePPq9vhLly6NpaVlrmeVlzHdrl69eve8HhUVZZacExERERERESnqtKdUEVO2bFni4+P5+eefCQ4ONu3JBDf3MAoJCaFmzZp8+eWXHDhwgNmzZwOYNvbOi+LFi5udGwyGO5bl5OQAsHv3brp3707btm2Ji4vj4MGDjBgxIlef92rjbmJjYwkPD6dPnz588803JCUl0bt378fS9oN60OdyK1llNBpN1++2z5W9vf09+x4+fDjp6emm4+zZsw8cv4iIiIiIiEhhoplSRZCXlxcJCQm0aNGC4OBgNmzYgKOjIwcOHCAnJ4epU6eaEiJffPHFPx5PYmIiXl5ejBgxwlR25syZB27HysqK7Oxss7Jdu3bRuHFjBg4caCpLTk5++GDz0a1N1NPS0qhduzaA2abnD8La2hpra+vHFZqIiIiIiIhIgdNMqSLK09OT+Ph4zp8/T1BQEBkZGfj5+XH9+nVmzpzJqVOnWLJkCXPnzv3HY/H39yc1NZXY2FiSk5OZMWMGq1evfuB2vL292bNnDykpKVy4cIGcnBz8/f3Zv38/Gzdu5MSJE0RERLBv375/YBSPn62tLU8//TQTJ07k6NGjJCQkmO29JSIiIiIiIvJvpqRUEVauXDni4+O5cOECQUFB+Pj4MG3aNCZNmkT16tVZunQpUVFR/3gc7du3Z8iQIYSFhREQEEBiYiIREREP3E54eDiWlpZUrVoVNzc3UlNT6d+/P88//zxdu3alYcOGXLx40WzWVGG3YMECbty4Qd26dRk8eDDjxo0r6JBERERERERECgWD8e8b3ohIkZCRkYGzszNxnUOwv21fKxERkSdd4H9WFXQIIiIicg+3/mZNT0/P9RK0v9NMKRERERERERERyXdKSomIiIiIiIiISL7T2/dEirCmny2951RIERERERERkcJKM6VERERERERERCTfKSklIiIiIiIiIiL5TkkpERERERERERHJd9pTSqQI2/dWX+ytihd0GCIiIjz9ydKCDkFERESKGM2UEhERERERERGRfKekVB5ERkYSEBCQ7/0GBgYyePDgfO/330jPWkRERERERCR/FWhSKjQ0FIPBgMFgoHjx4pQuXZrWrVuzYMECcnJyCjK0RxYfH4/BYODSpUsPXXfVqlWMHTv2nwkwn4wdOxYPDw9+//13s/JDhw5hbW1NXFxcAUWWPwoqoSkiIiIiIiJS2BX4TKng4GDS0tJISUlh/fr1tGjRgrfeeouQkBBu3Ljxj/Z97dq1f7T9R1WyZEkcHR0LOoxHMnz4cDw9PRk0aJCp7Pr16/Tq1YtXXnmFkJCQAozun2M0Gv/x76+IiIiIiIhIUVbgSSlra2vc3d0pW7YsderU4f3332ft2rWsX7+emJgYU71p06ZRo0YN7O3t8fT0ZODAgWRmZpq1tXPnTpo2bYqtrS2enp68+eabXLlyxXTd29ubsWPH0rNnT5ycnHjttdcAGDZsGBUrVsTOzg5fX18iIiK4fv16rliXLFmCt7c3zs7OdOvWjcuXL+d5nGfOnKFdu3aUKFECe3t7qlWrxtdff01KSgotWrQAoESJEhgMBkJDQ4HcS8q8vb0ZN24cPXv2xMHBAS8vL7766it+++03OnTogIODAzVr1mT//v15fi6zZs2ievXqprpr1qzBYDAwd+5cU1mrVq0YOXIkAMnJyXTo0IHSpUvj4OBA/fr12bx5813HXaxYMRYvXsyaNWtYuXIlAOPHj+fSpUtMnz6d1NRUU+xOTk506dKFX3/91ayNcePGUapUKRwdHenbty/vvfeeafbR9u3bKV68OOfOnTO7Z/DgwTRt2hSAixcv8tJLL1G2bFns7OyoUaMGy5Ytu+fntW7dOpydnVm69OamrUuWLKFevXo4Ojri7u7Oyy+/zPnz5031b812W79+PXXr1sXa2prPP/+c0aNHc+jQIdOMwFvf6bx8n0VERERERESeZAWelLqTli1bUqtWLVatWmUqs7CwYMaMGfzvf/9j0aJFbN26laFDh5quJycnExwczAsvvMD333/P8uXL2blzJ2FhYWZtT5kyhVq1anHw4EEiIiIAcHR0JCYmhiNHjhAdHc28efOYPn262X3JycmsWbOGuLg44uLiSEhIYOLEiXke06BBg8jKymL79u0cPnyYSZMm4eDggKenJ19++SUAx48fJy0tjejo6Lu2M336dJo0acLBgwd57rnn6NGjBz179uSVV17hu+++o0KFCvTs2ROj0Zin59K8eXOOHDnCb7/9BkBCQgJPPfUU8fHxwM1ZTbt37yYwMBCAzMxM2rZty5YtWzh48CDBwcG0a9eO1NTUu8ZcuXJloqKieP3119m4cSNRUVEsXLgQBwcHOnTowO+//05CQgKbNm3i1KlTdO3a1XTv0qVLGT9+PJMmTeLAgQOUL1+ejz/+2HS9WbNm+Pr6smTJElPZ9evXWbp0Ka+++ioAf/31F3Xr1mXdunX88MMPvPbaa/To0YO9e/feMd7//Oc/vPTSSyxdupTu3bub2hw7diyHDh1izZo1pKSkmJKHf/fee+8xceJEjh49SuvWrXnnnXeoVq0aaWlppKWlmcZ2v++ziIiIiIiIyJPOYLyVvSgAoaGhXLp0iTVr1uS61q1bN77//nuOHDlyx3tXrlzJgAEDuHDhAgB9+/bF0tKSTz75xFRn586dNG/enCtXrmBjY4O3tze1a9dm9erV94xrypQpxMbGmmYcRUZG8uGHH3Lu3DnTcrqhQ4eyfft2vv322zu2ER8fT4sWLfjjjz9wcXGhZs2avPDCC4waNeq+dW8JDAwkICCAjz76CLg5U6pp06amBMy5c+fw8PAgIiKCMWPGAPDtt9/SqFEj0tLScHd3v+9zsba2xs3Njblz59K5c2dq165N165diY6OJi0tjV27dtGiRQsuXbqEnZ3dHcdavXp1BgwYkCsB+HdGo5GWLVuyfft23njjDT766CM2bdpEmzZtOH36NJ6engAcOXKEatWqsXfvXurXr8/TTz9NvXr1mDVrlqmtZ555hszMTJKSkgCYPHmyKakIN/fi6tWrF+fOncPe3v6O8YSEhFC5cmWmTJli9qz9/f0ZMWIEa9eupXnz5ncdz/79+6lfvz6XL1/GwcHB9BmuWbOGDh06mOpFRkayZs0aU6x3c/v3+XZZWVlkZWWZzjMyMvD09GRz6IvYWxW/Z9siIiL54elPlhZ0CCIiIlJIZGRk4OzsTHp6Ok5OTnetVyhnSsHNJIbBYDCdb968mWeffZayZcvi6OhIjx49uHjxIlevXgVubpwdExODg4OD6QgKCiInJ4fTp0+b2qlXr16uvpYvX06TJk1wd3fHwcGBkSNH5pr54+3tbba/k4eHh9nyrft58803GTduHE2aNGHUqFF8//33eb7372rWrGn6d+nSpQGoUaNGrrJbsd3vuRgMBpo1a0Z8fDyXLl3iyJEjDBw4kKysLI4dO0ZCQgL169c3JaQyMzMJDw+nSpUquLi44ODgwNGjR+85UwrAYDAwYsQIcnJyTEsBjx49iqenpykhBVC1alVcXFw4evQocHP2WIMGDczauv08NDSUH3/80ZQgjImJoUuXLqaEVHZ2NmPHjqVGjRqULFkSBwcHNm7cmCvmlStXMmTIEDZt2pQrIXXgwAHatWtH+fLlcXR0NF2/vY07fb/u5H7f59tFRUXh7OxsOv7+zERERERERESKokKblDp69Cg+Pj4ApKSkEBISQs2aNfnyyy85cOAAs2fPBv7fZuWZmZn079+fpKQk03Ho0CFOnjxJhQoVTO3ePnNm9+7ddO/enbZt2xIXF8fBgwcZMWJErk3Qixc3n41iMBge6A2Bffv25dSpU/To0YPDhw9Tr149Zs6cmfcHcoc4biXt7lR2K7a8PJfAwEDi4+PZsWMHtWvXxsnJyZSoSkhIMEvQhIeHs3r1aiZMmMCOHTtISkqiRo0aedo0vlixYmb/+7iUKlWKdu3asXDhQn799VfWr19vWroH8OGHHxIdHc2wYcPYtm0bSUlJBAUF5Yq5du3auLm5sWDBAv4+gfDKlSsEBQXh5OTE0qVL2bdvn2m23e1t3G1m1t/l5ft8u+HDh5Oenm46zp49m7eHIyIiIiIiIlJIPd7swGOydetWDh8+zJAhQ4Cbs1RycnKYOnUqFhY382hffPGF2T116tThyJEj+Pn5PVBfiYmJeHl5MWLECFPZmTNnHnEEd+bp6cmAAQMYMGAAw4cPZ968ebzxxhtYWVkBN2f0PG55eS7Nmzdn8ODBrFixwrR3VGBgIJs3b2bXrl288847prq7du0iNDSUTp06ATeTXikpKQ8VW5UqVTh79ixnz541W7536dIlqlatCkClSpXYt28fPXv2NN23b9++XG317duXl156iXLlylGhQgWaNGliFnOHDh145ZVXgJsJuxMnTpj6uKVChQpMnTqVwMBALC0tTUsGjx07xsWLF5k4caIpzts3k78bKyurXJ9rXr7Pt7O2tsba2jpPfYqIiIiIiIgUBQU+UyorK4tz587x888/89133zFhwgQ6dOhASEiIKRHh5+fH9evXmTlzJqdOnWLJkiVmb4eDm2/QS0xMJCwsjKSkJE6ePMnatWvvuc8RgL+/P6mpqcTGxpKcnMyMGTPuu+fUwxg8eDAbN27k9OnTfPfdd2zbto0qVaoA4OXlhcFgIC4ujt9+++2xvoUtL8+lZs2alChRgv/85z9mSak1a9aQlZVlluDx9/dn1apVphlXL7/88gPNGPu7Vq1aUaNGDbp37853333H3r176dmzJ82bNzctg3vjjTf47LPPWLRoESdPnmTcuHF8//33Zks7AdNMpnHjxtG7d2+za/7+/mzatInExESOHj1K//79c73h75aKFSuybds2vvzyS9ObD8uXL4+VlZXp+/fVV18xduzYPI3R29ub06dPk5SUxIULF8jKysrT91lERERERETkSVfgSakNGzbg4eGBt7c3wcHBbNu2jRkzZrB27VosLS0BqFWrFtOmTWPSpElUr16dpUuXEhUVZdZOzZo1SUhI4MSJEzRt2pTatWvzwQcfUKZMmXv23759e4YMGUJYWBgBAQEkJiaa3sr3OGVnZzNo0CCqVKlCcHAwFStWZM6cOQCULVuW0aNH895771G6dOn7JtIeRF6ei8FgoGnTphgMBp555hnTfU5OTtSrV89sSdq0adMoUaIEjRs3pl27dgQFBVGnTp2His1gMLB27VpKlChBs2bNaNWqFb6+vixfvtxUp3v37gwfPpzw8HDq1KnD6dOnCQ0NxcbGxqwtCwsLQkNDyc7ONptVBTBy5Ejq1KlDUFAQgYGBuLu707Fjx7vGValSJbZu3cqyZct45513cHNzIyYmhhUrVlC1alUmTpxo2iD9fl544QWCg4Np0aIFbm5uLFu2LE/fZxEREREREZEnXYG+fU/kYbRu3Rp3d3fTWwhv6dOnD7/99htfffVVAUWWf269yUBv3xMRkcJCb98TERGRW/L69r1CuaeUyC1Xr15l7ty5BAUFYWlpybJly9i8eTObNm0y1UlPT+fw4cP85z//+VckpERERERERESeBEpKSaFmMBj4+uuvGT9+PH/99ReVKlXiyy+/pFWrVqY6HTp0YO/evQwYMIDWrVsXYLQiIiIiIiIikldavidSBOV1KqSIiIiIiIhIfsvr36wFvtG5iIiIiIiIiIj8+ygpJSIiIiIiIiIi+U5JKRERERERERERyXfa6FykCPt+RBgO1lYFHYaIyBMjYMr8gg5BRERE5F9DM6VERERERERERCTfKSl1HzExMbi4uBR0GEVSZGQkAQEBBR3GHd0eW2hoKB07diyweERERERERET+bQptUupOSYKVK1diY2PD1KlTCyaoQi4+Ph6DwWA6bG1tqVatGp9++mlBh/bYREZGmo3R2dmZpk2bkpCQ8EjtRkdHExMTYzoPDAxk8ODBjxasiIiIiIiIiNxVoU1K3W7+/Pl0796djz/+mHfeeaegwynUjh8/TlpaGkeOHKF///68/vrrbNmypaDDemyqVatGWloaaWlp7N69G39/f0JCQkhPT3/oNp2dnTUjTkRERERERCQfFYmk1OTJk3njjTeIjY2ld+/epvK1a9dSp04dbGxs8PX1ZfTo0dy4ccN03WAw8PHHH9OmTRtsbW3x9fVl5cqVpuu3ZhZdunTJVJaUlITBYCAlJeWOsSQnJ9OhQwdKly6Ng4MD9evXZ/PmzWZ1DAYDa9asMStzcXExm4kzbNgwKlasiJ2dHb6+vkRERHD9+nXT9VvLy5YsWYK3tzfOzs5069aNy5cv3/d5lSpVCnd3d3x8fHjzzTfx8fHhu+++M13fsGEDzzzzDC4uLri6uhISEkJycrLpekpKCgaDgVWrVtGiRQvs7OyoVasWu3fvNutn3rx5eHp6YmdnR6dOnZg2bdo9EzvJycn4+voSFhaG0Whk3759tG7dmqeeegpnZ2eaN29uFufdFCtWDHd3d9zd3alatSpjxowhMzOTEydOmOpcunSJvn374ubmhpOTEy1btuTQoUN3bfPvM/NCQ0NJSEggOjraNCMrJSXljks516xZg8FgMJ3n5XO7fPky3bt3x97eHg8PD6ZPn66ZWSIiIiIiIvKvU+iTUsOGDWPs2LHExcXRqVMnU/mOHTvo2bMnb731FkeOHOGTTz4hJiaG8ePHm90fERHBCy+8wKFDh+jevTvdunXj6NGjDx1PZmYmbdu2ZcuWLRw8eJDg4GDatWtHamrqA7Xj6OhITEwMR44cITo6mnnz5jF9+nSzOsnJyaxZs4a4uDji4uJISEhg4sSJee7DaDSyYcMGUlNTadiwoan8ypUrvP322+zfv58tW7ZgYWFBp06dyMnJMbt/xIgRhIeHk5SURMWKFXnppZdMSb9du3YxYMAA3nrrLZKSkmjdunWuZ/9333//Pc888wwvv/wys2bNwmAwcPnyZXr16sXOnTv59ttv8ff3p23btnlKvN2SlZXFwoULcXFxoVKlSqbyF198kfPnz7N+/XoOHDhAnTp1ePbZZ/n999/v22Z0dDSNGjWiX79+phlZnp6eeY7pfp/b22+/za5du/jqq6/YtGkTO3bsyFMyTkRERERERORJUqygA7iX9evXs3btWrZs2ULLli3Nro0ePZr33nuPXr16AeDr68vYsWMZOnQoo0aNMtV78cUX6du3LwBjx45l06ZNzJw5kzlz5jxUTLVq1aJWrVqm87Fjx7J69Wq++uorwsLC8tzOyJEjTf/29vYmPDyc2NhYhg4dairPyckhJiYGR0dHAHr06MGWLVvumfwBKFeuHHAzYZOTk8OYMWNo1qyZ6foLL7xgVn/BggW4ublx5MgRqlevbioPDw/nueeeA24+72rVqvHjjz9SuXJlZs6cSZs2bQgPDwegYsWKJCYmEhcXlyuexMREQkJCGDFihNnSy9s/008//RQXFxcSEhIICQm56/gOHz6Mg4MDAFevXsXR0ZHly5fj5OQEwM6dO9m7dy/nz5/H2toagClTprBmzRpWrlzJa6+9ds/n5+zsjJWVFXZ2dri7u9+z7p3c63O7fPkyixYt4j//+Q/PPvssAAsXLqRMmTL3bDMrK4usrCzTeUZGxgPHJSIiIiIiIlKYFOqZUjVr1sTb25tRo0aRmZlpdu3QoUOMGTMGBwcH03FrZsvVq1dN9Ro1amR2X6NGjR55plR4eDhVqlTBxcUFBwcHjh49+sAzpZYvX06TJk1wd3fHwcGBkSNH5mrD29vblNgA8PDw4Pz58/dte8eOHSQlJZGUlMT8+fOZMGECH3/8sen6yZMneemll/D19cXJyQlvb2+AXP3XrFnTrG/A1P/x48dp0KCBWf3bz2+12bp1az744INce4H9+uuv9OvXD39/f5ydnXFyciIzM/O+z7JSpUqm8R04cIDXX3+dF198kf379wM3vxuZmZm4urqafT9Onz5ttkzxn3Kvz+3UqVNcv37d7Fk5OzubzfK6k6ioKJydnU3Hg8zcEhERERERESmMCvVMqbJly7Jy5UpatGhBcHAw69evN/2xn5mZyejRo3n++edz3WdjY5On9i0sbubkjEajqezv+zrdSXh4OJs2bWLKlCn4+flha2tL586duXbtmqmOwWAwa/P2dnfv3k337t0ZPXo0QUFBODs7Exsbm+utgsWLFzc7NxgMuZbY3YmPj49p76Nq1aqxZ88exo8fz+uvvw5Au3bt8PLyYt68eZQpU4acnByqV69uNobb+7+1b1Je+v87Nzc3ypQpw7Jly3j11VdNs5kAevXqxcWLF4mOjsbLywtra2saNWqUK47bWVlZ4efnZzqvXbs2a9as4aOPPuLzzz8nMzMTDw8P4uPjc937KJuZW1hY3PNzveVhP7d7GT58OG+//bbpPCMjQ4kpERERERERKdIKdVIKwMvLi4SEBFNiasOGDTg6OlKnTh2OHz9ulpy4k2+//ZaePXuandeuXRu4mTABSEtLo0SJEsDNjc7vZdeuXYSGhpr2t8rMzMy1KbqbmxtpaWmm85MnT5rN3kpMTMTLy4sRI0aYys6cOXPPfh+FpaUlf/75JwAXL17k+PHjzJs3j6ZNmwI3l7s9qEqVKrFv3z6zstvPAWxtbYmLi6Nt27YEBQXxzTffmBKLu3btYs6cObRt2xaAs2fPcuHChQeOBczHWKdOHc6dO0exYsVMs8AelJWVFdnZ2WZlbm5uXL58mStXrmBvbw/c//tyO19fX4oXL86+ffsoX748AOnp6Zw4ccJsieXtrK2tTUsRRURERERERJ4EhT4pBeDp6Ul8fDwtWrQgKCiIDRs28MEHHxASEkL58uXp3LkzFhYWHDp0iB9++IFx48aZ7l2xYgX16tXjmWeeYenSpezdu5fPPvsMAD8/Pzw9PYmMjGT8+PGcOHEi12yl2/n7+7Nq1SratWuHwWAgIiIi1yyYli1bMmvWLBo1akR2djbDhg0zmz3j7+9PamoqsbGx1K9fn3Xr1rF69erH9rzOnz/PX3/9RVZWFnv37mXJkiV07twZgBIlSuDq6sqnn36Kh4cHqampvPfeew/cxxtvvEGzZs2YNm0a7dq1Y+vWraxfv97sTXS32Nvbs27dOtq0aUObNm3YsGEDDg4O+Pv7s2TJEurVq0dGRgbvvvsutra29+37xo0bnDt3Drj5Jrvly5dz5MgRhg0bBkCrVq1o1KgRHTt2ZPLkyVSsWJFffvmFdevW0alTJ+rVq3ffPry9vdmzZw8pKSk4ODhQsmRJGjZsiJ2dHe+//z5vvvkme/bsMXujYl44OjrSq1cv3n33XUqWLEmpUqUYNWoUFhYWd3x2IiIiIiIiIk+qQr2n1N+VK1eO+Ph4Lly4QFBQEI0aNSIuLo5vvvmG+vXr8/TTTzN9+nS8vLzM7hs9ejSxsbHUrFmTxYsXs2zZMqpWrQrcXGa1bNkyjh07Rs2aNZk0aZJZQutOpk2bRokSJWjcuDHt2rUjKCiIOnXqmNWZOnUqnp6eNG3alJdffpnw8HDs7OxM19u3b8+QIUMICwsjICCAxMREIiIiHtOTujmLycPDAz8/P4YNG0b//v2ZOXMmcHMJWmxsLAcOHKB69eoMGTKEDz/88IH7aNKkCXPnzmXatGnUqlWLDRs2MGTIkLsunXRwcGD9+vUYjUaee+45rly5wmeffcYff/xBnTp16NGjB2+++SalSpW6b9//+9//8PDwwMPDg4CAAL744gs+/vhj04w4g8HA119/TbNmzejduzcVK1akW7dunDlzhtKlS+dpfOHh4VhaWlK1alXc3NxITU2lZMmSfP7553z99dfUqFGDZcuWERkZmedndsu0adNo1KgRISEhtGrViiZNmlClSpU8LzsVEREREREReRIYjLdvkvMEMRgMrF69mo4dOxZ0KP8K/fr149ixY+zYsaOgQylSrly5QtmyZZk6dSp9+vTJ0z0ZGRk4OzuzI6wHDtZW/3CEIiL/HgFT5hd0CCIiIiJF3q2/WdPT0832lr5dkVi+J4XTlClTaN26Nfb29qxfv55FixYxZ86cgg6r0Dt48CDHjh2jQYMGpKenM2bMGAA6dOhQwJGJiIiIiIiI5B8lpeSh7d27l8mTJ3P58mV8fX2ZMWMGffv2LeiwioQpU6Zw/PhxrKysqFu3Ljt27OCpp54q6LBERERERERE8s0TvXxP5EmV16mQIiIiIiIiIvktr3+zFpmNzkVERERERERE5MmhpJSIiIiIiIiIiOQ7JaVERERERERERCTfaaNzkSLsWNS7OFhbFXQYIvKEqRo5s6BDEBEREZF/Ac2UEhERERERERGRfKeklIiIiIiIiIiI5DslpUTyWWRkJAEBAabz0NBQOnbsWGDxiIiIiIiIiBQEJaVEHkBoaCgGg8F0uLq6EhwczPfff//QbUZHRxMTE/P4ghQREREREREpApSUEnlAwcHBpKWlkZaWxpYtWyhWrBghISEP3Z6zszMuLi6PL0ARERERERGRIkBJKZEHZG1tjbu7O+7u7gQEBPDee+9x9uxZfvvtNwCGDRtGxYoVsbOzw9fXl4iICK5fv37X9rR8T0RERERERP6NihV0ACJFWWZmJp9//jl+fn64uroC4OjoSExMDGXKlOHw4cP069cPR0dHhg4d+tD9ZGVlkZWVZTrPyMh45NhFRERERERECpKSUiIPKC4uDgcHBwCuXLmCh4cHcXFxWFjcnHg4cuRIU11vb2/Cw8OJjY19pKRUVFQUo0ePfrTARURERERERAoRLd8TeUAtWrQgKSmJpKQk9u7dS1BQEG3atOHMmTMALF++nCZNmuDu7o6DgwMjR44kNTX1kfocPnw46enppuPs2bOPYygiIiIiIiIiBUYzpUQekL29PX5+fqbz+fPn4+zszLx583juuefo3r07o0ePJigoCGdnZ2JjY5k6deoj9WltbY21tfWjhi4iIiIiIiJSaCgpJfKIDAYDFhYW/PnnnyQmJuLl5cWIESNM12/NoBIRERERERGR/0dJKZEHlJWVxblz5wD4448/mDVrFpmZmbRr146MjAxSU1OJjY2lfv36rFu3jtWrVxdwxCIiIiIiIiKFj5JSIg9ow4YNeHh4ADfftFe5cmVWrFhBYGAgAEOGDCEsLIysrCyee+45IiIiiIyMLLiARURERERERAohg9FoNBZ0ECLyYDIyMnB2dmbPe6/hYG1V0OGIyBOmauTMgg5BRERERIqwW3+zpqen4+TkdNd6evueiIiIiIiIiIjkOy3fEynCKg//8J5ZZxEREREREZHCSjOlREREREREREQk3ykpJSIiIiIiIiIi+U5JKRERERERERERyXfaU0qkCEue8QGONtYFHYaIFHJ+4ZMKOgQRERERkVw0U0pERERERERERPKdklIiIiIiIiIiIpLvlJSSfBUTE4OLi0tBh/FYBQYGMnjw4IIOQ0RERERERKRIUVLqXyI0NJSOHTuala1cuRIbGxumTp1aMEEVcvHx8RgMBtPh5uZG27ZtOXz4sFm9VatWMXbs2AKKUkRERERERKRoUlLqX2r+/Pl0796djz/+mHfeeaegwynUjh8/TlpaGhs3biQrK4vnnnuOa9euma6XLFkSR0fHAoxQREREREREpOhRUupfaPLkybzxxhvExsbSu3dvU/natWupU6cONjY2+Pr6Mnr0aG7cuGG6bjAY+Pjjj2nTpg22trb4+vqycuVK0/VbM4suXbpkKktKSsJgMJCSknLHWJKTk+nQoQOlS5fGwcGB+vXrs3nzZrM6BoOBNWvWmJW5uLgQExNjOh82bBgVK1bEzs4OX19fIiIiuH79uul6ZGQkAQEBLFmyBG9vb5ydnenWrRuXL1++7/MqVaoU7u7u1KlTh8GDB3P27FmOHTtmun778r0lS5ZQr149HB0dcXd35+WXX+b8+fOm63dawrhmzRoMBsN9YxERERERERF5Uigp9S8zbNgwxo4dS1xcHJ06dTKV79ixg549e/LWW29x5MgRPvnkE2JiYhg/frzZ/REREbzwwgscOnSI7t27061bN44ePfrQ8WRmZtK2bVu2bNnCwYMHCQ4Opl27dqSmpj5QO46OjsTExHDkyBGio6OZN28e06dPN6uTnJzMmjVriIuLIy4ujoSEBCZOnJjnPtLT04mNjQXAysrqrvWuX7/O2LFjOXToEGvWrCElJYXQ0NAHGs/tsrKyyMjIMDtEREREREREirJiBR2A5J/169ezdu1atmzZQsuWLc2ujR49mvfee49evXoB4Ovry9ixYxk6dCijRo0y1XvxxRfp27cvAGPHjmXTpk3MnDmTOXPmPFRMtWrVolatWqbzsWPHsnr1ar766ivCwsLy3M7IkSNN//b29iY8PJzY2FiGDh1qKs/JySEmJsa01K5Hjx5s2bIlV+LtduXKlQPgypUrALRv357KlSvftf6rr75q+revry8zZsygfv36ZGZm4uDgkOcx/V1UVBSjR49+qHtFRERERERECiPNlPoXqVmzJt7e3owaNYrMzEyza4cOHWLMmDE4ODiYjn79+pGWlsbVq1dN9Ro1amR2X6NGjR55plR4eDhVqlTBxcUFBwcHjh49+sAzpZYvX06TJk1wd3fHwcGBkSNH5mrD29vbbO8nDw8Ps2V1d7Njxw4OHDhATEwMFStWZO7cufesf+DAAdq1a0f58uVxdHSkefPmAA88pr8bPnw46enppuPs2bMP3ZaIiIiIiIhIYaCZUv8iZcuWZeXKlbRo0YLg4GDWr19vStJkZmYyevRonn/++Vz32djY5Kl9C4ubOU6j0Wgq+/u+TncSHh7Opk2bmDJlCn5+ftja2tK5c2ezjcQNBoNZm7e3u3v3brp3787o0aMJCgrC2dmZ2NjYXG8VLF68uNm5wWAgJyfnvuPy8fHBxcWFSpUqcf78ebp27cr27dvvWPfKlSsEBQURFBTE0qVLcXNzIzU1laCgINOYLCws7jmeO7G2tsba2vq+sYqIiIiIiIgUFZop9S/j5eVFQkIC586dIzg42LTRd506dTh+/Dh+fn65jlvJJoBvv/3WrL1vv/2WKlWqAODm5gZAWlqa6XpSUtI949m1axehoaF06tSJGjVq4O7unmtTdDc3N7M2T548aTZ7KzExES8vL0aMGEG9evXw9/fnzJkzeX8oD2DQoEH88MMPrF69+o7Xjx07xsWLF5k4cSJNmzalcuXKuWZjubm5cfnyZdNyQLj/cxIRERERERF50igp9S/k6elJfHw858+fJygoiIyMDD744AMWL17M6NGj+d///sfRo0eJjY0126sJYMWKFSxYsIATJ04watQo9u7da9r7yc/PD09PTyIjIzl58iTr1q3LNVvpdv7+/qxatYqkpCQOHTrEyy+/nGv2UsuWLZk1axYHDx5k//79DBgwwGzWk7+/P6mpqcTGxpKcnMyMGTPumjR6VHZ2dvTr149Ro0blmu0EUL58eaysrJg5cyanTp3iq6++YuzYsWZ1GjZsiJ2dHe+//z7Jycn85z//MXuToIiIiIiIiMi/gZJS/1LlypUjPj6eCxcuEBQURKNGjYiLi+Obb76hfv36PP3000yfPh0vLy+z+0aPHk1sbCw1a9Zk8eLFLFu2jKpVqwI3l8ctW7aMY8eOUbNmTSZNmsS4cePuGce0adMoUaIEjRs3pl27dgQFBVGnTh2zOlOnTsXT05OmTZvy8ssvEx4ejp2dnel6+/btGTJkCGFhYQQEBJCYmEhERMRjelK5hYWFcfToUVasWJHrmpubGzExMaxYsYKqVasyceJEpkyZYlanZMmSfP7553z99dfUqFGDZcuWERkZ+Y/FKyIiIiIiIlIYGYx3mu4hcgcGg4HVq1fTsWPHgg7lXy8jIwNnZ2e+G/sWjjbaa0pE7s0vfFJBhyAiIiIi/yK3/mZNT0/HycnprvU0U0pERERERERERPKd3r4nUoRVeHPMPbPOIiIiIiIiIoWVklKSZ1rpKSIiIiIiIiKPi5bviYiIiIiIiIhIvlNSSkRERERERERE8p2W74kUYWfnR+Foq7fviTwO5V+PLOgQRERERET+VTRTSkRERERERERE8p2SUiIiIiIiIiIiku+UlBIRERERERERkXynpJQ8stDQUAwGAwaDASsrK/z8/BgzZgw3btwo6NDu6++xGwwGXF1dCQ4O5vvvv8+X/lNSUjAYDCQlJeVLfyIiIiIiIiKFhZJS8lgEBweTlpbGyZMneeedd4iMjOTDDz8s6LDy5FbsaWlpbNmyhWLFihESEvJIbV67du0xRSciIiIiIiLyZFJSSh4La2tr3N3d8fLy4vXXX6dVq1Z89dVXAEybNo0aNWpgb2+Pp6cnAwcOJDMz03RvTEwMLi4urFmzBn9/f2xsbAgKCuLs2bOmOqGhoXTs2NGsz8GDBxMYGGg637BhA8888wwuLi64uroSEhJCcnJynmN3d3cnICCA9957j7Nnz/Lbb7+Z6gwbNoyKFStiZ2eHr68vERERXL9+3XQ9MjKSgIAA5s+fj4+PDzY2NnmKycfHB4DatWtjMBjMxiMiIiIiIiLyJFNSSv4Rtra2ptlCFhYWzJgxg//9738sWrSIrVu3MnToULP6V69eZfz48SxevJhdu3Zx6dIlunXr9kB9Xrlyhbfffpv9+/ezZcsWLCws6NSpEzk5OXluIzMzk88//xw/Pz9cXV1N5Y6OjsTExHDkyBGio6OZN28e06dPN7v3xx9/5Msvv2TVqlWm5Xj3i2nv3r0AbN68mbS0NFatWnXHuLKyssjIyDA7RERERERERIqyYgUdgDxZjEYjW7ZsYePGjbzxxhvAzRlNt3h7ezNu3DgGDBjAnDlzTOXXr19n1qxZNGzYEIBFixZRpUoV9u7dS4MGDfLU9wsvvGB2vmDBAtzc3Dhy5AjVq1e/631xcXE4ODgAN5NIHh4exMXFYWHx/3K2I0eONBtDeHg4sbGxZsm1a9eusXjxYtzc3PIc0626rq6uuLu73zXGqKgoRo8efa/hi4iIiIiIiBQpmiklj8WtxI6NjQ1t2rSha9euREZGAjdnAT377LOULVsWR0dHevTowcWLF7l69arp/mLFilG/fn3TeeXKlXFxceHo0aN5juHkyZO89NJL+Pr64uTkhLe3NwCpqan3vK9FixYkJSWRlJTE3r17CQoKok2bNpw5c8ZUZ/ny5TRp0gR3d3ccHBwYOXJkrna9vLzMElKPEtPthg8fTnp6uun4+9JGERERERERkaJISSl5LG4ldk6ePMmff/7JokWLsLe3JyUlhZCQEGrWrMmXX37JgQMHmD17NvBgm4FbWFhgNBrNyv6+pxNAu3bt+P3335k3bx579uxhz549eerH3t4ePz8//Pz8qF+/PvPnz+fKlSvMmzcPgN27d9O9e3fatm1LXFwcBw8eZMSIEbnatbe3z9X2w8Z0O2tra5ycnMwOERERERERkaJMy/fksbiV2LndgQMHyMnJYerUqablcF988UWuejdu3GD//v2mpXrHjx/n0qVLVKlSBQA3Nzd++OEHs3uSkpIoXrw4ABcvXuT48ePMmzePpk2bArBz586HGovBYMDCwoI///wTgMTERLy8vBgxYoSpzt9nUd1NXmKysrICIDs7+6FiFRERERERESmqlJSSf5Sfnx/Xr19n5syZtGvXjl27djF37txc9YoXL84bb7zBjBkzKFasGGFhYTz99NOmJFXLli358MMPWbx4MY0aNeLzzz/nhx9+oHbt2gCUKFECV1dXPv30Uzw8PEhNTeW9997LU4xZWVmcO3cOgD/++INZs2aRmZlJu3btAPD39yc1NZXY2Fjq16/PunXrWL169X3bzUtMpUqVwtbWlg0bNlCuXDlsbGxwdnbOU9wiIiIiIiIiRZmW78k/qlatWkybNo1JkyZRvXp1li5dSlRUVK56dnZ2DBs2jJdffpkmTZrg4ODA8uXLTdeDgoKIiIhg6NCh1K9fn8uXL9OzZ0/TdQsLC2JjYzlw4ADVq1dnyJAhfPjhh3mKccOGDXh4eODh4UHDhg3Zt28fK1asIDAwEID27dszZMgQwsLCCAgIIDExkYiIiPu2m5eYihUrxowZM/jkk08oU6YMHTp0yFPMIiIiIiIiIkWdwXj7Rj0i+SwmJobBgwdz6dKlgg6lyMjIyMDZ2Zkfpr6Ho611QYcj8kQo/3pkQYcgIiIiIvJEuPU3a3p6+j33RNZMKRERERERERERyXfaU0qkCPPsO1xv4hMREREREZEiSTOlpMCFhoZq6Z6IiIiIiIjIv4ySUiIiIiIiIiIiku+UlBIRERERERERkXynPaVEirC02GgybW0KOgyRQqlMj3cLOgQREREREbkHzZQSEREREREREZF8p6SUiIiIiIiIiIjkOyWlRB5SSkoKBoOBpKSkgg5FREREREREpMhRUkrkLkJDQzEYDBgMBooXL46Pjw9Dhw7lr7/+AsDT05O0tDSqV69ewJGKiIiIiIiIFD3a6FzkHoKDg1m4cCHXr1/nwIED9OrVC4PBwKRJk7C0tMTd3b2gQxQREREREREpkjRTSuQerK2tcXd3x9PTk44dO9KqVSs2bdoE5F6+l52dTZ8+ffDx8cHW1pZKlSoRHR1t1l5gYCCDBw82K+vYsSOhoaH5MBoRERERERGRwkMzpUTy6IcffiAxMREvL687Xs/JyaFcuXKsWLECV1dXEhMTee211/Dw8KBLly6P1HdWVhZZWVmm84yMjEdqT0RERERERKSgKSklcg9xcXE4ODhw48YNsrKysLCwYNasWXesW7x4cUaPHm069/HxYffu3XzxxRePnJSKiooya1tERERERESkqFNSSuQeWrRowccff8yVK1eYPn06xYoV44UXXrhr/dmzZ7NgwQJSU1P5888/uXbtGgEBAY8cx/Dhw3n77bdN5xkZGXh6ej5yuyIiIiIiIiIFRXtKidyDvb09fn5+1KpViwULFrBnzx4+++yzO9aNjY0lPDycPn368M0335CUlETv3r25du2aqY6FhQVGo9HsvuvXr983Dmtra5ycnMwOERERERERkaJMSSmRPLKwsOD9999n5MiR/Pnnn7mu79q1i8aNGzNw4EBq166Nn58fycnJZnXc3NxIS0sznWdnZ/PDDz/847GLiIiIiIiIFDZKSok8gBdffBFLS0tmz56d65q/vz/79+9n48aNnDhxgoiICPbt22dWp2XLlqxbt45169Zx7NgxXn/9dS5dupRP0YuIiIiIiIgUHkpKiTyAYsWKERYWxuTJk7ly5YrZtf79+/P888/TtWtXGjZsyMWLFxk4cKBZnVdffZVevXrRs2dPmjdvjq+vLy1atMjPIYiIiIiIiIgUCgbj7RvciEihl5GRgbOzM8c+GYOjrU1BhyNSKJXp8W5BhyAiIiIi8q9062/W9PT0e+6JrJlSIiIiIiIiIiKS74oVdAAi8vA8ur2lN/GJiIiIiIhIkaSZUiIiIiIiIiIiku+UlBIRERERERERkXynpJSIiIiIiIiIiOQ77SklUoSdX/Mpf9rZFnQYIg+sdOdBBR2CiIiIiIgUMM2UEhERERERERGRfKeklIiIiIiIiIiI5DslpZ4QMTExuLi4mM4jIyMJCAgosHjk7kJDQ+nYsWNBhyEiIiIiIiJSoJSUKgTulKRYuXIlNjY2TJ069aHaDA8PZ8uWLY8hukcXGBjI4MGD86Ufg8Fw1yMwMPAfj0FERERERERE8kYbnRdC8+fPZ9CgQcydO5fevXs/VBsODg44ODg85sgKt1WrVnHt2jUAzp49S4MGDdi8eTPVqlUDwMrKqiDDExEREREREZG/0UypQmby5Mm88cYbxMbGmiWkpk2bRo0aNbC3t8fT05OBAweSmZl513ZuX753azbWhAkTKF26NC4uLowZM4YbN27w7rvvUrJkScqVK8fChQvN2hk2bBgVK1bEzs4OX19fIiIiuH79eq5+lixZgre3N87OznTr1o3Lly+b+k1ISCA6Oto0YyklJYXs7Gz69OmDj48Ptra2VKpUiejoaLO+b8U8ZcoUPDw8cHV1ZdCgQWb9/13JkiVxd3fH3d0dNzc3AFxdXU1lR44coWnTptja2uLp6cmbb77JlStXTPd7e3szYcIEXn31VRwdHSlfvjyffvqpWR+JiYkEBARgY2NDvXr1WLNmDQaDgaSkJIA8jeuWvI5LRERERERE5EmkpFQhMmzYMMaOHUtcXBydOnUyu2ZhYcGMGTP43//+x6JFi9i6dStDhw59oPa3bt3KL7/8wvbt25k2bRqjRo0iJCSEEiVKsGfPHgYMGED//v356aefTPc4OjoSExPDkSNHiI6OZt68eUyfPt2s3eTkZNasWUNcXBxxcXEkJCQwceJEAKKjo2nUqBH9+vUjLS2NtLQ0PD09ycnJoVy5cqxYsYIjR47wwQcf8P777/PFF1+Ytb1t2zaSk5PZtm0bixYtIiYmhpiYmAca960Yg4ODeeGFF/j+++9Zvnw5O3fuJCwszKze1KlTqVevHgcPHmTgwIG8/vrrHD9+HICMjAzatWtHjRo1+O677xg7dizDhg0zuz+/xyUiIiIiIiJSVBmMRqOxoIP4twsNDWXZsmVcu3aNLVu20LJly/ves3LlSgYMGMCFCxeAmxudDx48mEuXLgE3ZzCtWbPGNIMnNDSU+Ph4Tp06hYXFzVxk5cqVKVWqFNu3bwduzvJxdnZm/vz5dOvW7Y79TpkyhdjYWPbv32/q58MPP+TcuXM4OjoCMHToULZv3863334L3NzrKSAggI8++uieYwoLC+PcuXOsXLnSLObk5GQsLS0B6NKlCxYWFsTGxt6zrZSUFHx8fDh48CABAQH07dsXS0tLPvnkE1OdnTt30rx5c65cuYKNjQ3e3t40bdqUJUuWAGA0GnF3d2f06NEMGDCAuXPnMnLkSH766SdsbGyAm0st+/XrZ+rnnxpXVlYWWVlZpvOMjAw8PT05uehDHO1s7/ksRAqj0p0HFXQIIiIiIiLyD8nIyMDZ2Zn09HScnJzuWk97ShUSNWvW5MKFC4waNYoGDRrk2g9q8+bNREVFcezYMTIyMrhx4wZ//fUXV69exc7OLk99VKtWzZSQAihdujTVq1c3nVtaWuLq6sr58+dNZcuXL2fGjBkkJyeTmZnJjRs3cn2hvL29TQkpAA8PD7M27mb27NksWLCA1NRU/vzzT65du5YrsVOtWjVT4uZW24cPH87TeP/u0KFDfP/99yxdutRUZjQaycnJ4fTp01SpUgW4+TncYjAYcHd3N43l+PHj1KxZ05SQAmjQoEG+jCsqKorRo0c/2KBFRERERERECjEt3yskypYtS3x8PD///DPBwcGmPZng5qyfkJAQatasyZdffsmBAweYPXs2gGlj77woXry42bnBYLhjWU5ODgC7d++me/futG3blri4OA4ePMiIESNy9XmvNu4mNjaW8PBw+vTpwzfffENSUhK9e/d+LG3fSWZmJv379ycpKcl0HDp0iJMnT1KhQoXH1t8/Na7hw4eTnp5uOs6ePZvnmEREREREREQKI82UKkS8vLxISEigRYsWBAcHs2HDBhwdHTlw4AA5OTlMnTrVNNPp9j2K/gmJiYl4eXkxYsQIU9mZM2ceuB0rKyuys7PNynbt2kXjxo0ZOHCgqSw5Ofnhg72POnXqcOTIEfz8/B66jUqVKvH555+TlZWFtbU1APv27TOr80+Ny9ra2tSniIiIiIiIyJNAM6UKGU9PT+Lj4zl//jxBQUFkZGTg5+fH9evXmTlzJqdOnWLJkiXMnTv3H4/F39+f1NRUYmNjSU5OZsaMGaxevfqB2/H29mbPnj2kpKRw4cIFcnJy8Pf3Z//+/WzcuJETJ04QERGRK8HzOA0bNozExETCwsJISkri5MmTrF27NtdG5/fy8ssvk5OTw2uvvcbRo0fZuHEjU6ZMAW7OdALyfVwiIiIiIiIiRZWSUoVQuXLliI+P58KFCwQFBeHj48O0adOYNGkS1atXZ+nSpURFRf3jcbRv354hQ4YQFhZGQEAAiYmJREREPHA74eHhWFpaUrVqVdzc3EhNTaV///48//zzdO3alYYNG3Lx4kWz2UWPW82aNUlISODEiRM0bdqU2rVr88EHH1CmTJk8t+Hk5MR///tfkpKSCAgIYMSIEXzwwQcApn2m8ntcIiIiIiIiIkWV3r4n8giWLl1K7969SU9Px9Y2/96Cd+tNBnr7nhRVevueiIiIiMiTS2/fE/kHLF68GF9fX8qWLcuhQ4cYNmwYXbp0ydeElIiIiIiIiMiTQEkpkQdw7tw5PvjgA86dO4eHhwcvvvgi48ePL+iwRERERERERIocLd8TKYLyOhVSREREREREJL/l9W9WbXQuIiIiIiIiIiL5TkkpERERERERERHJd0pKiYiIiIiIiIhIvtNG5yJF2IWNn5Nlpzf/SdHi9lzvgg5BREREREQKAc2UEhERERERERGRfKekVBEWExODi4uL6TwyMpKAgIACi6coi4+Px2AwcOnSpYIORURERERERORfQUmpAhIaGkrHjh3NylauXImNjQ1Tp059qDbDw8PZsmXLY4ju0QUGBjJ48OB86Ss7O5uJEydSuXJlbG1tKVmyJA0bNmT+/Pn/aL/5OUYRERERERGRJ432lCok5s+fz6BBg5g7dy69ez/cfisODg44ODg85sgKv9GjR/PJJ58wa9Ys6tWrR0ZGBvv37+ePP/4o6NBERERERERE5C40U6oQmDx5Mm+88QaxsbFmCalp06ZRo0YN7O3t8fT0ZODAgWRmZt61nduX792ajTVhwgRKly6Ni4sLY8aM4caNG7z77ruULFmScuXKsXDhQrN2hg0bRsWKFbGzs8PX15eIiAiuX7+eq58lS5bg7e2Ns7Mz3bp14/Lly6Z+ExISiI6OxmAwYDAYSElJITs7mz59+uDj44OtrS2VKlUiOjrarO9bMU+ZMgUPDw9cXV0ZNGiQWf+3++qrrxg4cCAvvvgiPj4+1KpViz59+hAeHm6qk5OTQ1RUlKnvWrVqsXLlyru2efHiRV566SXKli2LnZ0dNWrUYNmyZWZx5ucYRURERERERJ40milVwIYNG8acOXOIi4vj2WefNbtmYWHBjBkz8PHx4dSpUwwcOJChQ4cyZ86cPLe/detWypUrx/bt29m1axd9+vQhMTGRZs2asWfPHpYvX07//v1p3bo15cqVA8DR0ZGYmBjKlCnD4cOH6devH46OjgwdOtTUbnJyMmvWrCEuLo4//viDLl26MHHiRMaPH090dDQnTpygevXqjBkzBgA3NzdycnIoV64cK1aswNXVlcTERF577TU8PDzo0qWLqe1t27bh4eHBtm3b+PHHH+natSsBAQH069fvjmN0d3dn69atDBw4EDc3tzvWiYqK4vPPP2fu3Ln4+/uzfft2XnnlFdzc3GjevHmu+n/99Rd169Zl2LBhODk5sW7dOnr06EGFChVo0KBBvo9RRERERERE5EljMBqNxoIO4t8oNDSUZcuWce3aNbZs2ULLli3ve8/KlSsZMGAAFy5cAG5udD548GDT5tyRkZGsWbOGpKQkUx/x8fGcOnUKC4ubk+IqV65MqVKl2L59O3BzPyZnZ2fmz59Pt27d7tjvlClTiI2NZf/+/aZ+PvzwQ86dO4ejoyMAQ4cOZfv27Xz77bfAzf2WAgIC+Oijj+45prCwMM6dO2eatXQr5uTkZCwtLQHo0qULFhYWxMbG3rGNI0eO0LlzZ44fP061atVo3LgxHTp0oE2bNgBkZWVRsmRJNm/eTKNGjUz39e3bl6tXr/Kf//yH+Ph4WrRowR9//GG2efzfhYSEULlyZaZMmZLvY8zKyiIrK8t0npGRgaenJ8lfzMbRzvae/YsUNm7PPdwSZRERERERKRoyMjJwdnYmPT0dJyenu9bTTKkCVLNmTS5cuMCoUaNo0KBBrv2gNm/eTFRUFMeOHSMjI4MbN27w119/cfXqVezs7PLUR7Vq1UwJKYDSpUtTvXp107mlpSWurq6cP3/eVLZ8+XJmzJhBcnIymZmZ3LhxI9eXyNvb25SQAvDw8DBr425mz57NggULSE1N5c8//+TatWu53hhYrVo1U7LmVtuHDx++a5tVq1blhx9+4MCBA+zatYvt27fTrl07QkNDmT9/Pj/++CNXr16ldevWZvddu3aN2rVr37HN7OxsJkyYwBdffMHPP//MtWvXyMrKytNz/yfGGBUVxejRo+/bt4iIiIiIiEhRoT2lClDZsmWJj4/n559/Jjg42LQnE0BKSgohISHUrFmTL7/8kgMHDjB79mzgZjIlr4oXL252bjAY7liWk5MDwO7du+nevTtt27YlLi6OgwcPMmLEiFx93quNu4mNjSU8PJw+ffrwzTffkJSURO/evR9L2xYWFtSvX5/BgwezatUqYmJi+Oyzzzh9+rRpH65169aRlJRkOo4cOXLXfaU+/PBDoqOjGTZsGNu2bSMpKYmgoKD7Pvt/aozDhw8nPT3ddJw9e/aecYiIiIiIiIgUdpopVcC8vLxISEigRYsWBAcHs2HDBhwdHTlw4AA5OTlMnTrVNNPpiy+++MfjSUxMxMvLixEjRpjKzpw588DtWFlZkZ2dbVa2a9cuGjduzMCBA01lycnJDx/sPVStWhWAK1euULVqVaytrUlNTb3j/lF3smvXLjp06MArr7wC3Nwo/cSJE6Z2IX/HaG1tjbW19SO3IyIiIiIiIlJYaKZUIeDp6Ul8fDznz58nKCiIjIwM/Pz8uH79OjNnzuTUqVMsWbKEuXPn/uOx+Pv7k5qaSmxsLMnJycyYMYPVq1c/cDve3t7s2bOHlJQULly4QE5ODv7+/uzfv5+NGzdy4sQJIiIi2Ldv3yPH3LlzZ6ZPn86ePXs4c+YM8fHxDBo0iIoVK1K5cmUcHR0JDw9nyJAhLFq0iOTkZL777jtmzpzJokWL7timv78/mzZtIjExkaNHj9K/f39+/fXXAhujiIiIiIiIyJNGSalColy5csTHx3PhwgWCgoLw8fFh2rRpTJo0ierVq7N06VKioqL+8Tjat2/PkCFDCAsLIyAggMTERCIiIh64nfDwcCwtLalatSpubm6kpqbSv39/nn/+ebp27UrDhg25ePGi2YyihxUUFMR///tf2rVrR8WKFenVqxeVK1fmm2++oVixm5MBx44dS0REBFFRUVSpUoXg4GDWrVuHj4/PHdscOXIkderUISgoiMDAQNzd3enYsWOBjVFERERERETkSaO374kUQbfeZKC370lRpLfviYiIiIg82fL69j3NlBIRERERERERkXynpJSIiIiIiIiIiOQ7vX1PpAh7KuiVe06FFBERERERESmsNFNKRERERERERETynZJSIiIiIiIiIiKS75SUEhERERERERGRfKc9pUSKsN/jV3Ld3q6gwxDJE9dnuxV0CCIiIiIiUohoppSIiIiIiIiIiOQ7JaVERERERERERCTfKSkl+SY0NJSOHTsWdBgmoaGhGAwG0+Hq6kpwcDDff/99vvSfkpKCwWAgKSkpX/oTERERERERKUyUlJJ/teDgYNLS0khLS2PLli0UK1aMkJCQR2rz2rVrjyk6ERERERERkSeXklJSIDZs2MAzzzyDi4sLrq6uhISEkJycbLreuXNnwsLCTOeDBw/GYDBw7Ngx4Gbix97ens2bN+epvbuxtrbG3d0dd3d3AgICeO+99zh79iy//fabqc6wYcOoWLEidnZ2+Pr6EhERwfXr103XIyMjCQgIYP78+fj4+GBjY5OnmHx8fACoXbs2BoOBwMDAh3iSIiIiIiIiIkWTklJSIK5cucLbb7/N/v372bJlCxYWFnTq1ImcnBwAmjdvTnx8vKl+QkICTz31lKls3759XL9+ncaNG+epvbzIzMzk888/x8/PD1dXV1O5o6MjMTExHDlyhOjoaObNm8f06dPN7v3xxx/58ssvWbVqlWk53v1i2rt3LwCbN28mLS2NVatWPdAzFBERERERESnKihV0APLv9MILL5idL1iwADc3N44cOUL16tUJDAzkrbfe4rfffqNYsWIcOXKEiIgI4uPjGTBgAPHx8dSvXx87O7s8tXc3cXFxODg4ADeTSB4eHsTFxWFh8f/ytSNHjjT929vbm/DwcGJjYxk6dKip/Nq1ayxevBg3N7c8j/FWXVdXV9zd3e/5vLKyssjKyjKdZ2Rk3LO+iIiIiIiISGGnmVJSIE6ePMlLL72Er68vTk5OeHt7A5CamgpA9erVKVmyJAkJCezYsYPatWsTEhJCQkICcHPm1N+Xu92vvbtp0aIFSUlJJCUlsXfvXoKCgmjTpg1nzpwx1Vm+fDlNmjTB3d0dBwcHRo4cmatdLy8vs4TUo8R0J1FRUTg7O5sOT0/PB25DREREREREpDBRUkoKRLt27fj999+ZN28ee/bsYc+ePcD/2yTcYDDQrFkz4uPjTQmomjVrkpWVxQ8//EBiYiLNmzfPc3t3Y29vj5+fH35+ftSvX5/58+dz5coV5s2bB8Du3bvp3r07bdu2JS4ujoMHDzJixIhc7drb2z/wGB/E8OHDSU9PNx1nz5594DZEREREREREChMt35N8d/HiRY4fP868efNo2rQpADt37sxVr3nz5sybNw9ra2vGjx+PhYUFzZo148MPPyQrK4smTZo8UHt5YTAYsLCw4M8//wQgMTERLy8vRowYYarz91lUjzJGKysrALKzs+/bnrW1NdbW1nkeh4iIiIiIiEhhp6SU5LsSJUrg6urKp59+ioeHB6mpqbz33nu56gUGBjJkyBCsrKx45plnTGXh4eHUr1/fNDspr+3dSVZWFufOnQPgjz/+YNasWWRmZtKuXTsA/P39SU1NJTY2lvr167Nu3TpWr179WMZYqlQpbG1t2bBhA+XKlcPGxgZnZ+c8xS0iIiIiIiJS1Gn5nuSbnJwcihUrhoWFBbGxsRw4cIDq1aszZMgQPvzww1z1a9SogYuLCwEBAabNyAMDA8nOzjbbTyqv7d3Jhg0b8PDwwMPDg4YNG7Jv3z5WrFhhar99+/YMGTKEsLAwAgICSExMJCIi4r7t5iWmYsWKMWPGDD755BPKlClDhw4d8hSziIiIiIiIyJPAYDQajQUdhPw7BAcH4+fnx6xZswo6lCIvIyMDZ2dnTq/9DEd7u4IORyRPXJ/tVtAhiIiIiIhIPrj1N2t6ejpOTk53raeZUvKP++OPP4iLiyM+Pp5WrVoVdDgiIiIiIiIiUghoTyn5x7366qvs27ePd955R0vURERERERERATQ8j2RIimvUyFFRERERERE8puW74mIiIiIiIiISKGlpJSIiIiIiIiIiOQ7JaVERERERERERCTfaaNzkSLs92+/5rq9XUGHIXJXrk3aF3QIIiIiIiJSSGmmlIiIiIiIiIiI5DslpeSJYjAYWLNmTUGHYRIfH4/BYODSpUsFHYqIiIiIiIhIoaKklBQaoaGhdOzYsaDDeKwaN25MWloazs7OBR2KiIiIiIiISKGiPaVE/kFWVla4u7sXdBgiIiIiIiIihY5mSkmhFBgYyJtvvsnQoUMpWbIk7u7uREZGmtU5efIkzZo1w8bGhqpVq7Jp06Zc7Rw+fJiWLVtia2uLq6srr732GpmZmabrt2ZnTZkyBQ8PD1xdXRk0aBDXr1831cnKyiI8PJyyZctib29Pw4YNiY+PN10/c+YM7dq1o0SJEtjb21OtWjW+/vprIPfyvYsXL/LSSy9RtmxZ7OzsqFGjBsuWLXt8D05ERERERESkiNBMKSm0Fi1axNtvv82ePXvYvXs3oaGhNGnShNatW5OTk8Pzzz9P6dKl2bNnD+np6QwePNjs/itXrhAUFESjRo3Yt28f58+fp2/fvoSFhRETE2Oqt23bNjw8PNi2bRs//vgjXbt2JSAggH79+gEQFhbGkSNHiI2NpUyZMqxevZrg4GAOHz6Mv78/gwYN4tq1a2zfvh17e3uOHDmCg4PDHcf0119/UbduXYYNG4aTkxPr1q2jR48eVKhQgQYNGvxTj1JERERERESk0FFSSgqtmjVrMmrUKAD8/f2ZNWsWW7ZsoXXr1mzevJljx46xceNGypQpA8CECRNo06aN6f7//Oc//PXXXyxevBh7e3sAZs2aRbt27Zg0aRKlS5cGoESJEsyaNQtLS0sqV67Mc889x5YtW+jXrx+pqaksXLiQ1NRUUz/h4eFs2LCBhQsXMmHCBFJTU3nhhReoUaMGAL6+vncdU9myZQkPDzedv/HGG2zcuJEvvvjinkmprKwssrKyTOcZGRkP9CxFREREREREChslpaTQqlmzptm5h4cH58+fB+Do0aN4enqaEkUAjRo1Mqt/9OhRatWqZUpIATRp0oScnByOHz9uSkpVq1YNS0tLs34OHz4M3Fz+l52dTcWKFc3azsrKwtXVFYA333yT119/nW+++YZWrVrxwgsv5Ir9luzsbCZMmMAXX3zBzz//zLVr18jKysLOzu6ezyIqKorRo0ffs46IiIiIiIhIUaI9paTQKl68uNm5wWAgJycnX/vJzMzE0tKSAwcOkJSUZDqOHj1KdHQ0AH379uXUqVP06NGDw4cPU69ePWbOnHnHvj788EOio6MZNmwY27ZtIykpiaCgIK5du3bPGIcPH056errpOHv27GMYuYiIiIiIiEjBUVJKiqQqVapw9uxZ0tLSTGXffvttrjqHDh3iypUrprJdu3ZhYWFBpUqV8tRP7dq1yc7O5vz58/j5+Zkdf3+rnqenJwMGDGDVqlW88847zJs3747t7dq1iw4dOvDKK69Qq1YtfH19OXHixH3jsLa2xsnJyewQERERERERKcqUlJIiqVWrVlSsWJFevXpx6NAhduzYwYgRI8zqdO/eHRsbG3r16sUPP/zAtm3beOONN+jRo4dp6d79VKxYke7du9OzZ09WrVrF6dOn2bt3L1FRUaxbtw6AwYMHs3HjRk6fPs13333Htm3bqFKlyh3b8/f3Z9OmTSQmJnL06FH69+/Pr7/++mgPQ0RERERERKQIUlJKiiQLCwtWr17Nn3/+SYMGDejbty/jx483q2NnZ8fGjRv5/fffqV+/Pp07d+bZZ59l1qxZD9TXwoUL6dmzJ++88w6VKlWiY8eO7Nu3j/LlywM394kaNGgQVapUITg4mIoVKzJnzpw7tjVy5Ejq1KlDUFAQgYGBuLu707Fjx4d6BiIiIiIiIiJFmcFoNBoLOggReTAZGRk4OztzeuMyHO3vvUm6SEFybdK+oEMQEREREZF8dutv1vT09HtuP6OZUiIiIiIiIiIiku+UlBIRERERERERkXxXrKADEJGHV/LptnoTn4iIiIiIiBRJmiklIiIiIiIiIiL5TkkpERERERERERHJd0pKiYiIiIiIiIhIvtOeUiJF2MUDW7nmYF/QYYiYeap+64IOQUREREREigDNlBIRERERERERkXynpJSIiIiIiIiIiOQ7JaVERERERERERCTfKSklT5zQ0FAMBoPpcHV1JTg4mO+///6x9hMYGMjgwYMfa5siIiIiIvL/sXfnUVmV6//H3w+oTA+zJGooEqSiIOJUmoKmB0pNTbPULLIcM0PjZJTzPJSlmZl6DDRzqMg8WlqicAQ7zmimOZCEdUiNFAQVEPj94df968khHALBz2utvRZ773u49i7/eK513fcWkbuFklJSIYWHh5ORkUFGRgbx8fFUqlSJTp06lXVYIiIiIiIiIvJ/lJSSCsnGxgZPT088PT0JCgritdde4/jx45w6dQqAkSNHcv/992Nvb4+Pjw+jR4+moKDA6D9u3DiCgoJYunQp3t7eODs789RTT3H27FngUjVWYmIis2fPNiqy0tLSANi/fz+PPPIIZrOZatWq0bdvX3777Tdj7NDQUIYNG8arr76Km5sbnp6ejBs3rtTejYiIiIiIiMidQEkpqfBycnL46KOP8PX1xd3dHQBHR0diYmI4cOAAs2fPZuHChbz99tsW/VJTU1m9ejVr165l7dq1JCYmMm3aNABmz57Ngw8+SP/+/Y2KLC8vL86cOUO7du1o3LgxO3fuZP369Zw4cYKePXtajB0bG4uDgwPbtm1jxowZTJgwgW+++eaaz5CXl0d2drbFISIiIiIiIlKeVSrrAET+DmvXrsVsNgOQm5tL9erVWbt2LVZWl/Kwo0aNMtp6e3sTFRXFihUrePXVV43rRUVFxMTE4OjoCEDfvn2Jj49n8uTJODs7U6VKFezt7fH09DT6zJ07l8aNGzNlyhTj2uLFi/Hy8uLw4cPcf//9AAQGBjJ27FgA/Pz8mDt3LvHx8XTo0OGqzzN16lTGjx9/O16NiIiIiIiIyB1BlVJSIbVt25aUlBRSUlLYvn07YWFhPPLII/z0008ArFy5klatWuHp6YnZbGbUqFGkp6dbjOHt7W0kpACqV6/OyZMnrzvv3r172bx5M2az2Tjq1asHXKq8uiwwMNCi31+NHR0dTVZWlnEcP368ZC9CRERERERE5A6lSimpkBwcHPD19TXOFy1ahLOzMwsXLqRjx4706dOH8ePHExYWhrOzMytWrOCtt96yGKNy5coW5yaTiaKiouvOm5OTQ+fOnZk+ffoV96pXr37TY9vY2GBjY3PduUVERERERETKEyWl5K5gMpmwsrLi/PnzbN26ldq1a/PGG28Y9y9XUN2IKlWqUFhYaHEtODiYzz77DG9vbypV0j8vERERERERkWvR8j2pkPLy8vj111/59ddfOXjwIC+99JJRxeTn50d6ejorVqwgNTWVOXPm8Pnnn9/wHN7e3mzbto20tDR+++03ioqKePHFF/n999/p1asXO3bsIDU1lQ0bNvDcc89dkcASERERERERuZspKSUV0vr166levTrVq1enRYsW7Nixg08++YTQ0FAee+wxhg8fztChQwkKCmLr1q2MHj36hueIiorC2toaf39/PDw8SE9Pp0aNGiQnJ1NYWMg//vEPAgICiIyMxMXFxdhkXURERERERETAVFxcXFzWQYjIjcnOzsbZ2ZkfN32Oo9mhrMMRsVC12dW/IikiIiIiIneHy79Zs7KycHJyumY7lW6IiIiIiIiIiEip007MIuWYe5N21806i4iIiIiIiNypVCklIiIiIiIiIiKlTkkpEREREREREREpdUpKiYiIiIiIiIhIqdOeUiLl2KnvvuWCvr4npeyeRg+VdQgiIiIiIlIBqFJKRERERERERERKnZJSIiIiIiIiIiJS6pSUEhERERERERGRUqekVAV26tQpBg8eTK1atbCxscHT05OwsDCSk5PLOjTS0tIwmUykpKSUWQwJCQmYTCbjsLOzo0GDBixYsKDUYggNDSUyMrLU5hMRERERERG5U2ij8wqse/fu5OfnExsbi4+PDydOnCA+Pp7MzMyyDu22KigooHLlyjfd/9ChQzg5OXH+/Hn+/e9/M3jwYO677z4efvjhMotJREREREREpKJTpVQFdebMGbZs2cL06dNp27YttWvXpnnz5kRHR/PYY48BV69WOnPmDCaTiYSEBOD/VxNt2LCBxo0bY2dnR7t27Th58iRfffUV9evXx8nJid69e3Pu3DljnPXr1/PQQw/h4uKCu7s7nTp1IjU11bhfp04dABo3bozJZCI0NNS4t2jRIurXr4+trS316tVj3rx5xr3LMa9cuZKQkBBsbW1ZtmwZmZmZ9OrVi5o1a2Jvb09AQADLly8v0bu655578PT0pE6dOgwbNow6deqwe/fuEj/LzcYUERFBYmIis2fPNqq10tLSShSziIiIiIiISHmnpFQFZTabMZvNrF69mry8vFseb9y4ccydO5etW7dy/PhxevbsyTvvvMPHH3/MunXr+Prrr3n33XeN9rm5uYwYMYKdO3cSHx+PlZUV3bp1o6ioCIDt27cDsHHjRjIyMoiLiwNg2bJljBkzhsmTJ3Pw4EGmTJnC6NGjiY2NtYjntdde4+WXX+bgwYOEhYVx4cIFmjRpwrp169i/fz8DBgygb9++xjwlUVxczPr160lPT6dFixYlfpabjWn27Nk8+OCD9O/fn4yMDDIyMvDy8rpqbHl5eWRnZ1scIiIiIiIiIuWZlu9VUJUqVSImJob+/fszf/58goODCQkJ4amnniIwMPCGx5s0aRKtWrUC4Pnnnyc6OprU1FR8fHwA6NGjB5s3b2bkyJHApaWDf7R48WI8PDw4cOAADRs2xMPDAwB3d3c8PT2NdmPHjuWtt97i8ccfBy5VVB04cIAPPviAZ5991mgXGRlptLksKirK+Pull15iw4YNrFq1iubNm1/32e69917gUuKnqKiICRMm0KZNG+P+Xz3Lzcbk7OxMlSpVsLe3t3gHVzN16lTGjx9/3TYiIiIiIiIi5YkqpSqw7t2787///Y81a9YQHh5OQkICwcHBxMTE3PBYf0xkVatWDXt7eyMhdfnayZMnjfMjR47Qq1cvfHx8cHJywtvbG4D09PRrzpGbm0tqairPP/+8UellNpuZNGmSxXI5gKZNm1qcFxYWMnHiRAICAnBzc8NsNrNhw4brznfZli1bSElJISUlhUWLFjFlyhTef//9G36W2xnTn0VHR5OVlWUcx48fv+ExRERERERERO4kqpSq4GxtbenQoQMdOnRg9OjRvPDCC4wdO5aIiAisrC7lJIuLi432BQUFVx3nj5t2m0ymKzbxNplMFsvZOnfuTO3atVm4cCE1atSgqKiIhg0bkp+ff81Yc3JyAFi4cKHF8jkAa2tri3MHBweL85kzZzJ79mzeeecdAgICcHBwIDIy8rrzXVanTh1cXFwAaNCgAdu2bWPy5MkMHjz4hp7ldsb0ZzY2NtjY2NxwPxEREREREZE7lZJSdxl/f39Wr14NYCyhy8jIoHHjxgAWm57frMzMTA4dOsTChQtp3bo1AElJSRZtqlSpAlyqJrqsWrVq1KhRgx9//JE+ffrc0JzJycl06dKFp59+GoCioiIOHz6Mv7//DcdvbW3N+fPnS/wstxJTlSpVLN6BiIiIiIiIyN1CSakKKjMzkyeeeIJ+/foRGBiIo6MjO3fuZMaMGXTp0gUAOzs7HnjgAaZNm0adOnU4efIko0aNuuW5XV1dcXd3Z8GCBVSvXp309HRee+01izb33HMPdnZ2rF+/nnvvvRdbW1ucnZ0ZP348w4YNw9nZmfDwcPLy8ti5cyenT59mxIgR15zTz8+PTz/9lK1bt+Lq6sqsWbM4ceJEiZJSJ0+e5MKFC+Tl5bF9+3aWLl1Kjx49SvwstxKTt7c327ZtIy0tDbPZjJubm1HBJiIiIiIiIlKR6ddvBWU2m2nRogVvv/02bdq0oWHDhowePZr+/fszd+5co93ixYu5ePEiTZo0ITIykkmTJt3y3FZWVqxYsYJdu3bRsGFDhg8fzsyZMy3aVKpUiTlz5vDBBx9Qo0YNI1H2wgsvsGjRIj788EMCAgIICQkhJiaGOnXqXHfOUaNGERwcTFhYGKGhoXh6etK1a9cSxVu3bl2qV6+Or68vI0eOZODAgcaXBEvyLLcSU1RUFNbW1vj7++Ph4XFT+02JiIiIiIiIlEem4j9uKCQi5UJ2djbOzs4cTVqPo9nhrzuI3Eb3NHqorEMQEREREZE72OXfrFlZWTg5OV2znSqlRERERERERESk1GlPKZFyzCPgwetmnUVERERERETuVKqUEhERERERERGRUqeklIiIiIiIiIiIlDolpUREREREREREpNRpTymRcuzXH/aQazaXdRhSjlX3b1LWIYiIiIiIyF1KlVIiIiIiIiIiIlLqlJQSEREREREREZFSp6SU3LSEhARMJhNnzpwp61CuKjQ0lMjIyLIOQ0RERERERESuQkmpu9SpU6cYPHgwtWrVwsbGBk9PT8LCwkhOTi7r0G6buLg4Jk6ceM3748aNIygo6IrraWlpmEwmUlJSAIiJicHFxeXvCVJERERERETkLqWNzu9S3bt3Jz8/n9jYWHx8fDhx4gTx8fFkZmaWdWi3jZubW1mHYKG4uJjCwkIqVdI/OxERERERERFVSt2Fzpw5w5YtW5g+fTpt27aldu3aNG/enOjoaB577DHgymqhy/1MJhMJCQlXHTczM5NevXpRs2ZN7O3tCQgIYPny5cb9tWvX4uLiQmFhIQApKSmYTCZee+01o80LL7zA008/bZwnJSXRunVr7Ozs8PLyYtiwYeTm5hr3582bh5+fH7a2tlSrVo0ePXoY927H8r2EhASee+45srKyMJlMmEwmxo0bB8DSpUtp2rQpjo6OeHp60rt3b06ePGnR12Qy8dVXX9GkSRNsbGxISkoiNTWVLl26UK1aNcxmM82aNWPjxo23FKeIiIiIiIhIeaOk1F3IbDZjNptZvXo1eXl5t23cCxcu0KRJE9atW8f+/fsZMGAAffv2Zfv27QC0bt2as2fPsmfPHgASExOpWrWqRZIrMTGR0NBQAFJTUwkPD6d79+7s27ePlStXkpSUxNChQwHYuXMnw4YNY8KECRw6dIj169fTpk2b2/Y8AC1btuSdd97BycmJjIwMMjIyiIqKAqCgoICJEyeyd+9eVq9eTVpaGhEREVeM8dprrzFt2jQOHjxIYGAgOTk5PProo8THx7Nnzx7Cw8Pp3Lkz6enp14wjLy+P7Oxsi0NERERERESkPNM6ortQpUqViImJoX///syfP5/g4GBCQkJ46qmnCAwMvOlxa9asaSRsAF566SU2bNjAqlWraN68Oc7OzgQFBZGQkEDTpk1JSEhg+PDhjB8/npycHLKysjh69CghISEATJ06lT59+hjVTn5+fsyZM4eQkBDef/990tPTcXBwoFOnTjg6OlK7dm0aN258S+/mz6pUqYKzszMmkwlPT0+Le/369TP+9vHxYc6cOTRr1oycnBzMZrNxb8KECXTo0ME4d3Nzo1GjRsb5xIkT+fzzz1mzZo2RcPuzqVOnMn78+Nv1WCIiIiIiIiJlTpVSd6nu3bvzv//9jzVr1hAeHk5CQgLBwcHExMTc9JiFhYVMnDiRgIAA3NzcMJvNbNiwwaICKCQkhISEBIqLi9myZQuPP/449evXJykpicTERGrUqIGfnx8Ae/fuJSYmxqjsMpvNhIWFUVRUxLFjx+jQoQO1a9fGx8eHvn37smzZMs6dO3err6bEdu3aRefOnalVqxaOjo5GMu3PFU9Nmza1OM/JySEqKor69evj4uKC2Wzm4MGD162Uio6OJisryziOHz9++x9IREREREREpBQpKXUXs7W1pUOHDowePZqtW7cSERHB2LFjAbCyuvS/RnFxsdG+oKDguuPNnDmT2bNnM3LkSDZv3kxKSgphYWHk5+cbbUJDQ0lKSmLv3r1UrlyZevXqERoaSkJCAomJiUZiBy4lbwYOHEhKSopx7N27lyNHjnDffffh6OjI7t27Wb58OdWrV2fMmDE0atSIM2fOlOj5nZycyMrKuuL65f7Ozs7X7Jubm0tYWBhOTk4sW7aMHTt28PnnnwNYPC+Ag4ODxXlUVBSff/45U6ZMYcuWLaSkpBAQEHBFvz+ysbHBycnJ4hAREREREREpz5SUEoO/v7+xibiHhwcAGRkZxv0/bnp+NcnJyXTp0oWnn36aRo0a4ePjw+HDhy3aXN5X6u233zYSUJeTUgkJCcZ+UgDBwcEcOHAAX1/fK44qVaoAl5Yitm/fnhkzZrBv3z7S0tLYtGlTiZ63bt26/Pzzz5w4ccLi+u7du7G1taVWrVrApSV8lzdnv+yHH34gMzOTadOm0bp1a+rVq2exyflfvaeIiAi6detGQEAAnp6epKWllaiviIiIiIiISEWhpNRdKDMzk3bt2vHRRx+xb98+jh07xieffMKMGTPo0qULAHZ2djzwwAPGBt2JiYmMGjXquuP6+fnxzTffsHXrVg4ePMjAgQOvSPi4uroSGBjIsmXLjARUmzZt2L17N4cPH7aolBo5ciRbt25l6NChpKSkcOTIEb744gtj36W1a9cyZ84cUlJS+Omnn1iyZAlFRUXUrVu3RO8hLCyMunXr0qtXL7Zu3cqPP/7Ip59+yqhRo3j55ZextrYGwNvbm5ycHOLj4/ntt984d+4ctWrVokqVKrz77rv8+OOPrFmzhokTJ5ZoXj8/P+Li4ozKr969e1NUVFSiviIiIiIiIiIVhZJSdyGz2UyLFi14++23adOmDQ0bNmT06NH079+fuXPnGu0WL17MxYsXadKkCZGRkUyaNOm6444aNYrg4GDCwsIIDQ3F09OTrl27XtEuJCSEwsJCIynl5uaGv78/np6eFgmlwMBAEhMTOXz4MK1bt6Zx48aMGTOGGjVqAODi4kJcXBzt2rWjfv36zJ8/n+XLl9OgQYMSvYdKlSrx9ddfU6tWLXr16kXDhg0ZO3YsL7/8skWCqWXLlgwaNIgnn3wSDw8PZsyYgYeHBzExMXzyySf4+/szbdo03nzzzRLNO2vWLFxdXWnZsiWdO3cmLCyM4ODgEvUVERERERERqShMxX/cNEhEyoXs7GycnZ05tC0Bxz986U/kRlX3b1LWIYiIiIiISAVz+TdrVlbWdfdEVqWUiIiIiIiIiIiUukplHYCI3DzPeo31JT4REREREREpl1QpJSIiIiIiIiIipU5JKRERERERERERKXVKSomIiIiIiIiISKnTnlIi5djPRw/q63ty07zub1DWIYiIiIiIyF1MlVIiIiIiIiIiIlLqlJQSEREREREREZFSp6SUWEhISMBkMnHmzJmyDuWqQkNDiYyMLOswbklERARdu3Yt6zBEREREREREypSSUhXIqVOnGDx4MLVq1cLGxgZPT0/CwsJITk4u69Bum7i4OCZOnHjVe6GhoZhMpmseoaGhpRusiIiIiIiIiFyTNjqvQLp3705+fj6xsbH4+Phw4sQJ4uPjyczMLOvQbhs3N7dr3ouLiyM/Px+A48eP07x5czZu3EiDBpc2c65SpUqpxCgiIiIiIiIif02VUhXEmTNn2LJlC9OnT6dt27bUrl2b5s2bEx0dzWOPPQZAWloaJpOJlJQUi34mk4mEhISrjpuZmUmvXr2oWbMm9vb2BAQEsHz5cuP+2rVrcXFxobCwEICUlBRMJhOvvfaa0eaFF17g6aefNs6TkpJo3bo1dnZ2eHl5MWzYMHJzc4378+bNw8/PD1tbW6pVq0aPHj2Me9dbvufm5oanpyeenp54eHgA4O7ublw7cODAdef19vZmypQp9OvXD0dHR2rVqsWCBQss5ti6dStBQUHY2trStGlTVq9ebfFOCwsLef7556lTpw52dnbUrVuX2bNnXzXeN998k+rVq+Pu7s6LL75IQUHBVduJiIiIiIiIVERKSlUQZrMZs9nM6tWrycvLu23jXrhwgSZNmrBu3Tr279/PgAED6Nu3L9u3bwegdevWnD17lj179gCQmJhI1apVLZJciYmJxtK51NRUwsPD6d69O/v27WPlypUkJSUxdOhQAHbu3MmwYcOYMGEChw4dYv369bRp0+aWn+Ov5r3srbfeomnTpuzZs4chQ4YwePBgDh06BEB2djadO3cmICCA3bt3M3HiREaOHGnRv6ioiHvvvZdPPvmEAwcOMGbMGF5//XVWrVpl0W7z5s2kpqayefNmYmNjiYmJISYm5prx5+XlkZ2dbXGIiIiIiIiIlGdKSlUQlSpVIiYmhtjYWFxcXGjVqhWvv/46+/btu6Vxa9asSVRUFEFBQfj4+PDSSy8RHh5uJFmcnZ0JCgoyklAJCQkMHz6cPXv2kJOTwy+//MLRo0cJCQkBYOrUqfTp04fIyEj8/Pxo2bIlc+bMYcmSJVy4cIH09HQcHBzo1KkTtWvXpnHjxgwbNuyWnqEk81726KOPMmTIEHx9fRk5ciRVq1Zl8+bNAHz88ceYTCYWLlyIv78/jzzyCP/85z8t5qlcuTLjx4+nadOm1KlThz59+vDcc89dkZRydXVl7ty51KtXj06dOtGxY0fi4+OvG7+zs7NxeHl53fI7ERERERERESlLSkpVIN27d+d///sfa9asITw8nISEBIKDg69bgfNXCgsLmThxIgEBAbi5uWE2m9mwYQPp6elGm5CQEBISEiguLmbLli08/vjj1K9fn6SkJBITE6lRowZ+fn4A7N27l5iYGKOyy2w2ExYWRlFREceOHaNDhw7Url0bHx8f+vbty7Jlyzh37tytvpq/nPeywMBA42+TyYSnpycnT54E4NChQwQGBmJra2u0ad68+RVzvffeezRp0gQPDw/MZjMLFiyweF8ADRo0wNra2jivXr26Mc/VREdHk5WVZRzHjx+/8ZcgIiIiIiIicgcp8Ubn+/bto2HDhlhZWf1l9c0ff9hL6bK1taVDhw506NCB0aNH88ILLzB27FgiIiKwsrqUgywuLjba/9U+RjNnzmT27Nm88847BAQE4ODgQGRkpLGhOFza52nx4sXs3buXypUrU69ePUJDQ0lISOD06dNGlRRATk4OAwcOvGr1U61atahSpQq7d+8mISGBr7/+mjFjxjBu3Dh27NiBi4vLTb+Xv5r3ssqVK1vcM5lMFBUVlXieFStWEBUVxVtvvcWDDz6Io6MjM2fOZNu2bRbtbnQeGxsbbGxsShyHiIiIiIiIyJ2uxEmpoKAgfv31V+655x6CgoIwmUwWyY3L5yaTydj0Wsqev78/q1evBjA2/87IyKBx48YAFpueX01ycjJdunQxNiovKiri8OHD+Pv7G20u7yv19ttvGwmo0NBQpk2bxunTp3nllVeMtsHBwRw4cABfX99rzlmpUiXat29P+/btGTt2LC4uLmzatInHH3/8hp//Rub9K3Xr1uWjjz4iLy/PSBDt2LHDok1ycjItW7ZkyJAhxrXU1NSbnlNERERERESkoipxUurYsWNGUuOPy53kzpCZmckTTzxBv379CAwMxNHRkZ07dzJjxgy6dOkCgJ2dHQ888ADTpk2jTp06nDx5klGjRl13XD8/Pz799FO2bt2Kq6srs2bN4sSJExZJKVdXVwIDA1m2bBlz584FoE2bNvTs2ZOCggKLSqmRI0fywAMPMHToUF544QUcHBw4cOAA33zzDXPnzmXt2rX8+OOPtGnTBldXV7788kuKioqoW7fuLb2fv5q3JHr37s0bb7zBgAEDeO2110hPT+fNN98ELiVlL7+vJUuWsGHDBurUqcPSpUvZsWMHderUuaX4RURERERERCqaEielateufdW/5c5gNptp0aIFb7/9NqmpqRQUFODl5UX//v15/fXXjXaLFy/m+eefp0mTJtStW5cZM2bwj3/845rjjho1ih9//JGwsDDs7e0ZMGAAXbt2JSsry6JdSEgIKSkpxlf23Nzc8Pf358SJExYJpcDAQBITE3njjTdo3bo1xcXF3HfffTz55JMAuLi4EBcXx7hx47hw4QJ+fn4sX76cBg0a3NL7+at5S8LJyYl///vfDB48mKCgIAICAhgzZgy9e/c29pkaOHAge/bs4cknn8RkMtGrVy+GDBnCV199dUvxi4iIiIiIiFQ0puI/rsErodjYWKpWrUrHjh0BePXVV1mwYAH+/v4sX75cSSu5ayxbtoznnnuOrKws7OzsSm3e7OxsnJ2d+X7Xf3E0m0ttXqlYvO6/tWSviIiIiIjI1Vz+zZqVlYWTk9M1293U1/emTJli/AD/9ttvmTt3LjNmzKBq1aoMHz785iIWKQeWLFlCUlISx44dY/Xq1YwcOZKePXuWakJKREREREREpCIo8fK9Pzp+/LixYfTq1avp0aMHAwYMoFWrVsbyLZGK6Ndff2XMmDH8+uuvVK9enSeeeILJkyeXWTz3+ta/btZZRERERERE5E51U0kps9lMZmYmtWrV4uuvv2bEiBEA2Nracv78+dsaoMid5NVXX+XVV18t6zBEREREREREyr2bSkp16NCBF154gcaNG3P48GEeffRRAL7//nu8vb1vZ3wiIiIiIiIiIlIB3dSeUu+99x4PPvggp06d4rPPPsPd3R2AXbt20atXr9saoIiIiIiIiIiIVDw39fU9ESlbl79ksCclBUdHx7IOR+4Q9/n4lHUIIiIiIiIiJf763k0t37vs3LlzpKenk5+fb3E9MDDwVoYVEREREREREZEK7qaSUqdOnSIiIoL169df9X5hYeEtBSUiIiIiIiIiIhXbTe0pFRkZSVZWFtu2bcPOzo7169cTGxuLn58fa9asud0xilQo3t7evPPOO2UdhoiIiIiIiEiZuqmk1KZNm5g1axZNmzbFysqK2rVr8/TTTzNjxgymTp16u2OUO1hERARdu3Yt6zAAMJlM1z3GjRtX1iGKiIiIiIiIyP+5qeV7ubm53HPPPQC4urpy6tQp7r//fgICAti9e/dtDVCkpDIyMoy/V65cyZgxYzh06JBxzWw2l0VYIiIiIiIiInIVN1UpVbduXePHfqNGjfjggw/45ZdfmD9/PtWrV7+tAUr5sX79eh566CFcXFxwd3enU6dOpKamGvd79OjB0KFDjfPIyEhMJhM//PADAPn5+Tg4OLBx48YSjfdnnp6exuHs7IzJZLK4tmLFCurXr4+trS316tVj3rx5Rt+0tDRMJhNxcXG0bdsWe3t7GjVqxLfffmsxx8KFC/Hy8sLe3p5u3boxa9YsXFxcjPupqal06dKFatWqYTabadasmfE8f3Tu3Dn69euHo6MjtWrVYsGCBTf2skVERERERETKuZtKSr388stGVcrYsWP56quvqFWrFnPmzGHKlCm3NUApP3JzcxkxYgQ7d+4kPj4eKysrunXrRlFREQAhISEkJCQY7RMTE6latapxbceOHRQUFNCyZcsSjXcjli1bxpgxY5g8eTIHDx5kypQpjB49mtjYWIt2b7zxBlFRUaSkpHD//ffTq1cvLl68CEBycjKDBg3i5ZdfJiUlhQ4dOjB58mSL/jk5OTz66KPEx8ezZ88ewsPD6dy5M+np6Rbt3nrrLZo2bcqePXsYMmQIgwcPtqjqEhEREREREanoTMXFxcW3Osi5c+f44YcfqFWrFlWrVr0dcUk5ERERwZkzZ1i9evUV93777Tc8PDz47rvvaNiwId999x2NGjXixIkTVKpUCU9PT0aPHs3+/ftZsWIFkydP5ssvvyQ5Ofmqc/15vOuJiYkhMjKSM2fOAODr68vEiRPp1auX0WbSpEl8+eWXbN26lbS0NOrUqcOiRYt4/vnnAThw4AANGjTg4MGD1KtXj6eeeoqcnBzWrl1rjPH000+zdu1aY56radiwIYMGDTKqxLy9vWndujVLly4FoLi4GE9PT8aPH8+gQYOuOkZeXh55eXnGeXZ2Nl5eXuxJScHR0fG670LuHvf5+JR1CCIiIiIiImRnZ+Ps7ExWVhZOTk7XbHdTlVLLly+3OLe3tyc4OJiqVavyz3/+82aGlArgyJEj9OrVCx8fH5ycnPD29gYwqoQaNmyIm5sbiYmJbNmyhcaNG9OpUycSExOBS5VToaGhJR6vpHJzc0lNTeX555/HbDYbx6RJk65YDhgYGGj8fXkp6smTJwE4dOgQzZs3t2j/5/OcnByioqKoX78+Li4umM1mDh48eEXMf5zn8jLDy/NczdSpU3F2djYOLy+vG3gDIiIiIiIiIneem9rofPDgwbi4uPDII49YXB8+fDgrVqxg5syZtyU4KV86d+5M7dq1WbhwITVq1KCoqIiGDRuSn58PXEq+tGnThoSEBGxsbAgNDSUwMJC8vDz279/P1q1biYqKKvF4JZWTkwNc2g+qRYsWFvesra0tzitXrmz8bTKZAG5ouWBUVBTffPMNb775Jr6+vtjZ2dGjR48rYv7jPJfnut480dHRjBgxwji/XCklIiIiIiIiUl7dVFJq2bJl9OrVi7Vr1/LQQw8B8NJLLxEXF8fmzZtva4BSPmRmZnLo0CEWLlxI69atAUhKSrqiXUhICAsXLsTGxobJkydjZWVFmzZtmDlzJnl5ebRq1eqGxiuJatWqUaNGDX788Uf69Olzk094aYP/HTt2WFz783lycjIRERF069YNuJQQS0tLu+k5L7OxscHGxuaWxxERERERERG5U9xUUqpjx47MmzePxx57jG+++YZ//etffPHFF2zevJn777//dsco5YCrqyvu7u4sWLCA6tWrk56ezmuvvXZFu9DQUIYPH06VKlWMhGZoaChRUVE0a9YMBweHGxqvpMaPH8+wYcNwdnYmPDycvLw8du7cyenTpy0qkK7npZdeok2bNsyaNYvOnTuzadMmvvrqK6OiCsDPz4+4uDg6d+6MyWRi9OjRN7Uxu4iIiIiIiEhFd1N7SgH07t2bSZMm0apVK/7973+TmJiohNRdqKioiEqVKmFlZcWKFSvYtWsXDRs2ZPjw4VddxhkQEICLiwtBQUGYzWbgUlKqsLDQYj+pko5XUi+88AKLFi3iww8/JCAggJCQEGJiYqhTp06Jx2jVqhXz589n1qxZNGrUiPXr1zN8+HBsbW2NNrNmzcLV1ZWWLVvSuXNnwsLCCA4Ovum4RURERERERCqqEn9971rVJJ988gnBwcHcd999xrVZs2bdnujkjhceHo6vry9z584t61DKRP/+/fnhhx/YsmVLqc57+UsG+vqe/JG+viciIiIiIneCkn59r8TL9/bs2XPV676+vmRnZxv3/7iUSSqu06dPk5ycTEJCAoMGDSrrcErNm2++SYcOHXBwcOCrr74iNjaWefPmlXVYIiIiIiIiIuVOiZNS2sBc/qhfv37s2LGDV155hS5dupR1OKVm+/btzJgxg7Nnz+Lj48OcOXN44YUXyjosERERERERkXKnxMv3ruXnn38G4N57770tAYnIXytpKaSIiIiIiIhIaSvpb9ab2ui8qKiICRMm4OzsTO3atalduzYuLi5MnDhRXxoTEREREREREZG/VOLle3/0xhtv8K9//Ytp06bRqlUrAJKSkhg3bhwXLlxg8uTJtzVIERERERERERGpWG5q+V6NGjWYP38+jz32mMX1L774giFDhvDLL7/ctgBF5EpaviciIiIiIiJ3qtv+9b0/+v3336lXr94V1+vVq8fvv/9+M0OKyE04/OMvmB2zyzoMKUX17tP+fSIiIiIiUjHc1J5SjRo1Yu7cuVdcnzt3LoGBgbcclIiIiIiIiIiIVGw3VSk1Y8YMOnbsyMaNG3nwwQcB+Pbbbzl+/DhffvnlbQ1Q/n4JCQm0bduW06dP4+LiUtbhXCE0NJSgoCDeeeedv22OO/0diIiIiIiIiFQ0N1UpFRISwuHDh+nWrRtnzpzhzJkzPP7443z//fcsXbr0dsco13Hq1CkGDx5MrVq1sLGxwdPTk7CwMJKTk8s6tNsmLi6OiRMnXvN+YWEh06ZNo169etjZ2eHm5kaLFi1YtGjR3xpXaGgokZGRf+scIiIiIiIiIhXVTVVKwaXNzv/8lb29e/fyr3/9iwULFtxyYFIy3bt3Jz8/n9jYWHx8fDhx4gTx8fFkZmaWdWi3jZub23Xvjx8/ng8++IC5c+fStGlTsrOz2blzJ6dPny6lCEVERERERETkRt1UpZTcGc6cOcOWLVuYPn06bdu2pXbt2jRv3pzo6Gjjy4hpaWmYTCZSUlIs+plMJhISEq46bmZmJr169aJmzZrY29sTEBDA8uXLjftr167FxcWFwsJCAFJSUjCZTLz22mtGmxdeeIGnn37aOE9KSqJ169bY2dnh5eXFsGHDyM3NNe7PmzcPPz8/bG1tqVatGj169DDu/VVF0po1axgyZAhPPPEEderUoVGjRjz//PNERUUZbYqKipg6dSp16tTBzs6ORo0a8emnn15zzL96BxERESQmJjJ79mxMJhMmk4m0tDQKCwt5/vnnjXnq1q3L7NmzLcaOiIiga9euvPnmm1SvXh13d3defPFFCgoKrhmPiIiIiIiISEWjpFQ5ZjabMZvNrF69mry8vNs27oULF2jSpAnr1q1j//79DBgwgL59+7J9+3YAWrduzdmzZ9mzZw8AiYmJVK1a1SLJlZiYSGhoKACpqamEh4fTvXt39u3bx8qVK0lKSmLo0KEA7Ny5k2HDhjFhwgQOHTrE+vXradOmTYnj9fT0ZNOmTZw6deqabaZOncqSJUuYP38+33//PcOHD+fpp58mMTHxpt7B7NmzefDBB+nfvz8ZGRlkZGTg5eVFUVER9957L5988gkHDhxgzJgxvP7666xatcpi/M2bN5OamsrmzZuJjY0lJiaGmJiYEj+ziIiIiIiISHl308v3pOxVqlSJmJgY+vfvz/z58wkODiYkJISnnnrqlr6CWLNmTYsqo5deeokNGzawatUqmjdvjrOzM0FBQSQkJNC0aVMSEhIYPnw448ePJycnh6ysLI4ePUpISAhwKSHUp08fo9rJz8+POXPmEBISwvvvv096ejoODg506tQJR0dHateuTePGjUsc76xZs+jRoweenp40aNCAli1b0qVLFx555BEA8vLymDJlisXG/D4+PiQlJfHBBx8Ycd7oO6hSpQr29vZ4enoa7aytrRk/frxxXqdOHb799ltWrVpFz549jeuurq7MnTsXa2tr6tWrR8eOHYmPj6d///5Xfca8vDyLxGN2dnaJ34+IiIiIiIjIneiGklKPP/74de+fOXPmVmKRm9C9e3c6duzIli1b+O9//8tXX33FjBkzWLRoERERETc1ZmFhIVOmTGHVqlX88ssv5Ofnk5eXh729vdEmJCSEhIQEXnnlFbZs2cLUqVNZtWoVSUlJ/P7779SoUQM/Pz/g0l5j+/btY9myZUb/4uJiioqKOHbsGB06dKB27dr4+PgQHh5OeHg43bp1s5jvevz9/dm/fz+7du0iOTmZ//znP3Tu3JmIiAgWLVrE0aNHOXfuHB06dLDol5+ff83kV0newbW89957LF68mPT0dM6fP09+fj5BQUEWbRo0aIC1tbVxXr16db777rtrjjl16lSLZJeIiIiIiIhIeXdDSSlnZ+e/vP/MM8/cUkBy42xtbenQoQMdOnRg9OjRvPDCC4wdO5aIiAisrC6t0CwuLjba/9XeRTNnzmT27Nm88847BAQE4ODgQGRkJPn5+Uab0NBQFi9ezN69e6lcuTL16tUjNDSUhIQETp8+bVF9lJOTw8CBAxk2bNgVc9WqVYsqVaqwe/duEhIS+PrrrxkzZgzjxo1jx44duLi4lOgdWFlZ0axZM5o1a0ZkZCQfffQRffv25Y033iAnJweAdevWUbNmTYt+NjY2N/0OrmbFihVERUXx1ltv8eCDD+Lo6MjMmTPZtm2bRbvKlStbnJtMJoqKiq45bnR0NCNGjDDOs7Oz8fLyum4sIiIiIiIiIneyG0pKffjhh39XHHIb+fv7s3r1agA8PDwAyMjIMKqC/rjp+dUkJyfTpUsXY6PyoqIiDh8+jL+/v9Hm8r5Sb7/9tpGACg0NZdq0aZw+fZpXXnnFaBscHMyBAwfw9fW95pyVKlWiffv2tG/fnrFjx+Li4sKmTZv+sjrvWi7Hmpubi7+/PzY2NqSnp191qd7VlOQdVKlSxdjs/Y/9WrZsyZAhQ4xrqampN/UMf2RjY3PNBJqIiIiIiIhIeaQ9pcqxzMxMnnjiCfr160dgYCCOjo7s3LmTGTNm0KVLFwDs7Ox44IEHmDZtGnXq1OHkyZOMGjXquuP6+fnx6aefsnXrVlxdXZk1axYnTpywSMi4uroSGBjIsmXLmDt3LgBt2rShZ8+eFBQUWCR/Ro4cyQMPPMDQoUN54YUXcHBw4MCBA3zzzTfMnTuXtWvX8uOPP9KmTRtcXV358ssvKSoqom7duiV6Dz169KBVq1a0bNkST09Pjh07RnR0NPfffz/16tWjUqVKREVFMXz4cIqKinjooYfIysoiOTkZJycnnn322Zt6B97e3mzbto20tDTMZjNubm74+fmxZMkSNmzYQJ06dVi6dCk7duygTp06JXoWERERERERkbuFvr5XjpnNZlq0aMHbb79NmzZtaNiwIaNHj6Z///5Goghg8eLFXLx4kSZNmhAZGcmkSZOuO+6oUaMIDg4mLCyM0NBQPD096dq16xXtQkJCKCwsNL6y5+bmhr+/P56enhYJpcDAQBITEzl8+DCtW7emcePGjBkzhho1agDg4uJCXFwc7dq1o379+syfP5/ly5fToEGDEr2HsLAw/v3vf9O5c2fuv/9+nn32WerVq8fXX39NpUqX8q4TJ05k9OjRTJ06lfr16xMeHs66deuumSwqyTuIiorC2toaf39/PDw8SE9PZ+DAgTz++OM8+eSTtGjRgszMTIuqKRERERERERG5xFT8x82GRKRcyM7OxtnZmR17DmB2dCzrcKQU1bvv3rIOQURERERE5Lou/2bNysrCycnpmu1UKSUiIiIiIiIiIqVOSSkRERERERERESl12uhcpBy736fmdUshRURERERERO5UqpQSEREREREREZFSp6SUiIiIiIiIiIiUOiWlRERERERERESk1GlPKZFybH/qSczm82UdhtyCQL9qZR2CiIiIiIhImVCllIiIiIiIiIiIlDolpUSuwtvbm3feeaeswxARERERERGpsJSUuk0iIiIwmUxMmzbN4vrq1asxmUxlFBWEhoZiMpmueYSGhpZZbGUhISHhuu/DZDKRkJDAjh07GDBgQFmHKyIiIiIiIlJhaU+p28jW1pbp06czcOBAXF1dyzocAOLi4sjPzwfg+PHjNG/enI0bN9KgQQMAqlSpUpbh3ZL8/Pwbjr9ly5ZkZGQY5y+//DLZ2dl8+OGHxjU3N7cyey8380wiIiIiIiIi5ZEqpW6j9u3b4+npydSpU6/ZZty4cQQFBVlce+edd/D29jbOExISaN68OQ4ODri4uNCqVSt++uknAFJTU+nSpQvVqlXDbDbTrFkzNm7ceM353Nzc8PT0xNPTEw8PDwDc3d2NawcOHKB169bY2dnh5eXFsGHDyM3NNfp7e3szZcoU+vXrh6OjI7Vq1WLBggUWc2zdupWgoCBsbW1p2rSpUR2WkpJitFmzZg1+fn7Y2trStm1bYmNjMZlMnDlzBoDMzEx69epFzZo1sbe3JyAggOXLl1vMExoaytChQ4mMjKRq1aqEhYUBMGvWLAICAnBwcMDLy4shQ4aQk5Nz1fdRpUoV49k9PT2xs7PDxsbG4lqVKlWuWL5nMpn44IMP6NSpE/b29tSvX59vv/2Wo0ePEhoaioODAy1btiQ1NdXoExERQdeuXS3mj4yMtKhOu9YziYiIiIiIiFR0SkrdRtbW1kyZMoV3332Xn3/++abGuHjxIl27diUkJIR9+/bx7bffMmDAAGMJYE5ODo8++ijx8fHs2bOH8PBwOnfuTHp6+g3PlZqaSnh4ON27d2ffvn2sXLmSpKQkhg4datHurbfeomnTpuzZs4chQ4YwePBgDh06BEB2djadO3cmICCA3bt3M3HiREaOHGnR/9ixY/To0YOuXbuyd+9eBg4cyBtvvGHR5sKFCzRp0oR169axf/9+BgwYQN++fdm+fbtFu9jYWKpUqUJycjLz588HwMrKijlz5vD9998TGxvLpk2bePXVV2/4ffyViRMn8swzz5CSkkK9evXo3bs3AwcOJDo6mp07d1JcXHzFuyuJqz2TiIiIiIiISEWn5Xu3Wbdu3QgKCmLs2LH861//uuH+2dnZZGVl0alTJ+677z4A6tevb9xv1KgRjRo1Ms4nTpzI559/zpo1a244ITJ16lT69OlDZGQkAH5+fsyZM4eQkBDef/99bG1tAXj00UcZMmQIACNHjuTtt99m8+bN1K1bl48//hiTycTChQuxtbXF39+fX375hf79+xvzfPDBB9StW5eZM2cCULduXfbv38/kyZONNjVr1iQqKso4f+mll9iwYQOrVq2iefPmxnU/Pz9mzJhh8RyX44dLlV2TJk1i0KBBzJs374bex1957rnn6Nmzp/EeHnzwQUaPHm1UN7388ss899xzNzzu1Z7pz/Ly8sjLyzPOs7Ozb3geERERERERkTuJKqX+BtOnTyc2NpaDBw/ecF83NzciIiIICwujc+fOzJ4922IPpJycHKKioqhfvz4uLi6YzWYOHjx4U5VSe/fuJSYmBrPZbBxhYWEUFRVx7Ngxo11gYKDxt8lkwtPTk5MnTwJw6NAhAgMDjQQWYJFEutymWbNmFtf+3KawsJCJEycSEBCAm5sbZrOZDRs2XPFcTZo0ueI5Nm7cyMMPP0zNmjVxdHSkb9++ZGZmcu7cuRt8I9f3x/dQrVo1AAICAiyuXbhw4YYTRld7pj+bOnUqzs7OxuHl5XVDc4iIiIiIiIjcaZSU+hu0adOGsLAwoqOjr7hnZWVFcXGxxbWCggKL8w8//JBvv/2Wli1bsnLlSu6//37++9//AhAVFcXnn3/OlClT2LJlCykpKQQEBBibmd+InJwcBg4cSEpKinHs3buXI0eOGFVaAJUrV7boZzKZKCoquuH5rmfmzJnMnj2bkSNHsnnzZlJSUggLC7viuRwcHCzO09LS6NSpE4GBgXz22Wfs2rWL9957D+Cm3sn1/PE9XF5OebVrl99NSf5bw5XPdDXR0dFkZWUZx/Hjx2/8AURERERERETuIFq+9zeZNm0aQUFB1K1b1+K6h4cHv/76K8XFxUYS448bgl/WuHFjGjduTHR0NA8++CAff/wxDzzwAMnJyURERNCtWzfgUmIpLS3tpmIMDg7mwIED+Pr63lR/uLQU76OPPiIvLw8bGxsAduzYcUWbL7/80uLan9skJyfTpUsXnn76aeBSYufw4cP4+/tfd/5du3ZRVFTEW2+9hZXVpRzrqlWrbvp5bicPDw/2799vcS0lJeWKJF9J2NjYGO9XREREREREpCJQpdTfJCAggD59+jBnzhyL66GhoZw6dYoZM2aQmprKe++9x1dffWXcP3bsGNHR0Xz77bf89NNPfP311xw5csTYV8rPz4+4uDijqql37943XbU0cuRItm7dytChQ0lJSeHIkSN88cUXN7Q31eX5BwwYwMGDB9mwYQNvvvkm8P8rhwYOHMgPP/zAyJEjOXz4MKtWrSImJsaijZ+fH9988w1bt27l4MGDDBw4kBMnTvzl/L6+vhQUFPDuu+/y448/snTp0jtms/B27dqxc+dOlixZwpEjRxg7duwVSSoRERERERGRu5WSUn+jCRMmXJEwql+/PvPmzeO9996jUaNGbN++3WKDb3t7e3744Qe6d+/O/fffz4ABA3jxxRcZOHAgALNmzcLV1ZWWLVvSuXNnwsLCCA4Ovqn4AgMDSUxM5PDhw7Ru3ZrGjRszZswYatSoUeIxnJyc+Pe//01KSgpBQUG88cYbjBkzBsDYZ6pOnTp8+umnxMXFERgYyPvvv298fe9y9c+oUaMIDg4mLCyM0NBQPD096dq161/O36hRI2bNmsX06dNp2LAhy5YtY+rUqTf4Jv4eYWFhjB49mldffZVmzZpx9uxZnnnmmbIOS0REREREROSOYCr+86Y3Irdo2bJlPPfcc2RlZWFnZ3fVNpMnT2b+/PnaG+kmZWdn4+zsTPLuI5jNjmUdjtyCQL9qZR2CiIiIiIjIbXX5N2tWVhZOTk7XbKc9peSWLVmyBB8fH2rWrMnevXsZOXIkPXv2tEhIzZs3j2bNmuHu7k5ycjIzZ868oWWCIiIiIiIiIlKxKCklt+zXX39lzJgx/Prrr1SvXp0nnniCyZMnW7Q5cuQIkyZN4vfff6dWrVq88sorV/06oYiIiIiIiIjcHbR8T6QcKmkppIiIiIiIiEhpK+lvVm10LiIiIiIiIiIipU5JKRERERERERERKXVKSomIiIiIiIiISKnTRuci5djuw79jNheUdRhyA5rWcy/rEERERERERO4IqpQSEREREREREZFSp6SUyHWYTCZWr1590/3HjRtHUFDQbYtHREREREREpKJQUkruOBEREZhMJuNwd3cnPDycffv2lXVoIiIiIiIiInKbKCkld6Tw8HAyMjLIyMggPj6eSpUq0alTp7IOS0RERERERERuEyWl5I5kY2ODp6cnnp6eBAUF8dprr3H8+HFOnToFwPHjx+nZsycuLi64ubnRpUsX0tLSjP4RERF07dqVN998k+rVq+Pu7s6LL75IQcH/3xQ8IyODjh07YmdnR506dfj444/x9vbmnXfeuWZcY8eOpXr16uzbt4+YmBhcXFws7q9evRqTyXTN/qGhoURGRlpc69q1KxERESV9NSIiIiIiIiIVgpJScsfLycnho48+wtfXF3d3dwoKCggLC8PR0ZEtW7aQnJyM2WwmPDyc/Px8o9/mzZtJTU1l8+bNxMbGEhMTQ0xMjHH/mWee4X//+x8JCQl89tlnLFiwgJMnT141huLiYl566SWWLFnCli1bCAwM/LsfW0RERERERKRCq1TWAYhczdq1azGbzQDk5uZSvXp11q5di5WVFR9//DFFRUUsWrTIqEr68MMPcXFxISEhgX/84x8AuLq6MnfuXKytralXrx4dO3YkPj6e/v3788MPP7Bx40Z27NhB06ZNAVi0aBF+fn5XxHLx4kWefvpp9uzZQ1JSEjVr1iylt/D/5eXlkZeXZ5xnZ2eXegwiIiIiIiIit5MqpeSO1LZtW1JSUkhJSWH79u2EhYXxyCOP8NNPP7F3716OHj2Ko6MjZrMZs9mMm5sbFy5cIDU11RijQYMGWFtbG+fVq1c3KqEOHTpEpUqVCA4ONu77+vri6up6RSzDhw9n27Zt/Oc//ymThBTA1KlTcXZ2Ng4vL68yiUNERERERETkdlGllNyRHBwc8PX1Nc4XLVqEs7MzCxcuJCcnhyZNmrBs2bIr+nl4eBh/V65c2eKeyWSiqKjohmPp0KEDy5cvZ8OGDfTp08e4bmVlRXFxsUXbP+5ZdTU30wcgOjqaESNGGOfZ2dlKTImIiIiIiEi5pqSUlAsmkwkrKyvOnz9PcHAwK1eu5J577sHJyemmxqtbty4XL15kz549NGnSBICjR49y+vTpK9o+9thjdO7cmd69e2Ntbc1TTz0FXEqAnT17ltzcXBwcHABISUm57rweHh5kZGQY54WFhezfv5+2bdtet5+NjQ02NjY38ogiIiIiIiIidzQt35M7Ul5eHr/++iu//vorBw8e5KWXXiInJ4fOnTvTp08fqlatSpcuXdiyZQvHjh0jISGBYcOG8fPPP5do/Hr16tG+fXsGDBjA9u3b2bNnDwMGDMDOzu6qX8/r1q0bS5cu5bnnnuPTTz8FoEWLFtjb2/P666+TmprKxx9/bLGR+tW0a9eOdevWsW7dOn744QcGDx7MmTNnbvT1iIiIiIiIiJR7SkrJHWn9+vVUr16d6tWr06JFC3bs2MEnn3xCaGgo9vb2/Oc//6FWrVo8/vjj1K9fn+eff54LFy7cUOXUkiVLqFatGm3atKFbt270798fR0dHbG1tr9q+R48exMbG0rdvX+Li4nBzc+Ojjz7iyy+/JCAggOXLlzNu3LjrztmvXz+effZZnnnmGUJCQvDx8fnLKikRERERERGRishU/OcNbkTuUj///DNeXl5s3LiRhx9+uKzDua7s7GycnZ3ZvOMYZrNjWYcjN6BpPfeyDkFERERERORvdfk3a1ZW1nWLR7SnlNy1Nm3aRE5ODgEBAWRkZPDqq6/i7e1NmzZtyjo0ERERERERkQpPSSm5axUUFPD666/z448/4ujoSMuWLVm2bNkVX+0TERERERERkdtPy/dEyqGSlkKKiIiIiIiIlLaS/mbVRuciIiIiIiIiIlLqlJQSEREREREREZFSp6SUiIiIiIiIiIiUOm10LlKO/fdgFg5mbQt3p2rVwLmsQxAREREREbljqVJKRERERERERERKnZJSIiIiIiIiIiJS6pSUEvmTiIgIunbtWtZhiIiIiIiIiFRo2lNK/nYRERGcOXOG1atXl3UomEym694fO3Yss2fPprhY+zSJiIiIiIiI/J2UlJK7SkZGhvH3ypUrGTNmDIcOHTKumc1mzGZzWYRGfn4+VapUKZO5RUREREREREqblu9JqVq/fj0PPfQQLi4uuLu706lTJ1JTU437PXr0YOjQocZ5ZGQkJpOJH374AbiUuHFwcGDjxo0lGu/PPD09jcPZ2RmTyWRxzWw2X7F8LzQ0lJdeeonIyEhcXV2pVq0aCxcuJDc3l+eeew5HR0d8fX356quvjD4xMTG4uLhYzL169WqLSq1x48YRFBTEokWLqFOnDra2tjf1TkVERERERETKIyWlpFTl5uYyYsQIdu7cSXx8PFZWVnTr1o2ioiIAQkJCSEhIMNonJiZStWpV49qOHTsoKCigZcuWJRrvdomNjaVq1aps376dl156icGDB/PEE0/QsmVLdu/ezT/+8Q/69u3LuXPnbmjco0eP8tlnnxEXF0dKSso12+Xl5ZGdnW1xiIiIiIiIiJRnSkpJqerevTuPP/44vr6+BAUFsXjxYr777jsOHDgAXKpKOnDgAKdOneL06dMcOHCAl19+2UhKJSQk0KxZM+zt7Us03u3SqFEjRo0ahZ+fH9HR0dja2lK1alX69++Pn58fY8aMITMzk3379t3QuPn5+SxZsoTGjRsTGBh4zXZTp07F2dnZOLy8vG71kURERERERETKlJJSUqqOHDlCr1698PHxwcnJCW9vbwDS09MBaNiwIW5ubiQmJrJlyxYaN25Mp06dSExMBC5VToWGhpZ4vNvljwkja2tr3N3dCQgIMK5Vq1YNgJMnT97QuLVr18bDw+Mv20VHR5OVlWUcx48fv6F5RERERERERO402uhcSlXnzp2pXbs2CxcupEaNGhQVFdGwYUPy8/OBS1/Ha9OmDQkJCdjY2BAaGkpgYCB5eXns37+frVu3EhUVVeLxbpfKlStbnJtMJotrl/eKurxs0MrK6oov+BUUFFwxroODQ4nmt7GxwcbG5oZiFhEREREREbmTKSklpSYzM5NDhw6xcOFCWrduDUBSUtIV7UJCQli4cCE2NjZMnjwZKysr2rRpw8yZM8nLy6NVq1Y3NF5Z8PDw4OzZs+Tm5hqJp+vtGSUiIiIiIiJyt9HyPSk1rq6uuLu7s2DBAo4ePcqmTZsYMWLEFe0u7yv1/fff89BDDxnXli1bRtOmTY0kT0nHKwstWrTA3t6e119/ndTUVD7++GNiYmLKOiwRERERERGRO4aSUvK3KyoqolKlSlhZWbFixQp27dpFw4YNGT58ODNnzryifUBAAC4uLgQFBWE2m4FLSanCwkKL/aRKOl5ZcHNz46OPPuLLL78kICCA5cuXM27cuLIOS0REREREROSOYSr+88Y3IrdZeHg4vr6+zJ07t6xDqTCys7NxdnZmw3/TcTA7lXU4cg2tGjiXdQgiIiIiIiKl7vJv1qysLJycrv2bVZVS8rc5ffo0a9euJSEhgfbt25d1OCIiIiIiIiJyB9FG5/K36devHzt27OCVV16hS5cuZR1OhfRAfefrZp1FRERERERE7lRKSsnf5vPPPy/rEERERERERETkDqXleyIiIiIiIiIiUuqUlBIRERERERERkVKn5Xsi5VjCvrM4mE1lHYb8n4eDHMs6BBERERERkXJDlVIiIiIiIiIiIlLqlJQSEREREREREZFSp6SUyN8sIiKCrl27lnUYIiIiIiIiIncUJaXkjvHrr7/y8ssv4+vri62tLdWqVaNVq1a8//77nDt3rqzDIzQ0lMjIyLIOQ0RERERERKRC0Ebnckf48ccfadWqFS4uLkyZMoWAgABsbGz47rvvWLBgATVr1uSxxx674XHz8/OpUqXK3xCxiIiIiIiIiNwKVUrJHWHIkCFUqlSJnTt30rNnT+rXr4+Pjw9dunRh3bp1dO7cGYD09HS6dOmC2WzGycmJnj17cuLECWOccePGERQUxKJFi6hTpw62trY31G/p0qV4e3vj7OzMU089xdmzZ4FLS/ASExOZPXs2JpMJk8lEWloahYWFPP/889SpUwc7Ozvq1q3L7Nmzr/useXl5DBs2jHvuuQdbW1seeughduzYcbtfqYiIiIiIiMgdTUkpKXOZmZl8/fXXvPjiizg4OFy1jclkoqioiC5duvD777+TmJjIN998w48//siTTz5p0fbo0aN89tlnxMXFkZKSUuJ+qamprF69mrVr17J27VoSExOZNm0aALNnz+bBBx+kf//+ZGRkkJGRgZeXF0VFRdx777188sknHDhwgDFjxvD666+zatWqaz7vq6++ymeffUZsbCy7d+/G19eXsLAwfv/992v2ycvLIzs72+IQERERERERKc+0fE/K3NGjRykuLqZu3boW16tWrcqFCxcAePHFF2nfvj3fffcdx44dw8vLC4AlS5bQoEEDduzYQbNmzYBLS/aWLFmCh4cHAN98802J+hUVFRETE4OjoyMAffv2JT4+nsmTJ+Ps7EyVKlWwt7fH09PTiNHa2prx48cb53Xq1OHbb79l1apV9OzZ84pnzc3N5f333ycmJoZHHnkEgIULF/LNN9/wr3/9i3/+859XfUdTp061mEdERERERESkvFOllNyxtm/fTkpKCg0aNCAvL4+DBw/i5eVlJJYA/P39cXFx4eDBg8a12rVrGwkpoMT9vL29jYQUQPXq1Tl58uRfxvnee+/RpEkTPDw8MJvNLFiwgPT09Ku2TU1NpaCggFatWhnXKleuTPPmzS1i+bPo6GiysrKM4/jx438Zl4iIiIiIiMidTJVSUuZ8fX0xmUwcOnTI4rqPjw8AdnZ2NzTetZYA/pXKlStbnF9eMng9K1asICoqirfeeosHH3wQR0dHZs6cybZt224qhmuxsbHBxsbmto4pIiIiIiIiUpZUKSVlzt3dnQ4dOjB37lxyc3Ov2a5+/focP37cokrowIEDnDlzBn9//9ve78+qVKlCYWGhxbXk5GRatmzJkCFDaNy4Mb6+vqSmpl5zjPvuu48qVaqQnJxsXCsoKGDHjh03FIuIiIiIiIhIeaeklNwR5s2bx8WLF2natCkrV67k4MGDHDp0iI8++ogffvgBa2tr2rdvT0BAAH369GH37t1s376dZ555hpCQEJo2bXrNsW+23595e3uzbds20tLS+O233ygqKsLPz4+dO3eyYcMGDh8+zOjRo6/7JT0HBwcGDx7MP//5T9avX8+BAwfo378/586d4/nnn7+hdyYiIiIiIiJSnikpJXeE++67jz179tC+fXuio6Np1KgRTZs25d133yUqKoqJEydiMpn44osvcHV1pU2bNrRv3x4fHx9Wrlx53bFvtt+fRUVFYW1tjb+/Px4eHqSnpzNw4EAef/xxnnzySVq0aEFmZiZDhgy57jjTpk2je/fu9O3bl+DgYI4ePcqGDRtwdXW9oXhEREREREREyjNTcXFxcVkHISI3Jjs7G2dnZ77Y8jMOZqeyDkf+z8NBjn/dSEREREREpIK7/Js1KysLJ6dr/2ZVpZSIiIiIiIiIiJQ6fX1PpBwLDXTEyUnVOSIiIiIiIlL+qFJKRERERERERERKnZJSIiIiIiIiIiJS6pSUEhERERERERGRUqc9pUTKsa935WBvVm65NDzazFzWIYiIiIiIiFQo+jUrIiIiIiIiIiKlTkkpEREREREREREpdUpKSalLS0vDZDKRkpJS4j7jxo0jKCjob4tJREREREREREqXklLylyIiIjCZTAwaNOiKey+++CImk4mIiIjSD+wWRURE0LVr1yuuJyQkYDKZOHPmDKCEmIiIiIiIiMjfQUkpKREvLy9WrFjB+fPnjWsXLlzg448/platWmUYWflRWFhIUVFRWYchIiIiIiIickdQUkpKJDg4GC8vL+Li4oxrcXFx1KpVi8aNG1u0Xb9+PQ899BAuLi64u7vTqVMnUlNTrzl2TEwMLi4uFtdWr16NyWS6Zp/U1FR8fHwYOnQoxcXFeHt7884771i0CQoKYty4cSV+xmvFNn78ePbu3YvJZMJkMhETEwPArFmzCAgIwMHBAS8vL4YMGUJOTs4Vz7VmzRr8/f2xsbEhPT2dHTt20KFDB6pWrYqzszMhISHs3r37luIUERERERERKW+UlJIS69evHx9++KFxvnjxYp577rkr2uXm5jJixAh27txJfHw8VlZWdOvW7bZVCe3bt4+HHnqI3r17M3fu3Osmr27Vk08+ySuvvEKDBg3IyMggIyODJ598EgArKyvmzJnD999/T2xsLJs2beLVV1+16H/u3DmmT5/OokWL+P7777nnnns4e/Yszz77LElJSfz3v//Fz8+PRx99lLNnz14zjry8PLKzsy0OERERERERkfKsUlkHIOXH008/TXR0ND/99BMAycnJrFixgoSEBIt23bt3tzhfvHgxHh4eHDhwgIYNG95SDFu3bqVTp0688cYbvPLKK7c0VknY2dlhNpupVKkSnp6eFvciIyONv729vZk0aRKDBg1i3rx5xvWCggLmzZtHo0aNjGvt2rWzGGfBggW4uLiQmJhIp06drhrH1KlTGT9+/G14IhEREREREZE7gyqlpMQ8PDzo2LEjMTExfPjhh3Ts2JGqVate0e7IkSP06tULHx8fnJyc8Pb2BiA9Pf2W5k9PT6dDhw6MGTOmVBJSf2Xjxo08/PDD1KxZE0dHR/r27UtmZibnzp0z2lSpUoXAwECLfidOnKB///74+fnh7OyMk5MTOTk5130/0dHRZGVlGcfx48f/tucSERERERERKQ1KSskN6devHzExMcTGxtKvX7+rtuncuTO///47CxcuZNu2bWzbtg2A/Pz8q7a3srKiuLjY4lpBQcEV7Tw8PGjevDnLly+/YvlaScf4IycnJ7Kysq64fubMGaytrXFwcLhm37S0NDp16kRgYCCfffYZu3bt4r333gMsn9POzu6K5YXPPvssKSkpzJ49m61bt5KSkoK7u/s13w+AjY0NTk5OFoeIiIiIiIhIeaaklNyQ8PBw8vPzKSgoICws7Ir7mZmZHDp0iFGjRvHwww9Tv359Tp8+fd0xPTw8OHv2LLm5uca1lJSUK9rZ2dmxdu1abG1tCQsLs9iDycPDg4yMDOM8OzubY8eOXXfeunXr8v3335OXl2dxfffu3dSpU4fKlSsDl6qdCgsLLdrs2rWLoqIi3nrrLR544AHuv/9+/ve//113vsuSk5MZNmwYjz76KA0aNMDGxobffvutRH1FREREREREKgolpeSGWFtbc/DgQQ4cOIC1tfUV911dXXF3d2fBggUcPXqUTZs2MWLEiOuO2aJFC+zt7Xn99ddJTU3l448/Nr5w92cODg6sW7eOSpUq8cgjjxhfu2vXrh1Lly5ly5YtfPfddzz77LNXje+P+vTpg8lk4plnnmHXrl0cPXqUxYsX884771gsD/T29ubYsWOkpKTw22+/kZeXh6+vLwUFBbz77rv8+OOPLF26lPnz5//F27vEz8+PpUuXcvDgQbZt20afPn2ws7MrUV8RERERERGRikJJKblh11s+ZmVlxYoVK9i1axcNGzZk+PDhzJw587rjubm58dFHH/Hll18SEBDA8uXLGTdu3DXbm81mvvrqK4qLi+nYsSO5ublER0cTEhJCp06d6NixI127duW+++677rwuLi5s2bKFgoICHnvsMYKCgpgzZw6zZs1i4MCBRrvu3bsTHh5O27Zt8fDwYPny5TRq1IhZs2Yxffp0GjZsyLJly5g6dep157vsX//6F6dPnyY4OJi+ffsybNgw7rnnnhL1FREREREREakoTMV/3ohHRO542dnZODs788mmX7A3a3+p0vBoM3NZhyAiIiIiIlIuXP7NmpWVdd09kVUpJSIiIiIiIiIipa5SWQcgIjfvH03MODmpgkdERERERETKH1VKiYiIiIiIiIhIqVNSSkRERERERERESp2SUiIiIiIiIiIiUuq0p5RIOfbFf3Owd1Bu+e/WvZX27RIREREREbnd9GtWRERERERERERKnZJSIiIiIiIiIiJS6pSUEhERERERERGRUqeklNxVIiIiMJlMmEwmqlSpgq+vLxMmTODixYtlHZqIiIiIiIjIXUUbnctdJzw8nA8//JC8vDy+/PJLXnzxRSpXrkx0dHRZhyYiIiIiIiJy11CllNx1bGxs8PT0pHbt2gwePJj27duzZs0aZs2aRUBAAA4ODnh5eTFkyBBycnKMfjExMbi4uLB69Wr8/PywtbUlLCyM48ePG20iIiLo2rWrxXyRkZGEhoYa5+vXr+ehhx7CxcUFd3d3OnXqRGpq6t/92CIiIiIiIiJ3FCWl5K5nZ2dHfn4+VlZWzJkzh++//57Y2Fg2bdrEq6++atH23LlzTJ48mSVLlpCcnMyZM2d46qmnbmi+3NxcRowYwc6dO4mPj8fKyopu3bpRVFR0zT55eXlkZ2dbHCIiIiIiIiLlmZbvyV2ruLiY+Ph4NmzYwEsvvURkZKRxz9vbm0mTJjFo0CDmzZtnXC8oKGDu3Lm0aNECgNjYWOrXr8/27dtp3rx5iebt3r27xfnixYvx8PDgwIEDNGzY8Kp9pk6dyvjx42/wCUVERERERETuXKqUkrvO2rVrMZvN2Nra8sgjj/Dkk08ybtw4Nm7cyMMPP0zNmjVxdHSkb9++ZGZmcu7cOaNvpUqVaNasmXFer149XFxcOHjwYInnP3LkCL169cLHxwcnJye8vb0BSE9Pv2af6OhosrKyjOOPSwZFREREREREyiMlpeSu07ZtW1JSUjhy5Ajnz58nNjaWU6dO0alTJwIDA/nss8/YtWsX7733HgD5+fklHtvKyori4mKLawUFBRbnnTt35vfff2fhwoVs27aNbdu2/eU8NjY2ODk5WRwiIiIiIiIi5ZmW78ldx8HBAV9fX4tru3btoqioiLfeegsrq0u52lWrVl3R9+LFi+zcudNYqnfo0CHOnDlD/fr1AfDw8GD//v0WfVJSUqhcuTIAmZmZHDp0iIULF9K6dWsAkpKSbu8DioiIiIiIiJQDqpQSAXx9fSkoKODdd9/lxx9/ZOnSpcyfP/+KdpUrV+all15i27Zt7Nq1i4iICB544AEjSdWuXTt27tzJkiVLOHLkCGPHjrVIUrm6uuLu7s6CBQs4evQomzZtYsSIEaX2nCIiIiIiIiJ3CiWlRIBGjRoxa9Yspk+fTsOGDVm2bBlTp069op29vT0jR46kd+/etGrVCrPZzMqVK437YWFhjB49mldffZVmzZpx9uxZnnnmGeO+lZUVK1asYNeuXTRs2JDhw4czc+bMUnlGERERERERkTuJqfjPG+CIyFXFxMQQGRnJmTNnyjoUsrOzcXZ2ZsmGX7B30P5Sf7furcxlHYKIiIiIiEi5cfk3a1ZW1nX3RFallIiIiIiIiIiIlDptdC5SjnV5wIyTk6p4REREREREpPxRpZRICUVERNwRS/dEREREREREKgIlpUREREREREREpNQpKSUiIiIiIiIiIqVOe0qJlGMrE89i72Aq6zAqnD7tHMs6BBERERERkQpPlVIiIiIiIiIiIlLqlJQSEREREREREZFSp6SUyHWkpaVhMplISUkpcZ9x48YRFBT0t8UkIiIiIiIiUhEoKSUVTkREBCaTiUGDBl1x78UXX8RkMhEREVH6gYmIiIiIiIiIQUkpqZC8vLxYsWIF58+fN65duHCBjz/+mFq1apVhZCIiIiIiIiICSkpJBRUcHIyXlxdxcXHGtbi4OGrVqkXjxo2Na+vXr+ehhx7CxcUFd3d3OnXqRGpq6jXHjYmJwcXFxeLa6tWrMZmu/QW81NRUfHx8GDp0KMXFxXh7e/POO+9YtAkKCmLcuHE39IwiIiIiIiIi5ZmSUlJh9evXjw8//NA4X7x4Mc8995xFm9zcXEaMGMHOnTuJj4/HysqKbt26UVRUdFti2LdvHw899BC9e/dm7ty5101eiYiIiIiIiNxNKpV1ACJ/l6effpro6Gh++uknAJKTk1mxYgUJCQlGm+7du1v0Wbx4MR4eHhw4cICGDRve0vxbt26lU6dOvPHGG7zyyiu3NFZeXh55eXnGeXZ29i2NJyIiIiIiIlLWVCklFZaHhwcdO3YkJiaGDz/8kI4dO1K1alWLNkeOHKFXr174+Pjg5OSEt7c3AOnp6bc0d3p6Oh06dGDMmDG3nJACmDp1Ks7Ozsbh5eV1y2OKiIiIiIiIlCUlpaRC69evHzExMcTGxtKvX78r7nfu3Jnff/+dhQsXsm3bNrZt2wZAfn7+VcezsrKiuLjY4lpBQcEV7Tw8PGjevDnLly+/oqqppGP8UXR0NFlZWcZx/Pjx67YXERERERERudMpKSUVWnh4OPn5+RQUFBAWFmZxLzMzk0OHDjFq1Cgefvhh6tevz+nTp687noeHB2fPniU3N9e4lpKSckU7Ozs71q5di62tLWFhYZw9e9ZijIyMDOM8OzubY8eOXXdeGxsbnJycLA4RERERERGR8kxJKanQrK2tOXjwIAcOHMDa2trinqurK+7u7ixYsICjR4+yadMmRowYcd3xWrRogb29Pa+//jqpqal8/PHHxMTEXLWtg4MD69ato1KlSjzyyCPk5OQA0K5dO5YuXcqWLVv47rvvePbZZ6+ITURERERERKSiU1JKKrxrVRZZWVmxYsUKdu3aRcOGDRk+fDgzZ8687lhubm589NFHfPnllwQEBLB8+XLGjRt3zfZms5mvvvqK4uJiOnbsSG5uLtHR0YSEhNCpUyc6duxI165due+++271MUVERERERETKFVPxnze3EZE7XnZ2Ns7OzixY8zP2DlrKd7v1aedY1iGIiIiIiIiUW5d/s2ZlZV13+xlVSomIiIiIiIiISKlTUkpEREREREREREpdpbIOQERu3pMhjjg5aamZiIiIiIiIlD+qlBIRERERERERkVKnpJSIiIiIiIiIiJQ6JaVERERERERERKTUaU8pkXIsZsMZ7OyLyjqMcq1/R5eyDkFEREREROSupEopEREREREREREpdUpKVVAJCQmYTCbOnDlT1qFcVWhoKJGRkWUdhoiIiIiIiIiUESWl7kCnTp1i8ODB1KpVCxsbGzw9PQkLCyM5ObmsQ7tt4uLimDhx4lXvhYaGYjKZrnmEhoaWbrAiIiIiIiIicttpT6k7UPfu3cnPzyc2NhYfHx9OnDhBfHw8mZmZZR3abePm5nbNe3FxceTn5wNw/PhxmjdvzsaNG2nQoAEAVapUKZUY/w75+fnlOn4RERERERGR20WVUneYM2fOsGXLFqZPn07btm2pXbs2zZs3Jzo6msceewyAtLQ0TCYTKSkpFv1MJhMJCQlXHTczM5NevXpRs2ZN7O3tCQgIYPny5cb9tWvX4uLiQmFhIQApKSmYTCZee+01o80LL7zA008/bZwnJSXRunVr7Ozs8PLyYtiwYeTm5hr3582bh5+fH7a2tlSrVo0ePXoY9663fM/NzQ1PT088PT3x8PAAwN3d3bh24MCB687r7e3NlClT6NevH46OjtSqVYsFCxZYzLF161aCgoKwtbWladOmrF69+op3umbNGiP+tm3bEhsba7Ek8q/e6eXnHDp0KJGRkVStWpWwsDAAZs2aRUBAAA4ODnh5eTFkyBBycnKu+j5EREREREREKiIlpe4wZrMZs9nM6tWrycvLu23jXrhwgSZNmrBu3Tr279/PgAED6Nu3L9u3bwegdevWnD17lj179gCQmJhI1apVLZJciYmJxtK51NRUwsPD6d69O/v27WPlypUkJSUxdOhQAHbu3MmwYcOYMGEChw4dYv369bRp0+aWn+Ov5r3srbfeomnTpuzZs4chQ4YwePBgDh06BEB2djadO3cmICCA3bt3M3HiREaOHGnR/9ixY/To0YOuXbuyd+9eBg4cyBtvvHFD7/Sy2NhYqlSpQnJyMvPnzwfAysqKOXPm8P333xMbG8umTZt49dVXb/n9iIiIiIiIiJQXpuLi4uKyDkIsffbZZ/Tv35/z588THBxMSEgITz31FIGBgcClSqk6deqwZ88egoKCgEuVUq6urmzevJnQ0FASEhJo27Ytp0+fxsXF5arzdOrUiXr16vHmm28C0KRJE3r16kVUVBTdunWjWbNmjB8/nszMTLKysrj33ns5fPgwfn5+vPDCC1hbW/PBBx8Y4yUlJRESEkJubi5ffvklzz33HD///DOOjo5XzB0aGkpQUBDvvPPOdd/Fn5/1r+a1tbXF29ub1q1bs3TpUgCKi4vx9PRk/PjxDBo0iPnz5zNq1Ch+/vlnbG1tAVi0aBH9+/c35nnttddYt24d3333nTHPqFGjmDx58g2909DQULKzs9m9e/d1n/PTTz9l0KBB/Pbbb1e9n5eXZ5GkzM7OxsvLi9mrfsLO3um6Y8v19e/oUtYhiIiIiIiIVCjZ2dk4OzuTlZWFk9O1f7OqUuoO1L17d/73v/+xZs0awsPDSUhIIDg4mJiYmJses7CwkIkTJxIQEICbmxtms5kNGzaQnp5utAkJCSEhIYHi4mK2bNnC448/Tv369UlKSiIxMZEaNWrg5+cHwN69e4mJiTEqu8xmM2FhYRQVFXHs2DE6dOhA7dq18fHxoW/fvixbtoxz587d6qv5y3kvu5zAAzCZTHh6enLy5EkADh06RGBgoJGQAmjevLnFPIcOHaJZs2YW1/7cpiTvFC4l+/5s48aNPPzww9SsWRNHR0f69u1LZmbmNd/R1KlTcXZ2Ng4vL6/rvSYRERERERGRO56SUncoW1tbOnTowOjRo9m6dSsRERGMHTsWuLT0Cy5VAF1WUFBw3fFmzpzJ7NmzGTlyJJs3byYlJYWwsDBjQ3G4VNWTlJTE3r17qVy5MvXq1TOqrhITEwkJCTHa5uTkMHDgQFJSUoxj7969HDlyhPvuuw9HR0d2797N8uXLqV69OmPGjKFRo0bGfkw366/mvaxy5coW/UwmE0VFRbc095+V5J0CODg4WJynpaXRqVMnAgMD+eyzz9i1axfvvfcewBV9L4uOjiYrK8s4jh8/flufRURERERERKS06et75YS/vz+rV68GMDb/zsjIoHHjxgAWG3RfTXJyMl26dDE2Ki8qKuLw4cP4+/sbbS7vK/X2228bCajQ0FCmTZvG6dOneeWVV4y2wcHBHDhwAF9f32vOWalSJdq3b0/79u0ZO3YsLi4ubNq0iccff/yGn/9G5v0rdevW5aOPPiIvLw8bGxsAduzYcUWbL7/80uLan9uU5J1eza5duygqKuKtt94yEoyrVq26bh8bGxsjVhEREREREZGKQJVSd5jMzEzatWvHRx99xL59+zh27BiffPIJM2bMoEuXLgDY2dnxwAMPMG3aNA4ePEhiYiKjRo267rh+fn588803bN26lYMHDzJw4EBOnDhh0cbV1ZXAwECWLVtmbGjepk0bdu/ezeHDhy0qpUaOHMnWrVsZOnQoKSkpHDlyhC+++MLYcHzt2rXMmTOHlJQUfvrpJ5YsWUJRURF169a9pffzV/OWRO/evSkqKmLAgAEcPHiQDRs2GHtAmUwmAAYOHMgPP/zAyJEjOXz4MKtWrTKWT15uU5J3ejW+vr4UFBTw7rvv8uOPP7J06VJjA3QRERERERGRu4WSUncYs9lMixYtePvtt2nTpg0NGzZk9OjR9O/fn7lz5xrtFi9ezMWLF2nSpAmRkZFMmjTpuuOOGjWK4OBgwsLCCA0NxdPTk65du17RLiQkhMLCQiMp5ebmhr+/P56enhYJpcDAQBITEzl8+DCtW7emcePGjBkzhho1agDg4uJCXFwc7dq1o379+syfP5/ly5fToEGDW3o/fzVvSTg5OfHvf/+blJQUgoKCeOONNxgzZgyAsc9UnTp1+PTTT4mLiyMwMJD333/f+Pre5Yqlkr7TP2vUqBGzZs1i+vTpNGzYkGXLljF16tQbfBMiIiIiIiIi5Zu+vicCLFu2jOeee46srCzs7Oyu2mby5MnMnz//jtjP6fKXDPT1vVunr++JiIiIiIjcXiX9+p72lJK70pIlS/Dx8aFmzZrs3buXkSNH0rNnT4uE1Lx582jWrBnu7u4kJyczc+bMG1omKCIiIiIiIiLXpqSU3JV+/fVXxowZw6+//kr16tV54oknmDx5skWbI0eOMGnSJH7//Xdq1arFK6+8QnR0dBlFLCIiIiIiIlKxaPmeSDlU0lJIERERERERkdJW0t+s2uhcRERERERERERKnZJSIiIiIiIiIiJS6pSUEhERERERERGRUqeNzkXKsflf/I6tfUFZh1EuDevuXtYhiIiIiIiI3NVUKSUiIiIiIiIiIqVOSSmRv1FERARdu3a9bpvQ0FAiIyNLJR4RERERERGRO4WW78ldKyIigjNnzrB69eoyjSMuLo7KlSuXaQwiIiIiIiIipU1JKZEy5ubmVtYhiIiIiIiIiJQ6Ld8TAdavX89DDz2Ei4sL7u7udOrUidTUVON+WloaJpOJVatW0bp1a+zs7GjWrBmHDx9mx44dNG3aFLPZzCOPPMKpU6euGH/8+PF4eHjg5OTEoEGDyM/PN+5p+Z6IiIiIiIjcjZSUEgFyc3MZMWIEO3fuJD4+HisrK7p160ZRUZFFu7FjxzJq1Ch2795NpUqV6N27N6+++iqzZ89my5YtHD16lDFjxlj0iY+P5+DBgyQkJLB8+XLi4uIYP358aT6eiIiIiIiIyB1Hy/dEgO7du1ucL168GA8PDw4cOEDDhg2N61FRUYSFhQHw8ssv06tXL+Lj42nVqhUAzz//PDExMRZjValShcWLF2Nvb0+DBg2YMGEC//znP5k4cSJWViXLC+fl5ZGXl2ecZ2dn38xjioiIiIiIiNwxVCklAhw5coRevXrh4+ODk5MT3t7eAKSnp1u0CwwMNP6uVq0aAAEBARbXTp48adGnUaNG2NvbG+cPPvggOTk5HD9+vMTxTZ06FWdnZ+Pw8vIqcV8RERERERGRO5GSUiJA586d+f3331m4cCHbtm1j27ZtABZ7PwEWX8kzmUxXvfbnJX+3Q3R0NFlZWcZxIwktERERERERkTuRlu/JXS8zM5NDhw6xcOFCWrduDUBSUtJtG3/v3r2cP38eOzs7AP773/9iNptvqNrJxsYGGxub2xaTiIiIiIiISFlTUkrueq6urri7u7NgwQKqV69Oeno6r7322m0bPz8/n+eff55Ro0aRlpbG2LFjGTp0aIn3kxIRERERERGpiJSUkrtWUVERlSpVwsrKihUrVjBs2DAaNmxI3bp1mTNnDqGhobdlnocffhg/Pz/atGlDXl4evXr1Yty4cbdlbBEREREREZHyylRcXFxc1kGIlIXw8HB8fX2ZO3duWYdyw7Kzs3F2dmb6kmPY2juWdTjl0rDu7mUdgoiIiIiISIV0+TdrVlYWTk5O12yn9UNy1zl9+jRr164lISGB9u3bl3U4IiIiIiIiInclLd+Tu06/fv3YsWMHr7zyCl26dCnrcERERERERETuSlq+J1IOlbQUUkRERERERKS0afmeiIiIiIiIiIjcsZSUEhERERERERGRUqeklIiIiIiIiIiIlDptdC5Sjr298iS2dufLOoxyZeTT1co6BBEREREREUGVUiIiIiIiIiIiUgaUlJJbkpCQgMlk4syZM2UdylWFhoYSGRlZ1mGIiIiIiIiIyJ8oKXUXO3XqFIMHD6ZWrVrY2Njg6elJWFgYycnJZR3abRMXF8fEiROveT8mJgaTyWQcZrOZJk2aEBcXV2oxent7884775TafCIiIiIiIiJ3Au0pdRfr3r07+fn5xMbG4uPjw4kTJ4iPjyczM7OsQ7tt3Nzc/rKNk5MThw4dAuDs2bN8+OGH9OzZk++//566deve1LzFxcUUFhZSqZL+iYmIiIiIiIhcjSql7lJnzpxhy5YtTJ8+nbZt21K7dm2aN29OdHQ0jz32GABpaWmYTCZSUlIs+plMJhISEq46bmZmJr169aJmzZrY29sTEBDA8uXLjftr167FxcWFwsJCAFJSUjCZTLz22mtGmxdeeIGnn37aOE9KSqJ169bY2dnh5eXFsGHDyM3NNe7PmzcPPz8/bG1tqVatGj169DDulWT5nslkwtPTE09PT/z8/Jg0aRJWVlbs27fPaLN06VKaNm2Ko6Mjnp6e9O7dm5MnTxr3Ly9j/Oqrr2jSpAk2NjYkJSWRmppKly5dqFatGmazmWbNmrFx40aL+H766SeGDx9uVGuJiIiIiIiI3A2UlLpLmc1mzGYzq1evJi8v77aNe+HCBZo0acK6devYv38/AwYMoG/fvmzfvh2A1q1bc/bsWfbs2QNAYmIiVatWtUhyJSYmEhoaCkBqairh4eF0796dffv2sXLlSpKSkhg6dCgAO3fuZNiwYUyYMIFDhw6xfv162rRpc9PxFxYWEhsbC0BwcLBxvaCggIkTJ7J3715Wr15NWloaERERV/R/7bXXmDZtGgcPHiQwMJCcnBweffRR4uPj2bNnD+Hh4XTu3Jn09HTg0vLCe++9lwkTJpCRkUFGRsZNxy4iIiIiIiJSnmht0V2qUqVKxMTE0L9/f+bPn09wcDAhISE89dRTBAYG3vS4NWvWJCoqyjh/6aWX2LBhA6tWraJ58+Y4OzsTFBREQkICTZs2JSEhgeHDhzN+/HhycnLIysri6NGjhISEADB16lT69OljVDv5+fkxZ84cQkJCeP/990lPT8fBwYFOnTrh6OhI7dq1ady48Q3FnJWVhdlsBuD8+fNUrlyZBQsWcN999xlt+vXrZ/zt4+PDnDlzaNasGTk5OUZfgAkTJtChQwfj3M3NjUaNGhnnEydO5PPPP2fNmjUMHToUNzc3rK2tjQqsa8nLy7NIHmZnZ9/QM4qIiIiIiIjcaVQpdRfr3r07//vf/1izZg3h4eEkJCQQHBxMTEzMTY9ZWFjIxIkTCQgIwM3NDbPZzIYNG4zKIICQkBASEhIoLi5my5YtPP7449SvX5+kpCQSExOpUaMGfn5+AOzdu5eYmBijsstsNhMWFkZRURHHjh2jQ4cO1K5dGx8fH/r27cuyZcs4d+7cDcXs6OhISkoKKSkp7NmzhylTpjBo0CD+/e9/G2127dpF586dqVWrFo6OjkbS7I/PBdC0aVOL85ycHKKioqhfvz4uLi6YzWYOHjx4Rb+/MnXqVJydnY3Dy8vrhvqLiIiIiIiI3GmUlLrL2dra0qFDB0aPHs3WrVuJiIhg7NixAFhZXfrfo7i42GhfUFBw3fFmzpzJ7NmzGTlyJJs3byYlJYWwsDDy8/ONNqGhoSQlJbF3714qV65MvXr1CA0NJSEhgcTERCPhA5eSOgMHDjSSRikpKezdu5cjR45w33334ejoyO7du1m+fDnVq1dnzJgxNGrUiDNnzpT4HVhZWeHr64uvry+BgYGMGDGC0NBQpk+fDkBubi5hYWE4OTmxbNkyduzYweeffw5g8VwADg4OFudRUVF8/vnnTJkyhS1btpCSkkJAQMAV/f5KdHQ0WVlZxnH8+PEb6i8iIiIiIiJyp9HyPbHg7+/P6tWrAfDw8AAgIyPDWBL3x03PryY5OZkuXboYG5UXFRVx+PBh/P39jTaX95V6++23jQRUaGgo06ZN4/Tp07zyyitG2+DgYA4cOICvr+8156xUqRLt27enffv2jB07FhcXFzZt2sTjjz9+w89/mbW1NefPnwfghx9+IDMzk2nTphkVSjt37izROMnJyURERNCtWzfgUpItLS3Nok2VKlWMjd+vxcbGBhsbmxt8ChEREREREZE7lyql7lKZmZm0a9eOjz76iH379nHs2DE++eQTZsyYQZcuXQCws7PjgQceMDbuTkxMZNSoUdcd18/Pj2+++YatW7dy8OBBBg4cyIkTJyzauLq6EhgYyLJly4wNzdu0acPu3bs5fPiwRaXUyJEj2bp1K0OHDiUlJYUjR47wxRdfGBudr127ljlz5pCSksJPP/3EkiVLKCoqom7duiV+F8XFxfz666/8+uuvHDt2jAULFrBhwwbjPdSqVYsqVarw7rvv8uOPP7JmzRomTpxYorH9/PyIi4szKrx69+5NUVGRRRtvb2/+85//8Msvv/Dbb7+VOG4RERERERGR8kxJqbuU2WymRYsWvP3227Rp04aGDRsyevRo+vfvz9y5c412ixcv5uLFizRp0oTIyEgmTZp03XFHjRpFcHAwYWFhhIaG4unpSdeuXa9oFxISQmFhoZGUcnNzw9/fH09PT4uEUmBgIImJiRw+fJjWrVvTuHFjxowZQ40aNQBwcXEhLi6Odu3aUb9+febPn8/y5ctp0KBBid9FdnY21atXp3r16tSvX5+33nqLCRMm8MYbbwCXKsZiYmL45JNP8Pf3Z9q0abz55pslGnvWrFm4urrSsmVLOnfuTFhYmMVX/eDS5uhpaWncd999RnWaiIiIiIiISEVnKv7jhkEiUi5kZ2fj7OzMuAVHsLVzLOtwypWRT1cr6xBEREREREQqtMu/WbOysnBycrpmO1VKiYiIiIiIiIhIqVNSSkRERERERERESp2+vidSjg1/8p7rlkKKiIiIiIiI3KlUKSUiIiIiIiIiIqVOSSkRERERERERESl1SkqJiIiIiIiIiEip055SIuXY1A9/xtbOsazDKDfGDvAq6xBERERERETk/6hSSkRERERERERESp2SUiIiIiIiIiIiUuqUlLpLxcTE4OLiYpyPGzeOoKCgMotHRERERERERO4uSkqVQxEREXTt2tXi2qeffoqtrS1vvfXWTY0ZFRVFfHz8bYju1oWGhhIZGVkqc8XExGAymYzDbDbTpEkT4uLiSmV+AG9vb955551Sm09ERERERETkTqCkVAWwaNEi+vTpw/vvv88rr7xyU2OYzWbc3d1vc2Tlg5OTExkZGWRkZLBnzx7CwsLo2bMnhw4duukxi4uLuXjx4m2MUkRERERERKRiUVKqnJsxYwYvvfQSK1as4LnnnjOuz5o1i4CAABwcHPDy8mLIkCHk5ORcc5w/L9+7XI01ZcoUqlWrhouLCxMmTODixYv885//xM3NjXvvvZcPP/zQYpyRI0dy//33Y29vj4+PD6NHj6agoOCKeZYuXYq3tzfOzs489dRTnD171pg3MTGR2bNnG9VLaWlpFBYW8vzzz1OnTh3s7OyoW7cus2fPtpj7csxvvvkm1atXx93dnRdffNFi/qsxmUx4enri6emJn58fkyZNwsrKin379hltli5dStOmTXF0dMTT05PevXtz8uRJ435CQgImk4mvvvqKJk2aYGNjQ1JSEqmpqXTp0oVq1aphNptp1qwZGzduNPqFhoby008/MXz4cON5RURERERERO4GSkqVYyNHjmTixImsXbuWbt26WdyzsrJizpw5fP/998TGxrJp0yZeffXVGxp/06ZN/O9//+M///kPs2bNYuzYsXTq1AlXV1e2bdvGoEGDGDhwID///LPRx9HRkZiYGA4cOMDs2bNZuHAhb7/9tsW4qamprF69mrVr17J27VoSExOZNm0aALNnz+bBBx+kf//+RvWSl5cXRUVF3HvvvXzyySccOHCAMWPG8Prrr7Nq1SqLsTdv3kxqaiqbN28mNjaWmJgYYmJiSvzMhYWFxMbGAhAcHGxcLygoYOLEiezdu5fVq1eTlpZGRETEFf1fe+01pk2bxsGDBwkMDCQnJ4dHH32U+Ph49uzZQ3h4OJ07dyY9PR2AuLg47r33XiZMmGA879Xk5eWRnZ1tcYiIiIiIiIiUZ5XKOgC5OV999RVffPEF8fHxtGvX7or7f9yTydvbm0mTJjFo0CDmzZtX4jnc3NyYM2cOVlZW1K1blxkzZnDu3Dlef/11AKKjo5k2bRpJSUk89dRTAIwaNcpi3qioKFasWGGRECsqKiImJgZHR0cA+vbtS3x8PJMnT8bZ2ZkqVapgb2+Pp6en0cfa2prx48cb53Xq1OHbb79l1apV9OzZ07ju6urK3Llzsba2pl69enTs2JH4+Hj69+9/zefMysrCbDYDcP78eSpXrsyCBQu47777jDb9+vUz/vbx8WHOnDk0a9aMnJwcoy/AhAkT6NChg8U7bNSokXE+ceJEPv/8c9asWcPQoUNxc3PD2traqMC6lqlTp1o8v4iIiIiIiEh5p6RUORUYGMhvv/3G2LFjad68uUViBGDjxo1MnTqVH374gezsbC5evMiFCxc4d+4c9vb2JZqjQYMGWFn9/2K6atWq0bBhQ+Pc2toad3d3i2VsK1euZM6cOaSmppKTk8PFixdxcnKyGNfb29tISAFUr17dYoxree+991i8eDHp6emcP3+e/Pz8K74Y2KBBA6ytrS3G/u677647rqOjI7t37wbg3LlzbNy4kUGDBuHu7k7nzp0B2LVrF+PGjWPv3r2cPn2aoqIiANLT0/H39zfGatq0qcXYOTk5jBs3jnXr1pGRkcHFixc5f/68USlVUtHR0YwYMcI4z87OxsvL64bGEBEREREREbmTaPleOVWzZk0SEhL45ZdfCA8PN/ZkAkhLS6NTp04EBgby2WefsWvXLt577z0A8vPzSzxH5cqVLc5NJtNVr11O0Hz77bf06dOHRx99lLVr17Jnzx7eeOONK+a83hjXsmLFCqKionj++ef5+uuvSUlJ4bnnnrstY1tZWeHr64uvry+BgYGMGDGC0NBQpk+fDkBubi5hYWE4OTmxbNkyduzYweeffw5c+T4dHBwszqOiovj888+ZMmUKW7ZsISUlhYCAgBv67wBgY2ODk5OTxSEiIiIiIiJSnqlSqhyrXbs2iYmJtG3blvDwcNavX4+joyO7du2iqKiIt956y6h0+vPeS3+HrVu3Urt2bd544w3j2k8//XTD41SpUoXCwkKLa8nJybRs2ZIhQ4YY11JTU28+2L9gbW3N+fPnAfjhhx/IzMxk2rRpRnXSzp07SzROcnIyERERxp5fOTk5pKWlWbS52vOKiIiIiIiIVHSqlCrnvLy8SEhI4OT/a+/O46qq9v+Pv46oTAdQEUWcwAGSAAEHUjOHNCw1p9TMnFLTzIyUQm6OiaEZXuecxbyWQ6kNlpQkWmgp5ElLUy9J2BUluQqiV0Tg94dfz8+TQ2DKEXo/H4/9eLD3Xmuv9z6e7j18WHudjAxCQ0PJzs6mQYMG5OXlMX/+fH755RfWrFnD4sWL73mWhg0bkpaWxrp160hJSWHevHnmGUXF4enpyXfffUdqaipnzpyhoKCAhg0bkpSURFxcHEePHmXixIns27fvruQuLCzk1KlTnDp1iuPHj7N06VLi4uLo1q0bAHXq1KFixYrm1/Pjjz9m2rRpRbp2w4YN2bRpEyaTiR9++IFnnnnmhplbnp6e7Nq1i//85z+cOXPmrtyTiIiIiIiIyP1ORakyoFatWiQkJHDmzBlCQ0Px8vJi9uzZzJw5Ez8/P9auXUt0dPQ9z/Hkk0/yyiuvMHr0aAIDA9m9ezcTJ04s9nXCw8OxsbHB19cXNzc30tLSGDFiBD179qRv376EhISQmZlpMWvqr8jOzqZGjRrUqFGDRo0aERMTwxtvvGGe8eXm5kZsbCwbN27E19eXGTNm8Pbbbxfp2rNnz6Zy5cq0bNmSrl27EhoaavGtfnB1cfTU1FTq16+Pm5vbXbknERERERERkfudobCwsNDaIUSkeLKzs3FxcWH8nJ+ws3f68w4CwOTntTi8iIiIiIjIvXbtd9asrKzbromsmVIiIiIiIiIiIlLitNC5SCkWOaSWvolPRERERERESiXNlBIRERERERERkRKnopSIiIiIiIiIiJQ4FaVERERERERERKTEaU0pkVJs8qJfsLXTt+/dzoyw+taOICIiIiIiIjehmVIiIiIiIiIiIlLiVJQSEREREREREZESp6KUCJCamorBYMBkMlk7ioiIiIiIiMjfgopSpcDvv//OCy+8QJ06dbC1tcXd3Z3Q0FASExOtHe2+KeYsW7aMxo0bYzQaqVSpEkFBQURHR9/TMQcPHkz37t3v6RgiIiIiIiIiZZUWOi8FevXqxeXLl1m9ejX16tXj9OnTxMfHk5mZae1od1VeXh4VKlQodr+VK1cSFhbGvHnzaNOmDbm5uRw4cIAff/zxHqQUERERERERkbtBM6Xuc+fOnePrr79m5syZtGvXjrp169K8eXMiIyN58skngZvPVjp37hwGg4GEhAQAEhISMBgMxMXFERQUhL29Pe3btycjI4PPP/+cRo0a4ezszDPPPMPFixfN19m2bRsPP/wwlSpVwtXVlS5dupCSkmI+7+XlBUBQUBAGg4G2bduazy1fvpxGjRphZ2fHAw88wKJFi8znrmVev349bdq0wc7OjrVr15KZmUm/fv2oWbMmDg4O+Pv78/7779/2Nfr444/p06cPQ4cOpUGDBjz44IP069eP6dOnW7S7XZ4/ys/PZ+jQoXh5eWFvb4+Pjw9z5841n58yZQqrV6/mo48+wmAwWLzWEREReHt74+DgQL169Zg4cSJ5eXkWfQMDA1mzZg2enp64uLjw9NNPc/78+dvep4iIiIiIiEhZoplS9zmj0YjRaGTLli089NBD2Nra/qXrTZkyhQULFuDg4ECfPn3o06cPtra2vPfee+Tk5NCjRw/mz59PREQEABcuXGDs2LEEBASQk5PDpEmT6NGjByaTiXLlyrF3716aN2/O9u3befDBB6lYsSIAa9euZdKkSSxYsICgoCD279/P8OHDcXR0ZNCgQeY848ePJyYmhqCgIOzs7Lh06RJNmjQhIiICZ2dntm7dyoABA6hfvz7Nmze/6T25u7uzc+dOfv31V+rWrXvTNkXNc01BQQG1atVi48aNuLq6snv3bp5//nlq1KhBnz59CA8P5/Dhw2RnZ7Nq1SoAqlSpAoCTkxOxsbF4eHhw8OBBhg8fjpOTE6+99pr5+ikpKWzZsoVPP/2Us2fP0qdPH2bMmHFDIe2a3NxccnNzzfvZ2dm3/DcWERERERERKQ1UlLrPlS9fntjYWIYPH87ixYsJDg6mTZs2PP300wQEBBT7elFRUbRq1QqAoUOHEhkZSUpKCvXq1QPgqaeeYseOHeaiVK9evSz6r1y5Ejc3Nw4dOoSfnx9ubm4AuLq64u7ubm43efJkYmJi6NmzJ3B1RtWhQ4dYsmSJRREoLCzM3Oaa8PBw888vvfQScXFxbNiw4ZZFqcmTJ9OzZ088PT3x9vamRYsWPPHEEzz11FOUK1euWHmuqVChAlOnTjXve3l5sWfPHjZs2ECfPn0wGo3Y29uTm5trcd8AEyZMMP/s6elJeHg469atsyhKFRQUEBsbi5OTEwADBgwgPj7+lkWp6OhoizwiIiIiIiIipZ0e3ysFevXqxcmTJ/n444/p1KkTCQkJBAcHExsbW+xrXV/Iql69uvkRs+uPZWRkmPePHTtGv379qFevHs7Oznh6egKQlpZ2yzEuXLhASkoKQ4cONc/0MhqNREVFWTz6B9C0aVOL/fz8fKZNm4a/vz9VqlTBaDQSFxd32/Fq1KjBnj17OHjwIC+//DJXrlxh0KBBdOrUiYKCgmLlud7ChQtp0qQJbm5uGI1Gli5detsc16xfv55WrVrh7u6O0WhkwoQJN/Tz9PQ0F6Su3cP1r/sfRUZGkpWVZd5OnDjxpzlERERERERE7meaKVVK2NnZ0bFjRzp27MjEiRMZNmwYkydPZvDgwebZQIWFheb2169hdL3rFxI3GAw3LCxuMBgoKCgw73ft2pW6deuybNkyPDw8KCgowM/Pj8uXL98ya05ODnD1G/FCQkIsztnY2FjsOzo6WuzPmjWLuXPnMmfOHPz9/XF0dCQsLOy2413j5+eHn58fo0aNYuTIkbRu3ZqdO3fi6+tb5DzXrFu3jvDwcGJiYmjRogVOTk7MmjWL77777rYZ9uzZQ//+/Zk6dSqhoaG4uLiwbt06YmJiLNr92ev+R7a2tn/50U0RERERERGR+4mKUqWUr68vW7ZsATA/Qpeenk5QUBCAxaLndyozM5MjR46wbNkyWrduDcA333xj0ebaGlL5+fnmY9WrV8fDw4NffvmF/v37F2vMxMREunXrxrPPPgtcfczt6NGj5sJSUV1rf+HChTvKk5iYSMuWLRk1apT52B9nVVWsWNHivgF2795N3bp1ef31183Hfv3112JlFxEREREREfk7UFHqPpeZmUnv3r157rnnCAgIwMnJiaSkJN566y26desGgL29PQ899BAzZszAy8uLjIwMi3WN7lTlypVxdXVl6dKl1KhRg7S0NMaPH2/Rplq1atjb27Nt2zZq1aqFnZ0dLi4uTJ06lTFjxuDi4kKnTp3Izc0lKSmJs2fPMnbs2FuO2bBhQz744AN2795N5cqVmT17NqdPn75tUeqFF17Aw8OD9u3bU6tWLdLT04mKisLNzY0WLVoAFDtPw4YNeffdd4mLi8PLy4s1a9awb98+87cNwtVH8OLi4jhy5Aiurq64uLjQsGFD0tLSWLduHc2aNWPr1q1s3ry5uC+9iIiIiIiISJmnNaXuc0ajkZCQEP75z3/yyCOP4Ofnx8SJExk+fDgLy20b1wAALUFJREFUFiwwt1u5ciVXrlyhSZMmhIWFERUV9ZfHLleuHOvWrSM5ORk/Pz9eeeUVZs2aZdGmfPnyzJs3jyVLluDh4WEulA0bNozly5ezatUq/P39adOmDbGxsRZFnZuZMGECwcHBhIaG0rZtW9zd3enevftt+3To0IFvv/2W3r174+3tTa9evbCzsyM+Ph5XV9c7yjNixAh69uxJ3759CQkJITMz02LWFMDw4cPx8fGhadOmuLm5kZiYyJNPPskrr7zC6NGjCQwMZPfu3UycOPG2+UVERERERET+jgyF1y9EJCKlQnZ2Ni4uLoRF78fWzunPO/yNzQirb+0IIiIiIiIifyvXfmfNysrC2dn5lu00U0pEREREREREREqc1pQSKcWmjqp326qziIiIiIiIyP1KM6VERERERERERKTEqSglIiIiIiIiIiIlTkUpEREREREREREpcVpTSqQUe+3tn7G1M1o7xn1r7j98rR1BREREREREbkEzpUREREREREREpMSpKCUiIiIiIiIiIiVORSkRERERERERESlxKkqVYb///jsvvPACderUwdbWFnd3d0JDQ0lMTLR2NFJTUzEYDJhMJqtliI2NpVKlSjc9ZzAY2LJlCwAJCQkYDAbOnTtXYtlEREREREREyjotdF6G9erVi8uXL7N69Wrq1avH6dOniY+PJzMz09rR7qq8vDwqVKhg7RhFUpqyioiIiIiIiNxLmilVRp07d46vv/6amTNn0q5dO+rWrUvz5s2JjIzkySefBG4+W+ncuXMYDAYSEhKA/z9LKC4ujqCgIOzt7Wnfvj0ZGRl8/vnnNGrUCGdnZ5555hkuXrxovs62bdt4+OGHqVSpEq6urnTp0oWUlBTzeS8vLwCCgoIwGAy0bdvWfG758uU0atQIOzs7HnjgARYtWmQ+dy3z+vXradOmDXZ2dqxdu5bMzEz69etHzZo1cXBwwN/fn/fff/8vv46pqam0a9cOgMqVK2MwGBg8eHCR7rGks4qIiIiIiIiUJipKlVFGoxGj0ciWLVvIzc39y9ebMmUKCxYsYPfu3Zw4cYI+ffowZ84c3nvvPbZu3coXX3zB/Pnzze0vXLjA2LFjSUpKIj4+nnLlytGjRw8KCgoA2Lt3LwDbt28nPT2dTZs2AbB27VomTZrE9OnTOXz4MG+++SYTJ05k9erVFnnGjx/Pyy+/zOHDhwkNDeXSpUs0adKErVu38uOPP/L8888zYMAA8zh3qnbt2nz44YcAHDlyhPT0dObOnVuke7ybWXNzc8nOzrbYREREREREREozPb5XRpUvX57Y2FiGDx/O4sWLCQ4Opk2bNjz99NMEBAQU+3pRUVG0atUKgKFDhxIZGUlKSgr16tUD4KmnnmLHjh1EREQAVx8dvN7KlStxc3Pj0KFD+Pn54ebmBoCrqyvu7u7mdpMnTyYmJoaePXsCV2dUHTp0iCVLljBo0CBzu7CwMHOba8LDw80/v/TSS8TFxbFhwwaaN29e7Pu9xsbGhipVqgBQrVo1izWo/uwe72bW6Ohopk6desf3ISIiIiIiInK/0UypMqxXr16cPHmSjz/+mE6dOpGQkEBwcDCxsbHFvtb1hazq1avj4OBgLkhdO5aRkWHeP3bsGP369aNevXo4Ozvj6ekJQFpa2i3HuHDhAikpKQwdOtQ808toNBIVFWXxWBxA06ZNLfbz8/OZNm0a/v7+VKlSBaPRSFxc3G3H+6uKeo93I2tkZCRZWVnm7cSJE3f9fkRERERERERKkmZKlXF2dnZ07NiRjh07MnHiRIYNG8bkyZMZPHgw5cpdrUkWFhaa2+fl5d30Otcvzm0wGG5YrNtgMFg8tta1a1fq1q3LsmXL8PDwoKCgAD8/Py5fvnzLrDk5OQAsW7aMkJAQi3M2NjYW+46Ojhb7s2bNYu7cucyZMwd/f38cHR0JCwu77XjOzs5cuHCBgoIC82sBmL9lz8XF5ZZ9i3OPdyOrra0ttra2t80jIiIiIiIiUpqoKPU34+vry5YtWwDMj9Clp6cTFBQEYLHo+Z3KzMzkyJEjLFu2jNatWwPwzTffWLSpWLEicHXW0DXVq1fHw8ODX375hf79+xdrzMTERLp168azzz4LQEFBAUePHsXX1/eWfXx8fLhy5Qomk4ng4GDz8e+//x4Ab2/vW2Ytyj3ezawiIiIiIiIiZY2KUmVUZmYmvXv35rnnniMgIAAnJyeSkpJ466236NatGwD29vY89NBDzJgxAy8vLzIyMpgwYcJfHrty5cq4urqydOlSatSoQVpaGuPHj7doU61aNezt7dm2bRu1atXCzs4OFxcXpk6dypgxY3BxcaFTp07k5uaSlJTE2bNnGTt27C3HbNiwIR988AG7d++mcuXKzJ49m9OnT9+20PPggw/y2GOP8dxzzxETE0O9evU4cuQIYWFh9O3bl5o1awJQt25dDAYDn376KU888QT29vZFuse7mVVERERERESkrNGaUmWU0WgkJCSEf/7znzzyyCP4+fkxceJEhg8fzoIFC8ztVq5cyZUrV2jSpAlhYWFERUX95bHLlSvHunXrSE5Oxs/Pj1deeYVZs2ZZtClfvjzz5s1jyZIleHh4mAtlw4YNY/ny5axatQp/f3/atGlDbGwsXl5etx1zwoQJBAcHExoaStu2bXF3d6d79+5/mnX9+vW0adOGESNG8OCDDzJmzBi6devG8uXLzW1q1qzJ1KlTGT9+PNWrV2f06NFFuse7nVVERERERESkLDEUXr+gkIiUCtnZ2bi4uDBi4nfY2hmtHee+Nfcfmn0mIiIiIiJS0q79zpqVlYWzs/Mt22mmlIiIiIiIiIiIlDitKSVSir0V/sBtq84iIiIiIiIi9yvNlBIRERERERERkRKnopSIiIiIiIiIiJQ4FaVERERERERERKTEaU0pkVJszBsmKtrq2/eWTg+2dgQREREREREpJs2UEhERERERERGREqeilIiIiIiIiIiIlDgVpURKUGxsLJUqVbJ2DBERERERERGrU1FK5Cb27NmDjY0NnTt3tnYUERERERERkTJJRSmRm1ixYgUvvfQSu3bt4uTJk9aOIyIiIiIiIlLmqCgl8gc5OTmsX7+eF154gc6dOxMbG2tx/pNPPqFZs2bY2dlRtWpVevToYT6Xm5tLeHg4NWvWxNHRkZCQEBISEm4YIy4ujkaNGmE0GunUqRPp6en3+K5ERERERERE7i8qSon8wYYNG3jggQfw8fHh2WefZeXKlRQWFgKwdetWevTowRNPPMH+/fuJj4+nefPm5r6jR49mz549rFu3jgMHDtC7d286derEsWPHzG0uXrzI22+/zZo1a9i1axdpaWmEh4ffNlNubi7Z2dkWm4iIiIiIiEhpVt7aAUTuNytWrODZZ58FoFOnTmRlZbFz507atm3L9OnTefrpp5k6daq5fePGjQFIS0tj1apVpKWl4eHhAUB4eDjbtm1j1apVvPnmmwDk5eWxePFi6tevD1wtZL3xxhu3zRQdHW0xpoiIiIiIiEhpp5lSItc5cuQIe/fupV+/fgCUL1+evn37smLFCgBMJhOPPvroTfsePHiQ/Px8vL29MRqN5m3nzp2kpKSY2zk4OJgLUgA1atQgIyPjtrkiIyPJysoybydOnPirtyoiIiIiIiJiVZopJXKdFStWcOXKFfNMJ4DCwkJsbW1ZsGAB9vb2t+ybk5ODjY0NycnJ2NjYWJwzGo3mnytUqGBxzmAwmB8PvBVbW1tsbW2LcysiIiIiIiIi9zUVpUT+z5UrV3j33XeJiYnhscceszjXvXt33n//fQICAoiPj2fIkCE39A8KCiI/P5+MjAxat25dUrFFRERERERESiUVpUT+z6effsrZs2cZOnQoLi4uFud69erFihUrmDVrFo8++ij169fn6aef5sqVK3z22WdERETg7e1N//79GThwIDExMQQFBfH7778THx9PQEAAnTt3ttKdiYiIiIiIiNx/tKaUyP9ZsWIFHTp0uKEgBVeLUklJSVSpUoWNGzfy8ccfExgYSPv27dm7d6+53apVqxg4cCDjxo3Dx8eH7t27s2/fPurUqVOStyIiIiIiIiJy3zMU/tliNiJy38nOzsbFxYVB43ZS0db45x3KuKXTg60dQURERERERP7Ptd9Zs7KycHZ2vmU7zZQSEREREREREZESpzWlREqxeZMCb1t1FhEREREREblfaaaUiIiIiIiIiIiUOBWlRERERERERESkxKkoJSIiIiIiIiIiJU5rSomUYsMjvqWiraO1Y9wTa+a0snYEERERERERuYc0U0pEREREREREREqcilIiIiIiIiIiIlLiVJQSEREREREREZESp6KU3HcGDx5M9+7drR1DRERERERERO4hFaVERERERERERKTEqSglpcrs2bPx9/fH0dGR2rVrM2rUKHJycsznY2NjqVSpEp9++ik+Pj44ODjw1FNPcfHiRVavXo2npyeVK1dmzJgx5Ofnm/t5enoybdo0+vXrh6OjIzVr1mThwoXm86mpqRgMBkwmk/nYuXPnMBgMJCQkAJCQkIDBYCA+Pp6mTZvi4OBAy5YtOXLkiMU9REVFUa1aNZycnBg2bBjjx48nMDDwnrxeIiIiIiIiIvcrFaWkVClXrhzz5s3jp59+YvXq1Xz11Ve89tprFm0uXrzIvHnzWLduHdu2bSMhIYEePXrw2Wef8dlnn7FmzRqWLFnCBx98YNFv1qxZNG7cmP379zN+/Hhefvllvvzyy2JnfP3114mJiSEpKYny5cvz3HPPmc+tXbuW6dOnM3PmTJKTk6lTpw7vvPPOnb0YIiIiIiIiIqVYeWsHECmOsLAw88+enp5ERUUxcuRIFi1aZD6el5fHO++8Q/369QF46qmnWLNmDadPn8ZoNOLr60u7du3YsWMHffv2Nfdr1aoV48ePB8Db25vExET++c9/0rFjx2JlnD59Om3atAFg/PjxdO7cmUuXLmFnZ8f8+fMZOnQoQ4YMAWDSpEl88cUXFrO9biY3N5fc3FzzfnZ2drEyiYiIiIiIiNxvNFNKSpXt27fz6KOPUrNmTZycnBgwYACZmZlcvHjR3MbBwcFckAKoXr06np6eGI1Gi2MZGRkW127RosUN+4cPHy52xoCAAPPPNWrUADCPdeTIEZo3b27R/o/7NxMdHY2Li4t5q127drFziYiIiIiIiNxPVJSSUiM1NZUuXboQEBDAhx9+SHJysnndp8uXL5vbVahQwaKfwWC46bGCgoIij12u3NX/VAoLC83H8vLybtr2+rEMBgNAsca6mcjISLKysszbiRMn/tL1RERERERERKxNRSkpNZKTkykoKCAmJoaHHnoIb29vTp48edeu/+23396w36hRIwDc3NwASE9PN5+/ftHzovLx8WHfvn0Wx/64fzO2trY4OztbbCIiIiIiIiKlmdaUkvtSVlbWDUWfqlWrkpeXx/z58+natSuJiYksXrz4ro2ZmJjIW2+9Rffu3fnyyy/ZuHEjW7duBcDe3p6HHnqIGTNm4OXlRUZGBhMmTCj2GC+99BLDhw+nadOmtGzZkvXr13PgwAHq1at31+5DREREREREpDTQTCm5LyUkJBAUFGSxrVmzhtmzZzNz5kz8/PxYu3Yt0dHRd23McePGkZSURFBQEFFRUcyePZvQ0FDz+ZUrV3LlyhWaNGlCWFgYUVFRxR6jf//+REZGEh4eTnBwMMePH2fw4MHY2dndtfsQERERERERKQ0MhdcvkiPyN+Xp6UlYWJjFt/uVlI4dO+Lu7s6aNWuK3Cc7OxsXFxf6jIyjoq3jPUxnPWvmtLJ2BBEREREREbkD135nzcrKuu3yM3p8T6QEXbx4kcWLFxMaGoqNjQ3vv/8+27dv58svv7R2NBEREREREZESpaKUSAkyGAx89tlnTJ8+nUuXLuHj48OHH35Ihw4drB1NREREREREpETp8T2RUqioUyFFRERERERESlpRf2fVQuciIiIiIiIiIlLiVJQSEREREREREZESp6KUiIiIiIiIiIiUOC10LlKKDXzpKypUdLR2jLtm47KO1o4gIiIiIiIiJUQzpUREREREREREpMSpKCUiIiIiIiIiIiVORam7bPDgwRgMBmbMmGFxfMuWLRgMBiulgrZt22IwGG65tW3b1mrZrMnT09P8GtjY2ODh4cHQoUM5e/ZsiYwfGxtLpUqVSmQsERERERERkfuJilL3gJ2dHTNnziyxwkZRbNq0ifT0dNLT09m7dy8A27dvNx/btGmTlRPeucuXL/+l/m+88Qbp6emkpaWxdu1adu3axZgxY6yaSURERERERKSsU1HqHujQoQPu7u5ER0ffss2UKVMIDAy0ODZnzhw8PT3N+wkJCTRv3hxHR0cqVapEq1at+PXXXwFISUmhW7duVK9eHaPRSLNmzdi+ffstx6tSpQru7u64u7vj5uYGgKurq/nYoUOHaN26Nfb29tSuXZsxY8Zw4cIFc39PT0/efPNNnnvuOZycnKhTpw5Lly61GGP37t0EBgZiZ2dH06ZNzbPDTCaTuc3HH39Mw4YNsbOzo127dqxevRqDwcC5c+cAyMzMpF+/ftSsWRMHBwf8/f15//33LcZp27Yto0ePJiwsjKpVqxIaGgrA7Nmz8ff3x9HRkdq1azNq1ChycnJu+Zpc4+TkhLu7OzVr1qRdu3YMGjSI77//3nz+XmVKSEhgyJAhZGVlmWdrTZky5U/zioiIiIiIiJQFKkrdAzY2Nrz55pvMnz+f33777Y6uceXKFbp3706bNm04cOAAe/bs4fnnnzc/ApiTk8MTTzxBfHw8+/fvp1OnTnTt2pW0tLRij5WSkkKnTp3o1asXBw4cYP369XzzzTeMHj3aol1MTAxNmzZl//79jBo1ihdeeIEjR44AkJ2dTdeuXfH39+f7779n2rRpREREWPQ/fvw4Tz31FN27d+eHH35gxIgRvP766xZtLl26RJMmTdi6dSs//vgjzz//PAMGDDDP7rpm9erVVKxYkcTERBYvXgxAuXLlmDdvHj/99BOrV6/mq6++4rXXXivWa/Gf//yHTz75hJCQkHueqWXLlsyZMwdnZ2fzjLXw8PBi5RUREREREREprQyFhYWF1g5RlgwePJhz586xZcsWWrRoga+vLytWrGDLli306NGDay/3lClT2LJli8Usojlz5jBnzhxSU1P573//i6urKwkJCbRp06ZIY/v5+TFy5Mgbikl/lJqaipeXF/v37ycwMJBhw4ZhY2PDkiVLzG2++eYb2rRpw4ULF7Czs8PT05PWrVuzZs0aAAoLC3F3d2fq1KmMHDmSxYsXM2HCBH777Tfs7OwAWL58OcOHDzePM378eLZu3crBgwfN40yYMIHp06dz9uzZW66t1KVLFx544AHefvtt4OqspOzsbIvZTDfzwQcfMHLkSM6cOXPLNp6enqSnp1OhQgXy8/O5dOkSISEhbNu27bZrPd2tTLGxsYSFhZlnit1Kbm4uubm55v3s7Gxq165Nt4GbqVDR8bZ9S5ONyzpaO4KIiIiIiIj8RdnZ2bi4uJCVlYWzs/Mt22mm1D00c+ZMVq9ezeHDh4vdt0qVKgwePJjQ0FC6du3K3LlzSU9PN5/PyckhPDycRo0aUalSJYxGI4cPH76jmVI//PADsbGxGI1G8xYaGkpBQQHHjx83twsICDD/bDAYcHd3JyMjA4AjR44QEBBgLkgBNG/e3GKcI0eO0KxZM4tjf2yTn5/PtGnT8Pf3p0qVKhiNRuLi4m64ryZNmtxwH9u3b+fRRx+lZs2aODk5MWDAADIzM7l48eJt7//VV1/FZDJx4MAB4uPjAejcuTP5+flWy/RH0dHRuLi4mLfatWsXq7+IiIiIiIjI/UZFqXvokUceITQ0lMjIyBvOlStXjj9OUsvLy7PYX7VqFXv27KFly5asX78eb29vvv32WwDCw8PZvHkzb775Jl9//TUmkwl/f/87WmA7JyeHESNGYDKZzNsPP/zAsWPHqF+/vrldhQoVLPoZDAYKCgqKPd7tzJo1i7lz5xIREcGOHTswmUyEhobecF+Ojpazg1JTU+nSpQsBAQF8+OGHJCcns3DhQuDPFx2vWrUqDRo0oGHDhrRv3545c+awe/duduzYYbVMfxQZGUlWVpZ5O3HiRLH6i4iIiIiIiNxvyls7QFk3Y8YMAgMD8fHxsTju5ubGqVOnKCwsNK8Tdf2jfNcEBQURFBREZGQkLVq04L333uOhhx4iMTGRwYMH06NHD+BqYSk1NfWOMgYHB3Po0CEaNGhwR/0BfHx8+Ne//kVubi62trYA7Nu374Y2n332mcWxP7ZJTEykW7duPPvsswAUFBRw9OhRfH19bzt+cnIyBQUFxMTEUK7c1Vrrhg0b7uhebGxsAPjf//53zzNVrFjRPCPrdmxtbc2vq4iIiIiIiEhZoJlS95i/vz/9+/dn3rx5Fsfbtm3L77//zltvvUVKSgoLFy7k888/N58/fvw4kZGR7Nmzh19//ZUvvviCY8eO0ahRIwAaNmzIpk2bzLOannnmmTuetRQREcHu3bsZPXo0JpOJY8eO8dFHH/3p2lTXuzb+888/z+HDh4mLizOvt3St6DZixAh+/vlnIiIiOHr0KBs2bCA2NtaiTcOGDfnyyy/ZvXs3hw8fZsSIEZw+ffpPx2/QoAF5eXnMnz+fX375hTVr1pgXG/8z58+f59SpU6Snp7N3715effVV3NzcaNmy5T3P5OnpSU5ODvHx8Zw5c6bYj/WJiIiIiIiIlFYqSpWAN95444aCUaNGjVi0aBELFy6kcePG7N271+Kb1xwcHPj555/p1asX3t7ePP/887z44ouMGDECgNmzZ1O5cmVatmxJ165dCQ0NJTg4+I7yBQQEsHPnTo4ePUrr1q0JCgpi0qRJeHh4FPkazs7OfPLJJ5hMJgIDA3n99deZNGkSgHmdKS8vLz744AM2bdpEQEAA77zzjvnb967NApowYQLBwcGEhobStm1b3N3d6d69+5+O37hxY2bPns3MmTPx8/Nj7dq1REdHFyn7pEmTqFGjBh4eHnTp0gVHR0e++OILXF1d73mmli1bMnLkSPr27YubmxtvvfVWkTKLiIiIiIiIlHb69j25Z9auXcuQIUPIysrC3t7+pm2mT5/O4sWLtUZSMV37JgN9+56IiIiIiIjcb4r67XtaU0rumnfffZd69epRs2ZNfvjhByIiIujTp49FQWrRokU0a9YMV1dXEhMTmTVrVrEeExQRERERERGRskFFKblrTp06xaRJkzh16hQ1atSgd+/eTJ8+3aLNsWPHiIqK4r///S916tRh3LhxN/12QhEREREREREp2/T4nkgpVNSpkCIiIiIiIiIlTY/viZRh12rJ2dnZVk4iIiIiIiIiYuna76p/Ng9KRSmRUigzMxOA2rVrWzmJiIiIiIiIyM2dP38eFxeXW55XUUqkFKpSpQoAaWlpt/0PXOR+lp2dTe3atTlx4oQeQ5VSS+9jKQv0PpayQO9jKQvK0vu4sLCQ8+fP4+Hhcdt2KkqJlELlypUDwMXFpdT/j5WIs7Oz3sdS6ul9LGWB3sdSFuh9LGVBWXkfF2UCRbkSyCEiIiIiIiIiImJBRSkRERERERERESlxKkqJlEK2trZMnjwZW1tba0cRuWN6H0tZoPexlAV6H0tZoPexlAV/x/exofDPvp9PRERERERERETkLtNMKRERERERERERKXEqSomIiIiIiIiISIlTUUpEREREREREREqcilIipczChQvx9PTEzs6OkJAQ9u7da+1IIsWya9cuunbtioeHBwaDgS1btlg7kkixRUdH06xZM5ycnKhWrRrdu3fnyJEj1o4lUizvvPMOAQEBODs74+zsTIsWLfj888+tHUvkL5kxYwYGg4GwsDBrRxEpsilTpmAwGCy2Bx54wNqxSoSKUiKlyPr16xk7diyTJ0/m+++/p3HjxoSGhpKRkWHtaCJFduHCBRo3bszChQutHUXkju3cuZMXX3yRb7/9li+//JK8vDwee+wxLly4YO1oIkVWq1YtZsyYQXJyMklJSbRv355u3brx008/WTuayB3Zt28fS5YsISAgwNpRRIrtwQcfJD093bx988031o5UIvTteyKlSEhICM2aNWPBggUAFBQUULt2bV566SXGjx9v5XQixWcwGNi8eTPdu3e3dhSRv+T333+nWrVq7Ny5k0ceecTacUTuWJUqVZg1axZDhw61dhSRYsnJySE4OJhFixYRFRVFYGAgc+bMsXYskSKZMmUKW7ZswWQyWTtKidNMKZFS4vLlyyQnJ9OhQwfzsXLlytGhQwf27NljxWQiIpKVlQVc/YVepDTKz89n3bp1XLhwgRYtWlg7jkixvfjii3Tu3Nnis7JIaXLs2DE8PDyoV68e/fv3Jy0tzdqRSkR5awcQkaI5c+YM+fn5VK9e3eJ49erV+fnnn62USkRECgoKCAsLo1WrVvj5+Vk7jkixHDx4kBYtWnDp0iWMRiObN2/G19fX2rFEimXdunV8//337Nu3z9pRRO5ISEgIsbGx+Pj4kJ6eztSpU2ndujU//vgjTk5O1o53T6koJSIiIvIXvPjii/z4449/m7UfpGzx8fHBZDKRlZXFBx98wKBBg9i5c6cKU1JqnDhxgpdffpkvv/wSOzs7a8cRuSOPP/64+eeAgABCQkKoW7cuGzZsKPOPU6soJVJKVK1aFRsbG06fPm1x/PTp07i7u1splYjI39vo0aP59NNP2bVrF7Vq1bJ2HJFiq1ixIg0aNACgSZMm7Nu3j7lz57JkyRIrJxMpmuTkZDIyMggODjYfy8/PZ9euXSxYsIDc3FxsbGysmFCk+CpVqoS3tzf//ve/rR3lntOaUiKlRMWKFWnSpAnx8fHmYwUFBcTHx2vtBxGRElZYWMjo0aPZvHkzX331FV5eXtaOJHJXFBQUkJuba+0YIkX26KOPcvDgQUwmk3lr2rQp/fv3x2QyqSAlpVJOTg4pKSnUqFHD2lHuOc2UEilFxo4dy6BBg2jatCnNmzdnzpw5XLhwgSFDhlg7mkiR5eTkWPzV5/jx45hMJqpUqUKdOnWsmEyk6F588UXee+89PvroI5ycnDh16hQALi4u2NvbWzmdSNFERkby+OOPU6dOHc6fP897771HQkICcXFx1o4mUmROTk43rOfn6OiIq6ur1vmTUiM8PJyuXbtSt25dTp48yeTJk7GxsaFfv37WjnbPqSglUor07duX33//nUmTJnHq1CkCAwPZtm3bDYufi9zPkpKSaNeunXl/7NixAAwaNIjY2FgrpRIpnnfeeQeAtm3bWhxftWoVgwcPLvlAIncgIyODgQMHkp6ejouLCwEBAcTFxdGxY0drRxMR+Vv57bff6NevH5mZmbi5ufHwww/z7bff4ubmZu1o95yhsLCw0NohRERERERERETk70VrSomIiIiIiIiISIlTUUpEREREREREREqcilIiIiIiIiIiIlLiVJQSEREREREREZESp6KUiIiIiIiIiIiUOBWlRERERERERESkxKkoJSIiIiIiIiIiJU5FKRERERERERERKXEqSomIiIhIiTIYDGzZssXaMURERP62du3aRdeuXfHw8Lij/1+eMmUKBoPhhs3R0bFY11FRSkRERORv6mYfJq/fpkyZcsu+qampGAwGTCbTXc81ePBgunfvbnHsgw8+wM7OjpiYmLs+3t3g6elp8YE8ODiYjRs33vVxYmNjqVSpUrH6tG3blrCwsLueRURESq8LFy7QuHFjFi5ceEf9w8PDSU9Pt9h8fX3p3bt3sa6jopSIiIjI39T1HyTnzJmDs7OzxbHw8HBrRwRg+fLl9O/fn3feeYdx48ZZO84tvfHGG6Snp7N//36aNWtG37592b179x1d6/Lly3c5nYiIyP/3+OOPExUVRY8ePW56Pjc3l/DwcGrWrImjoyMhISEkJCSYzxuNRtzd3c3b6dOnOXToEEOHDi1WDhWlRERERP6mrv8w6eLigsFgMO9Xq1aN2bNnU6tWLWxtbQkMDGTbtm3mvl5eXgAEBQVhMBho27YtAPv27aNjx45UrVoVFxcX2rRpw/fff3/HGd966y1eeukl1q1bx5AhQ8zHZ8+ejb+/P46OjtSuXZtRo0aRk5NjPv/rr7/StWtXKleujKOjIw8++CCfffYZcPPZRlu2bMFgMJj3f/jhB9q1a4eTkxPOzs40adKEpKSk22Z1cnLC3d0db29vFi5ciL29PZ988gkAJ06coE+fPlSqVIkqVarQrVs3UlNTzX2vzQ6bPn06Hh4e+Pj4FOn1udmssrCwMPO/x+DBg9m5cydz5841z+RKTU0lPz+foUOH4uXlhb29PT4+PsydO7dIY4qISNk3evRo9uzZw7p16zhw4AC9e/emU6dOHDt27Kbtly9fjre3N61bty7WOCpKiYiIiMgN5s6dS0xMDG+//TYHDhwgNDSUJ5980vxhdO/evQBs376d9PR0Nm3aBMD58+cZNGgQ33zzDd9++y0NGzbkiSee4Pz588XOEBERwbRp0/j0009v+EtuuXLlmDdvHj/99BOrV6/mq6++4rXXXjOff/HFF8nNzWXXrl0cPHiQmTNnYjQaizx2//79qVWrFvv27SM5OZnx48dToUKFIvcvX748FSpU4PLly+Tl5REaGoqTkxNff/01iYmJGI1GOnXqZDEjKj4+niNHjvDll1/y6aefFnms25k7dy4tWrRg+PDh5hlwtWvXpqCggFq1arFx40YOHTrEpEmT+Mc//sGGDRvuyrgiIlJ6paWlsWrVKjZu3Ejr1q2pX78+4eHhPPzww6xateqG9pcuXWLt2rXFniUFUP5uBBYRERGRsuXtt98mIiKCp59+GoCZM2eyY8cO5syZw8KFC3FzcwPA1dUVd3d3c7/27dtbXGfp0qVUqlSJnTt30qVLlyKP//nnn/PRRx8RHx9/wzUBizWSPD09iYqKYuTIkSxatAi4+oG6V69e+Pv7A1CvXr0ij32t/6uvvsoDDzwAQMOGDYvc9/Lly8TExJCVlUX79u1Zv349BQUFLF++3Dwba9WqVVSqVImEhAQee+wxABwdHVm+fDkVK1YsVtbbcXFxoWLFijg4OFj8O9nY2DB16lTzvpeXF3v27GHDhg306dPnro0vIiKlz8GDB8nPz8fb29vieG5uLq6urje037x5s/mPUsWlopSIiIiIWMjOzubkyZO0atXK4nirVq344Ycfbtv39OnTTJgwgYSEBDIyMsjPz+fixYukpaUVK0NAQABnzpxh8uTJNG/e/IZZTtu3byc6Opqff/6Z7Oxsrly5wqVLl7h48SIODg6MGTOGF154gS+++IIOHTrQq1cvAgICijz+2LFjGTZsGGvWrKFDhw707t2b+vXr37ZPREQEEyZM4NKlSxiNRmbMmEHnzp159dVX+fe//42Tk5NF+0uXLpGSkmLe9/f3v6sFqT+zcOFCVq5cSVpaGv/73/+4fPkygYGBJTa+iIjcn3JycrCxsSE5ORkbGxuLczebdbx8+XK6dOlC9erViz2WHt8TERERkbtm0KBBmEwm5s6dy+7duzGZTLi6uhZ74e6aNWuSkJDAf/7zHzp16mTx+F9qaipdunQhICCADz/8kOTkZPO3B10bZ9iwYfzyyy8MGDCAgwcP0rRpU+bPnw9cffSvsLDQYry8vDyL/SlTpvDTTz/RuXNnvvrqK3x9fdm8efNtM7/66quYTCZ+++03zp49S0REBHD1w32TJk0wmUwW29GjR3nmmWfM/Yv7NdpFvZebWbduHeHh4QwdOpQvvvgCk8nEkCFDtMC6iIgQFBREfn4+GRkZNGjQwGK7ftYtwPHjx9mxY8cdPboHKkqJiIiIyB84Ozvj4eFBYmKixfHExER8fX0BzDN68vPzb2gzZswYnnjiCR588EFsbW05c+bMHeWoW7cuO3fu5NSpUxaFqeTkZAoKCoiJieGhhx7C29ubkydP3tC/du3ajBw5kk2bNjFu3DiWLVsGgJubG+fPn+fChQvmtiaT6Yb+3t7evPLKK3zxxRf07NnzputoXK9q1armD+zXL5oeHBzMsWPHqFat2g0f7l1cXO7kpTFzc3MjPT3d4tgf76VixYo3/Xdq2bIlo0aNIigoiAYNGljM2hIRkbItJyfH/EcSuFpcMplMpKWl4e3tTf/+/Rk4cCCbNm3i+PHj7N27l+joaLZu3WpxnZUrV1KjRg0ef/zxO8qhopSIiIiI3ODVV19l5syZrF+/niNHjjB+/HhMJhMvv/wyANWqVcPe3p5t27Zx+vRpsrKygKtrL61Zs4bDhw/z3Xff0b9/f+zt7e84R+3atc2PAoaGhpKdnU2DBg3Iy8tj/vz5/PLLL6xZs4bFixdb9AsLCyMuLo7jx4/z/fffs2PHDho1agRASEgIDg4O/OMf/yAlJYX33nuP2NhYc9///e9/jB49moSEBH799VcSExPZt2+fuX9x9e/fn6pVq9KtWze+/vprjh8/TkJCAmPGjOG3336749cGrq7hlZSUxLvvvsuxY8eYPHkyP/74o0UbT09PvvvuO1JTUzlz5gwFBQU0bNiQpKQk4uLiOHr0KBMnTmTfvn1/KYuIiJQeSUlJBAUFERQUBFx9bD0oKIhJkyYBV9c+HDhwIOPGjcPHx4fu3buzb98+6tSpY75GQUEBsbGxDB48+IbH/IpKRSkRERERucGYMWMYO3Ys48aNw9/fn23btvHxxx+bF/wuX7488+bNY8mSJXh4eNCtWzcAVqxYwdmzZwkODmbAgAGMGTOGatWq/aUstWrVIiEhgTNnzhAaGoqXlxezZ89m5syZ+Pn5sXbtWqKjoy365Ofn8+KLL9KoUSM6deqEt7e3eRH0KlWq8K9//YvPPvsMf39/3n//faZMmWLua2NjQ2ZmJgMHDsTb25s+ffrw+OOPWywMXhwODg7s2rWLOnXq0LNnTxo1asTQoUO5dOkSzs7OxbpWQUEB5cv//2VhQ0NDmThxIq+99hrNmjXj/PnzDBw40KJPeHg4NjY2+Pr64ubmRlpaGiNGjKBnz5707duXkJAQMjMzGTVq1B3dn4iIlD5t27alsLDwhu3aH2kqVKjA1KlTOX78OJcvX+bkyZNs2rTJ/AUicPUR8hMnTjB9+vQ7zmEo/OND6CIiIiIicl+aMWMG//rXv26YDSUiIlIa6dv3RERERETucxcvXuTnn39m1apVd7xuh4iIyP1Gj++JiIiIiNznli5dSocOHWjcuLF5vQ8REZHSTo/viYiIiIiIiIhIidNMKRERERERERERKXEqSomIiIiIiIiISIlTUUpEREREREREREqcilIiIiIiIiIiIlLiVJQSEREREREREZESp6KUiIiIiIiIiIiUOBWlRERERERERESkxKkoJSIiIiIiIiIiJU5FKRERERERERERKXH/D8FYuOTs+xIaAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import numpy as np\n", | |
"# Data angka yang diberikan\n", | |
"numbers = [\n", | |
" 50322568.94, 28967342.86, 25218935.15, 23709680.90, 19288396.45, 15712745.83, 15053306.69,\n", | |
" 11952779.75, 11293022.45, 9923893.86, 9814756.84, 9725047.98, 9576255.38, 9382065.69, 8930959.83,\n", | |
" 8219873.89, 8185757.91, 7508688.80, 7099084.05, 6414398.89, 6175164.26, 5926839.78, 5713937.68,\n", | |
" 5185783.88, 5134507.31, 4897769.52, 4645914.12, 4494424.49, 4400704.99, 4315719.11, 4196273.89,\n", | |
" 4094969.80, 3804307.45, 3176460.47, 3014549.91\n", | |
"]\n", | |
"\n", | |
"# Temukan nilai kuartil pertama (Q1), kuartil kedua (Q2), dan kuartil ketiga (Q3)\n", | |
"Q1 = np.percentile(numbers, 25)\n", | |
"Q2 = np.percentile(numbers, 50)\n", | |
"Q3 = np.percentile(numbers, 75)\n", | |
"\n", | |
"# Fungsi untuk membagi angka menjadi tiga kategori\n", | |
"def categorize_cases(value):\n", | |
" if value >= Q3:\n", | |
" return 'Tinggi'\n", | |
" elif Q2 <= value < Q3:\n", | |
" return 'Sedang'\n", | |
" else:\n", | |
" return 'Rendah'\n" | |
], | |
"metadata": { | |
"id": "rX4G4EpgBZJw" | |
}, | |
"id": "rX4G4EpgBZJw", | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Menerapkan Machine Learning untuk Klasifikasi Lokasi berdasarkan Total Kasus per Juta (SUPERVISED)" | |
], | |
"metadata": { | |
"id": "LknDSO7W78aI" | |
}, | |
"id": "LknDSO7W78aI" | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import pandas as pd\n", | |
"from sklearn.model_selection import train_test_split\n", | |
"from sklearn.tree import DecisionTreeClassifier\n", | |
"from sklearn.ensemble import RandomForestClassifier\n", | |
"from sklearn.svm import SVC\n", | |
"from sklearn.metrics import classification_report, accuracy_score\n", | |
"\n", | |
"\n", | |
"df_selected['Kategori Kasus'] = df_selected['Total Kasus per Juta'].apply(categorize_cases)\n", | |
"\n", | |
"# Pilih fitur dan label yang diambil sesuai kebutuhan\n", | |
"X = df_selected[['Total Kasus per Juta']]\n", | |
"y = df_selected['Kategori Kasus'] # Kategori kasus sudah dibuat sebelumnya\n", | |
"\n", | |
"# Split data menjadi data latih dan data uji\n", | |
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", | |
"\n", | |
"# Decision Tree\n", | |
"dt_model = DecisionTreeClassifier()\n", | |
"dt_model.fit(X_train, y_train)\n", | |
"dt_predictions = dt_model.predict(X_test)\n", | |
"\n", | |
"# Random Forest\n", | |
"rf_model = RandomForestClassifier()\n", | |
"rf_model.fit(X_train, y_train)\n", | |
"rf_predictions = rf_model.predict(X_test)\n", | |
"\n", | |
"\n", | |
"# Evaluasi Model\n", | |
"\n", | |
"# Decision Tree\n", | |
"print(\"Hasil Laporan Decision Tree Classifier :\")\n", | |
"print(classification_report(y_test, dt_predictions))\n", | |
"print(\"Akurasi:\", accuracy_score(y_test, dt_predictions))\n", | |
"\n", | |
"# Random Forest\n", | |
"print(\"Hasil Laporan Random Forest Classifier :\")\n", | |
"print(classification_report(y_test, rf_predictions))\n", | |
"print(\"Akurasi:\", accuracy_score(y_test, rf_predictions))\n", | |
"\n", | |
"\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "DYcm5XkH8PPZ", | |
"outputId": "662ffe85-ca1d-4843-c9d0-fb4ba784eff2" | |
}, | |
"id": "DYcm5XkH8PPZ", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"<ipython-input-30-4a63ecff00ad>:9: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" df_selected['Kategori Kasus'] = df_selected['Total Kasus per Juta'].apply(categorize_cases)\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Hasil Laporan Decision Tree Classifier :\n", | |
" precision recall f1-score support\n", | |
"\n", | |
" Rendah 1.00 1.00 1.00 6363\n", | |
"\n", | |
" accuracy 1.00 6363\n", | |
" macro avg 1.00 1.00 1.00 6363\n", | |
"weighted avg 1.00 1.00 1.00 6363\n", | |
"\n", | |
"Akurasi: 1.0\n", | |
"Hasil Laporan Random Forest Classifier :\n", | |
" precision recall f1-score support\n", | |
"\n", | |
" Rendah 1.00 1.00 1.00 6363\n", | |
"\n", | |
" accuracy 1.00 6363\n", | |
" macro avg 1.00 1.00 1.00 6363\n", | |
"weighted avg 1.00 1.00 1.00 6363\n", | |
"\n", | |
"Akurasi: 1.0\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df_selected.head()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 432 | |
}, | |
"id": "vmm7Yfn5Ay6a", | |
"outputId": "df2086a8-9a50-4e1e-c10c-052fc41c1952" | |
}, | |
"id": "vmm7Yfn5Ay6a", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Tanggal Kode ISO Lokasi Lokasi Kasus Baru \\\n", | |
"0 2020-04-03 00:00:00 ID-RI Riau 0 \n", | |
"1 2020-05-03 00:00:00 ID-JK DKI Jakarta 0 \n", | |
"2 2020-05-03 00:00:00 IDN Indonesia 0 \n", | |
"3 2020-05-03 00:00:00 ID-JB Jawa Barat 1 \n", | |
"4 2020-05-03 00:00:00 ID-RI Riau 0 \n", | |
"\n", | |
" Kematian Baru Baru Pulih Kasus Aktif Baru Total Kasus Total Kematian \\\n", | |
"0 0 0 0 1 0 \n", | |
"1 1 0 -1 45 21 \n", | |
"2 0 0 0 2 0 \n", | |
"3 0 0 1 3 1 \n", | |
"4 0 0 0 1 0 \n", | |
"\n", | |
" Total Pulih Total Kasus Aktif Provinsi Total Kasus per Juta \\\n", | |
"0 1 0 Riau 0.16 \n", | |
"1 75 -51 DKI Jakarta 4.15 \n", | |
"2 0 2 NaN 0.01 \n", | |
"3 60 -58 Jawa Barat 0.07 \n", | |
"4 1 0 Riau 0.16 \n", | |
"\n", | |
" Total Kematian per Juta Tingkat Kasus Kematian Tingkat Pemulihan Kasus \\\n", | |
"0 0.00 0.0000 1.0000 \n", | |
"1 1.94 0.4667 1.6667 \n", | |
"2 0.00 0.0000 0.0000 \n", | |
"3 0.02 0.3333 20.0000 \n", | |
"4 0.00 0.0000 1.0000 \n", | |
"\n", | |
" Kategori Kasus \n", | |
"0 Rendah \n", | |
"1 Rendah \n", | |
"2 Rendah \n", | |
"3 Rendah \n", | |
"4 Rendah " | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-14aa33d9-75e9-4d6e-8fcb-f4294fbe4827\" class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Tanggal</th>\n", | |
" <th>Kode ISO Lokasi</th>\n", | |
" <th>Lokasi</th>\n", | |
" <th>Kasus Baru</th>\n", | |
" <th>Kematian Baru</th>\n", | |
" <th>Baru Pulih</th>\n", | |
" <th>Kasus Aktif Baru</th>\n", | |
" <th>Total Kasus</th>\n", | |
" <th>Total Kematian</th>\n", | |
" <th>Total Pulih</th>\n", | |
" <th>Total Kasus Aktif</th>\n", | |
" <th>Provinsi</th>\n", | |
" <th>Total Kasus per Juta</th>\n", | |
" <th>Total Kematian per Juta</th>\n", | |
" <th>Tingkat Kasus Kematian</th>\n", | |
" <th>Tingkat Pemulihan Kasus</th>\n", | |
" <th>Kategori Kasus</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2020-04-03 00:00:00</td>\n", | |
" <td>ID-RI</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0.16</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0000</td>\n", | |
" <td>Rendah</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>-1</td>\n", | |
" <td>45</td>\n", | |
" <td>21</td>\n", | |
" <td>75</td>\n", | |
" <td>-51</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>4.15</td>\n", | |
" <td>1.94</td>\n", | |
" <td>0.4667</td>\n", | |
" <td>1.6667</td>\n", | |
" <td>Rendah</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>IDN</td>\n", | |
" <td>Indonesia</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.01</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>Rendah</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-JB</td>\n", | |
" <td>Jawa Barat</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>60</td>\n", | |
" <td>-58</td>\n", | |
" <td>Jawa Barat</td>\n", | |
" <td>0.07</td>\n", | |
" <td>0.02</td>\n", | |
" <td>0.3333</td>\n", | |
" <td>20.0000</td>\n", | |
" <td>Rendah</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2020-05-03 00:00:00</td>\n", | |
" <td>ID-RI</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>Riau</td>\n", | |
" <td>0.16</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>1.0000</td>\n", | |
" <td>Rendah</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <div class=\"colab-df-buttons\">\n", | |
"\n", | |
" <div class=\"colab-df-container\">\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-14aa33d9-75e9-4d6e-8fcb-f4294fbe4827')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
"\n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" .colab-df-buttons div {\n", | |
" margin-bottom: 4px;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-14aa33d9-75e9-4d6e-8fcb-f4294fbe4827 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-14aa33d9-75e9-4d6e-8fcb-f4294fbe4827');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
"\n", | |
"\n", | |
"<div id=\"df-28e937cf-e1e4-4d41-bedc-ab42d5136629\">\n", | |
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-28e937cf-e1e4-4d41-bedc-ab42d5136629')\"\n", | |
" title=\"Suggest charts\"\n", | |
" style=\"display:none;\">\n", | |
"\n", | |
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <g>\n", | |
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
" </g>\n", | |
"</svg>\n", | |
" </button>\n", | |
"\n", | |
"<style>\n", | |
" .colab-df-quickchart {\n", | |
" --bg-color: #E8F0FE;\n", | |
" --fill-color: #1967D2;\n", | |
" --hover-bg-color: #E2EBFA;\n", | |
" --hover-fill-color: #174EA6;\n", | |
" --disabled-fill-color: #AAA;\n", | |
" --disabled-bg-color: #DDD;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-quickchart {\n", | |
" --bg-color: #3B4455;\n", | |
" --fill-color: #D2E3FC;\n", | |
" --hover-bg-color: #434B5C;\n", | |
" --hover-fill-color: #FFFFFF;\n", | |
" --disabled-bg-color: #3B4455;\n", | |
" --disabled-fill-color: #666;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart {\n", | |
" background-color: var(--bg-color);\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: var(--fill-color);\n", | |
" height: 32px;\n", | |
" padding: 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart:hover {\n", | |
" background-color: var(--hover-bg-color);\n", | |
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: var(--button-hover-fill-color);\n", | |
" }\n", | |
"\n", | |
" .colab-df-quickchart-complete:disabled,\n", | |
" .colab-df-quickchart-complete:disabled:hover {\n", | |
" background-color: var(--disabled-bg-color);\n", | |
" fill: var(--disabled-fill-color);\n", | |
" box-shadow: none;\n", | |
" }\n", | |
"\n", | |
" .colab-df-spinner {\n", | |
" border: 2px solid var(--fill-color);\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" animation:\n", | |
" spin 1s steps(1) infinite;\n", | |
" }\n", | |
"\n", | |
" @keyframes spin {\n", | |
" 0% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" border-left-color: var(--fill-color);\n", | |
" }\n", | |
" 20% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 30% {\n", | |
" border-color: transparent;\n", | |
" border-left-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 40% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-top-color: var(--fill-color);\n", | |
" }\n", | |
" 60% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" }\n", | |
" 80% {\n", | |
" border-color: transparent;\n", | |
" border-right-color: var(--fill-color);\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" 90% {\n", | |
" border-color: transparent;\n", | |
" border-bottom-color: var(--fill-color);\n", | |
" }\n", | |
" }\n", | |
"</style>\n", | |
"\n", | |
" <script>\n", | |
" async function quickchart(key) {\n", | |
" const quickchartButtonEl =\n", | |
" document.querySelector('#' + key + ' button');\n", | |
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
" quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
" try {\n", | |
" const charts = await google.colab.kernel.invokeFunction(\n", | |
" 'suggestCharts', [key], {});\n", | |
" } catch (error) {\n", | |
" console.error('Error during call to suggestCharts:', error);\n", | |
" }\n", | |
" quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
" }\n", | |
" (() => {\n", | |
" let quickchartButtonEl =\n", | |
" document.querySelector('#df-28e937cf-e1e4-4d41-bedc-ab42d5136629 button');\n", | |
" quickchartButtonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
" })();\n", | |
" </script>\n", | |
"</div>\n", | |
" </div>\n", | |
" </div>\n" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "dataframe", | |
"variable_name": "df_selected", | |
"summary": "{\n \"name\": \"df_selected\",\n \"rows\": 31811,\n \"fields\": [\n {\n \"column\": \"Tanggal\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2020-01-04 00:00:00\",\n \"max\": \"2022-12-09 00:00:00\",\n \"num_unique_values\": 927,\n \"samples\": [\n \"8/16/2020\",\n \"2021-08-05 00:00:00\",\n \"2020-03-04 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kode ISO Lokasi\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 35,\n \"samples\": [\n \"ID-KU\",\n \"ID-SN\",\n \"ID-SB\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Lokasi\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 35,\n \"samples\": [\n \"Kalimantan Utara\",\n \"Sulawesi Selatan\",\n \"Sumatera Barat\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kasus Baru\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2321,\n \"min\": 0,\n \"max\": 64718,\n \"num_unique_values\": 2591,\n \"samples\": [\n 1065,\n 2167,\n 1257\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kematian Baru\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 64,\n \"min\": 0,\n \"max\": 2069,\n \"num_unique_values\": 405,\n \"samples\": [\n 44,\n 103,\n 568\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Baru Pulih\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2200,\n \"min\": 0,\n \"max\": 61361,\n \"num_unique_values\": 2541,\n \"samples\": [\n 1333,\n 507,\n 11422\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kasus Aktif Baru\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1219,\n \"min\": -29938,\n \"max\": 39165,\n \"num_unique_values\": 2562,\n \"samples\": [\n 6267,\n -1941,\n -1940\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kasus\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 626544,\n \"min\": 1,\n \"max\": 6405044,\n \"num_unique_values\": 22951,\n \"samples\": [\n 316621,\n 33985,\n 31769\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kematian\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17696,\n \"min\": 0,\n \"max\": 157876,\n \"num_unique_values\": 6419,\n \"samples\": [\n 935,\n 640,\n 15880\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Pulih\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 595950,\n \"min\": 0,\n \"max\": 6218708,\n \"num_unique_values\": 21124,\n \"samples\": [\n 53082,\n 33652,\n 70231\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kasus Aktif\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 28542,\n \"min\": -2343,\n \"max\": 586113,\n \"num_unique_values\": 8412,\n \"samples\": [\n 2819,\n 713,\n 264\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Provinsi\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 34,\n \"samples\": [\n \"Papua\",\n \"Kalimantan Tengah\",\n \"Kalimantan Barat\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kasus per Juta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16478.850124485787,\n \"min\": 0.01,\n \"max\": 130231.62,\n \"num_unique_values\": 27295,\n \"samples\": [\n 8279.95,\n 1077.47,\n 44538.43\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total Kematian per Juta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 363.4518217983632,\n \"min\": 0.0,\n \"max\": 1632.6,\n \"num_unique_values\": 13212,\n \"samples\": [\n 237.27,\n 92.85,\n 1425.11\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Tingkat Kasus Kematian\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.14375060971696763,\n \"min\": 0.0,\n \"max\": 10.0,\n \"num_unique_values\": 1325,\n \"samples\": [\n 0.0067,\n 0.22,\n 0.0465\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Tingkat Pemulihan Kasus\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3782162929409016,\n \"min\": 0.0,\n \"max\": 111.0,\n \"num_unique_values\": 6165,\n \"samples\": [\n 0.7917,\n 0.2011,\n 0.7851\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Kategori Kasus\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Rendah\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 25 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"Grafik Hasil" | |
], | |
"metadata": { | |
"id": "SZDDUYJbAI5h" | |
}, | |
"id": "SZDDUYJbAI5h" | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"# Menghitung jumlah kasus rendah, sedang, dan tinggi pada data uji\n", | |
"counts = y_test.value_counts()\n", | |
"\n", | |
"# Membuat grafik batang\n", | |
"plt.figure(figsize=(8, 6))\n", | |
"counts.plot(kind='bar', color=['green', 'orange', 'red'])\n", | |
"plt.title('Jumlah Kasus Rendah, Sedang, dan Tinggi per Juta')\n", | |
"plt.xlabel('Kategori Kasus')\n", | |
"plt.ylabel('Jumlah Kasus')\n", | |
"plt.xticks(rotation=0) # Mengatur label sumbu x\n", | |
"plt.show()\n" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 564 | |
}, | |
"id": "wblrYwtoAKu_", | |
"outputId": "da3575c6-3896-42d7-9e25-4372671a4382" | |
}, | |
"id": "wblrYwtoAKu_", | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 800x600 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAIjCAYAAAAN/63DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR0ElEQVR4nO3deXxMZ///8fckJCIkISKJiqX22EtLqGptUcFtqa1asS8NJdbqYumCW2uvpbqIKreidKGoLarEXq2lVG2xJSjJWCqJ5Pz+8Mt8jVAJiQnn9Xw85tHMda5zzuecORnvnlxzjcUwDEMAAACASTg5ugAAAADgYSIAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAA/fp+eef1/PPP5/h9Y4fPy6LxaKPPvoo84tCpjPr6xwZGSmLxaLIyEhHl5JpLBaLRo0a5egy7up+r7Ws0rlzZxUrVszRZQBZggCMR1pERIQsFot27tzp6FIemtRgsmTJErv2xMRENW3aVE5OTvriiy8cVN39Sz2u1Iezs7MKFiyol156SX/88Yejy8s2EhMTNWXKFFWtWlUeHh7y8vJS+fLl1bNnTx08eNDR5eEWqf8TlJ7H8ePHHV3uI61YsWJq2rTpfa37448/Zuv/MULWyOHoAgA8uKSkJL300kv68ccf9emnn6pr166OLum+vf7663r66aeVlJSk33//XbNmzVJkZKT27dsnPz8/R5fncK1bt9bKlSvVoUMH9ejRQ0lJSTp48KCWL1+uWrVqqWzZso4uEf+fj4+P5s2bZ9c2YcIEnTp1SpMmTUrT96effnqY5d3Tp59+qpSUFEeXkeV+/PFHTZ8+nRBsMgRg4BGXlJSktm3bavny5frkk0/UrVs3R5f0QOrUqaOXXnrJ9rxMmTLq06ePvvzySw0dOtSBlTnejh07tHz5cn3wwQd688037ZZ9/PHHiouLc0xhuCN3d3e98sordm0LFy7UpUuX0rRnRzlz5nR0CTY3btxQSkqKXFxcHF0KHhMMgcBj5W5j6G4fy3br+Mzp06frySefVO7cudWoUSOdPHlShmHovffeU+HCheXm5qb//Oc/unjx4r/uOzExUSNGjFC1atXk6ekpd3d31alTRxs2bLjrOrNnz1aJEiXk6uqqp59+Wjt27MjQ8d64cUPt27fXd999p5kzZ6pHjx52yzdt2qQ2bdqoSJEicnV1VUBAgMLDw/XPP//Y9YuJiVGXLl1UuHBhubq6yt/fX//5z3/s/ix7t/GTxYoVU+fOnW3Pk5KSNHr0aJUqVUq5cuWSt7e3nn32Wa1ZsyZDx5aqTp06kqQjR47YtZ8+fVpdu3aVr6+vXF1dVb58+TRDP1KHVSxatEgffPCBChcurFy5cql+/fr666+/0uwr9fVwc3PTM888o02bNqXp44jXOVXqOahdu3aaZc7OzvL29rZrS885kqRTp06pRYsWcnd3V8GCBRUeHq6EhIQ0/dJ7PXXu3Fl58uTR6dOn1aJFC+XJk0c+Pj4aPHiwkpOT7fr+/fffevXVV23DOUJDQ/Xbb7/JYrEoIiIio6dIkpSQkKDw8HD5+Pgob968at68uU6dOpWm34kTJ/Taa6+pTJkycnNzk7e3t9q0aZNmOELqUKvNmzdr4MCB8vHxkbu7u1q2bKnz58/fV413cvv7V0av39T3sluv3zu9J544cULNmze3e71Xr16dZsx3escApw4/+Omnn1SlShXlypVLgYGBWrp0aZq+cXFxGjBggAICAuTq6qqSJUvqv//9r92d5lvfnydPnmz73Tlw4MA9a7n93N0+hj1126nXVufOnTV9+nRJshuSkuqjjz5SrVq15O3tLTc3N1WrVi3N8DM8mrgDDFObP3++EhMT1a9fP128eFHjx49X27ZtVa9ePUVGRmrYsGH666+/NG3aNA0ePPhfx9ZarVZ99tlntj9NX758WZ9//rmCg4O1fft2ValSxa7/ggULdPnyZfXq1UsWi0Xjx49Xq1atdPTo0XTdeblx44Y6dOigZcuWafr06erVq1eaPosXL9a1a9fUp08feXt7a/v27Zo2bZpOnTqlxYsX2/q1bt1a+/fvV79+/VSsWDGdO3dOa9asUXR0dIY/BDNq1CiNHTtW3bt31zPPPCOr1aqdO3dq9+7datiwYYa2JckWRvLly2dri42NVc2aNWWxWNS3b1/5+Pho5cqV6tatm6xWqwYMGGC3jXHjxsnJyUmDBw9WfHy8xo8fr44dO2rbtm22Pp9//rl69eqlWrVqacCAATp69KiaN2+u/PnzKyAgwNbvYb/OtypatKikm9dt7dq1lSPH3d/C03uO/vnnH9WvX1/R0dF6/fXXVahQIc2bN0/r169Ps830Xk+SlJycrODgYNWoUUMfffSR1q5dqwkTJqhEiRLq06ePJCklJUXNmjXT9u3b1adPH5UtW1bfffedQkNDM3Rebte9e3d99dVXevnll1WrVi2tX79eISEhafrt2LFDW7ZsUfv27VW4cGEdP35cM2fO1PPPP68DBw4od+7cdv379eunfPnyaeTIkTp+/LgmT56svn376uuvv36geu8lPdfvzJkz1bdvX9WpU0fh4eE6fvy4WrRooXz58qlw4cK2flevXlW9evV09uxZ9e/fX35+flqwYMG//g9cehw+fFjt2rVT7969FRoaqjlz5qhNmzZatWqV7ff+2rVrqlu3rk6fPq1evXqpSJEi2rJli4YPH66zZ89q8uTJdtucM2eOrl+/rp49e8rV1VX58+d/oBrvpFevXjpz5ozWrFmTZriKJE2ZMkXNmzdXx44dlZiYqIULF6pNmzZavnz5Ha8pPEIM4BE2Z84cQ5KxY8cOwzAMo27dukbdunXT9AsNDTWKFi1qe37s2DFDkuHj42PExcXZ2ocPH25IMipXrmwkJSXZ2jt06GC4uLgY169ft7Xdvq8bN24YCQkJdvu9dOmS4evra3Tt2jXNvr29vY2LFy/a2r/77jtDkvHDDz/86zFv2LDBkGQULVrUkGRMnz79rn2vXbuWpm3s2LGGxWIxTpw4YatRkvHhhx/+634lGSNHjkzTXrRoUSM0NNT2vHLlykZISMi/butOUo/riy++MM6fP2+cOXPGWLVqlVGyZEnDYrEY27dvt/Xt1q2b4e/vb1y4cMFuG+3btzc8PT1tx526zXLlytm9NlOmTDEkGXv37jUMwzASExONggULGlWqVLHrN3v2bEOSQ17nO0lJSTHq1q1rSDJ8fX2NDh06GNOnT7e9lrdK7zmaPHmyIclYtGiRrc/Vq1eNkiVLGpKMDRs22NrTcz0Zxs3fN0nGu+++a9e3atWqRrVq1WzPv/nmG0OSMXnyZFtbcnKyUa9ePUOSMWfOnPSdmFvs2bPHkGS89tprdu0vv/xymmv4TscTFRVlSDK+/PJLW1vq+0yDBg2MlJQUW3t4eLjh7Oxs9x5yLyEhIXbvRbe6/T0lvddvQkKC4e3tbTz99NN271sRERFprt8JEyYYkoxvv/3W1vbPP/8YZcuWTfN63/6+eTep70XffPONrS0+Pt7w9/c3qlatamt77733DHd3d+PPP/+0W/+NN94wnJ2djejoaMMw/u93x8PDwzh37tw9959aw63vO6nn7tbjuXXbt15bYWFhxt3i0O3XSGJiolGhQgWjXr166aoL2RdDIGBqbdq0kaenp+15jRo1JEmvvPKK3d21GjVqKDExUadPn77rtpydnW3j01JSUnTx4kXduHFD1atX1+7du9P0b9eund1dzdQ/9R89ejRdtcfGxipHjhwqXrz4Xfu4ubnZfr569aouXLigWrVqyTAM/frrr7Y+Li4uioyM1KVLl9K173/j5eWl/fv36/Dhw/e1fteuXeXj46NChQqpcePGio+P17x58/T0009LkgzD0DfffKNmzZrJMAxduHDB9ggODlZ8fHya892lSxe7sYO3n+udO3fq3Llz6t27t12/zp07210f0sN/nW9lsVi0evVqvf/++8qXL5/+97//KSwsTEWLFlW7du1sY4Azco5+/PFH+fv72427zp07t3r27Jlm/+m5nm7Vu3dvu+d16tSxO+5Vq1YpZ86cdkN3nJycFBYWluFzk+rHH3+UdPPDlLe6/a8Ckv3xJCUl6e+//1bJkiXl5eV1x9eyZ8+edn8er1OnjpKTk3XixIn7rjc90nP9/v333+rRo4fd+1bHjh3trj3p5jl/4okn1Lx5c1tbrly50gyfyqhChQqpZcuWtuceHh7q1KmTfv31V8XExEi6+ReEOnXqKF++fHbXZIMGDZScnKyff/7ZbputW7eWj4/PA9X1oG69Ri5duqT4+HjVqVPnjtcHHi0EYJhakSJF7J6nhp1b/+R9a/u9AuLcuXNVqVIl29hXHx8frVixQvHx8ffcd+o/VOkNoePHj1eRIkX00ksvafPmzXfsEx0drc6dOyt//vy2cZh169aVJFtNrq6u+u9//6uVK1fK19dXzz33nMaPH2/7Ryuj3n33XcXFxal06dKqWLGihgwZot9//z3d648YMUJr1qzRsmXL1KlTJ8XHx8vJ6f/eqs6fP6+4uDjNnj1bPj4+do8uXbpIks6dO2e3zXud69QAU6pUKbt+OXPm1JNPPpmmxof5Ot/O1dVVb731lv744w+dOXNG//vf/1SzZk0tWrRIffv2lZSxc3TixAmVLFnSLthJNz98eLv0XE+pcuXKlSa85MuXz+64T5w4IX9//zRDDUqWLHk/p8a2TScnJ5UoUeKex/PPP/9oxIgRtvGoBQoUkI+Pj+Li4h7Ka5le6b1+bz9vOXLkSDOE6cSJEypRokSa1/tBznnq+rdvs3Tp0pL+bxjT4cOHtWrVqjTXZIMGDSSl/b39t/+5f1iWL1+umjVrKleuXMqfP798fHw0c+bMO14feLQwBhiPFYvFIsMw0rTf/sGbVM7Ozhlqv9O2U3311Vfq3LmzWrRooSFDhqhgwYJydnbW2LFj03yA6373cSt/f3+tWbNGzz77rEJCQrRx40ZVrlzZtjw5OVkNGzbUxYsXNWzYMJUtW1bu7u46ffq0OnfubPehkwEDBqhZs2b69ttvtXr1ar3zzjsaO3as1q9fr6pVq/5rHbef2+eee05HjhzRd999p59++kmfffaZJk2apFmzZql79+73PK6KFSva/kFs0aKFrl27ph49eujZZ59VQECAre5XXnnlrmNFK1WqZPf8Qc/1rR726/xv/P391b59e7Vu3Vrly5fXokWLFBERcV/n6F4ycj1Jdz/u7KRfv36aM2eOBgwYoKCgIHl6espisah9+/Z3nP4rK1/Lf+Oo/Wa2lJQUNWzY8K6zuaQG5lS33n3NqNvDeKq7/VtwJ5s2bVLz5s313HPPacaMGfL391fOnDk1Z84cLViw4L5rQ/ZAAMZjJV++fHf803JW/4lSkpYsWaInn3xSS5cutXvzHTlyZJbt88knn9Tq1atVt25dBQcHa9OmTba7mHv37tWff/6puXPnqlOnTrZ17jYbQ4kSJTRo0CANGjRIhw8fVpUqVTRhwgR99dVXkm6e29un2UpMTNTZs2fTbCt//vzq0qWLunTpoitXrui5557TqFGj0hWAbzdu3DgtW7ZMH3zwgWbNmmX7ZH9ycrItKD+o1A+XHT58WPXq1bO1JyUl6dixY3b/Y+GI1/lecubMqUqVKunw4cO6cOFChs5R0aJFtW/fPhmGYXc8hw4dsuuX0espPYoWLaoNGzbo2rVrdneB7zTDQUa2mZKSoiNHjtjd9b39eKSbr2VoaKgmTJhga7t+/fojN51c6vX7119/6YUXXrC137hxQ8ePH7f7n52iRYvqwIEDaV7vBznnqevfvs0///xTkmx3oUuUKKErV65k2u/tv0m9S377a3mnfwvuFpa/+eYb5cqVS6tXr5arq6utfc6cOZlXKByGIRB4rJQoUUIHDx60m5rot99+u+sQgcyUepfm1rsy27ZtU1RUVJbut2LFilqxYoWuXLmihg0b2sYp36kewzA0ZcoUu/WvXbum69ev27WVKFFCefPmtZsKq0SJEmnG6M2ePfuO01rdKk+ePCpZsuQdp9VKjxIlSqh169aKiIhQTEyMnJ2d1bp1a33zzTfat29fmv73My1V9erV5ePjo1mzZikxMdHWHhERkeYfUEe9ztLNgB4dHZ2mPS4uTlFRUcqXL598fHwydI6aNGmiM2fO2E3tdO3aNc2ePdtunfReTxkRHByspKQkffrpp7a2lJQU27RU9+PFF1+UJE2dOtWu/fYZBqSbx3T7XdRp06Zl6C5hdlC9enV5e3vr008/1Y0bN2zt8+fPTzM8Izg4WKdPn9b3339va7t+/brda3A/zpw5o2XLltmeW61Wffnll6pSpYrtC2zatm2rqKgorV69Os36cXFxdrU/qKJFi8rZ2TnNe9aMGTPS9HV3d7fVcCtnZ2dZLBa76+H48eP69ttvM61OOA53gPFY6dq1qyZOnKjg4GB169ZN586d06xZs1S+fHlZrdYs3XfTpk21dOlStWzZUiEhITp27JhmzZqlwMBAXblyJUv3HRQUpKVLl6pZs2Zq2LChNm3apLJly6pEiRIaPHiwTp8+LQ8PD33zzTdp/kH8888/Vb9+fbVt21aBgYHKkSOHli1bptjYWLVv397Wr3v37urdu7dat26thg0b6rffftPq1atVoEABu+0FBgbq+eefV7Vq1ZQ/f37t3LlTS5YssY1PvR9DhgzRokWLNHnyZI0bN07jxo3Thg0bVKNGDfXo0UOBgYG6ePGidu/erbVr195zzubb5cyZU++//7569eqlevXqqV27djp27JjmzJmTZgxwVrzOx48fV/HixRUaGvqvc9/+9ttvevnll/Xiiy+qTp06yp8/v06fPq25c+fqzJkzmjx5si2opvcc9ejRQx9//LE6deqkXbt2yd/fX/PmzUszLje911NGtGjRQs8884wGDRqkv/76S2XLltX3339vq+3WO3PpPUdVqlRRhw4dNGPGDMXHx6tWrVpat27dHe9wNm3aVPPmzZOnp6cCAwMVFRWltWvXpplPObtzcXHRqFGj1K9fP9WrV09t27bV8ePHFRERkWa8b69evfTxxx+rQ4cO6t+/v/z9/TV//nzlypVL0t3vht5L6dKl1a1bN+3YsUO+vr764osvFBsba3e3dMiQIfr+++/VtGlTde7cWdWqVdPVq1e1d+9eLVmyRMePH0/zfnK/PD091aZNG02bNk0Wi0UlSpTQ8uXL04wzlqRq1apJuvnByeDgYDk7O6t9+/YKCQnRxIkT1bhxY7388ss6d+6cpk+frpIlS2bocw3Iph7ijBNApvviiy8MScbu3bttbV999ZXx5JNPGi4uLkaVKlWM1atX33UatNun/kqdOmfx4sV27bdPt2YYaacsSklJMcaMGWMULVrUcHV1NapWrWosX7483fs2jLtPNZaeGg3DML7++mvDycnJePrppw2r1WocOHDAaNCggZEnTx6jQIECRo8ePYzffvvNbhqgCxcuGGFhYUbZsmUNd3d3w9PT06hRo4bdtFiGcXN6qmHDhhkFChQwcufObQQHBxt//fVXmmnQ3n//feOZZ54xvLy8DDc3N6Ns2bLGBx98YCQmJt73cRmGYTz//POGh4eHbcqp2NhYIywszAgICDBy5sxp+Pn5GfXr1zdmz559z23eaSokwzCMGTNmGMWLFzdcXV2N6tWrGz///PNDeZ337t1rSDLeeOONfz1HsbGxxrhx44y6desa/v7+Ro4cOYx8+fIZ9erVM5YsWXLH/vc6R4ZhGCdOnDCaN29u5M6d2yhQoIDRv39/Y9WqVWmmkUrP9WQYN6fPcnd3T1PPyJEj00w3df78eePll1828ubNa3h6ehqdO3c2Nm/ebEgyFi5cmOFzZBg3p/V6/fXXDW9vb8Pd3d1o1qyZcfLkyTTn/dKlS0aXLl2MAgUKGHny5DGCg4ONgwcPprmm7/T7bxh3n2rr39zPNGjpvX6nTp1quy6feeYZY/PmzUa1atWMxo0b2/U7evSoERISYri5uRk+Pj7GoEGDbFPSbd261dYvI9OghYSEGKtXrzYqVapkuLq6GmXLlr3j7/Lly5eN4cOHGyVLljRcXFyMAgUKGLVq1TI++ugj23vEv/3u3E2RIkWM5s2b27WdP3/eaN26tZE7d24jX758Rq9evYx9+/alOXc3btww+vXrZ/j4+BgWi8XuGv3888+NUqVK2Y5pzpw5d7yO8eixGMYjNooeuMXUqVPVv39//fXXX2k+9Q08KmbMmKGhQ4fqyJEj8vX1dXQ5Dvftt9+qZcuW+uWXX2zfesc5yriUlBT5+PioVatW9xziMHnyZIWHh+vUqVN64oknMrSfYsWKqUKFClq+fPmDlPtA8ufPr5CQkDt+mQVwJ4wBxiNtx44dcnd3t30IBHgUbdiwQa+//ropg93tX6OcnJysadOmycPDQ0899ZSt3cznKD2uX7+eZjzzl19+qYsXL6b5KuTbz/n169f1ySefqFSpUhkOv9nBkSNHdOnSJQUGBjq6FDxCGAOMR9I333yjyMhIzZ8/X927d//Xr4QFsrvbv0bYTPr166d//vlHQUFBSkhI0NKlS7VlyxaNGTPGbhosM5+j9Ni6davCw8PVpk0beXt7a/fu3fr8889VoUIFtWnTxq5vq1atVKRIEVWpUkXx8fH66quvdPDgQc2fP99B1d+fo0eP6scff9TMmTPl4uJi95kF4F5IDXgkDR48WJcvX1a3bt00adIkR5cD4D7Vq1dPEyZM0PLly3X9+nWVLFlS06ZNe6APTZpRsWLFFBAQoKlTp+rixYvKnz+/OnXqpHHjxtl9i5x0cyaIzz77TPPnz1dycrICAwO1cOFCtWvXzkHV35+ff/5ZAwcOVPny5fXdd99liy/OwKODMcAAAAAwFcYAAwAAwFQIwAAAADAVxgCnQ0pKis6cOaO8efPe9yThAAAAyDqGYejy5csqVKiQnJz+/R4vATgdzpw5o4CAAEeXAQAAgHs4efKkChcu/K99CMDpkDdvXkk3T6iHh4eDqwEAAMDtrFarAgICbLnt3xCA0yF12IOHhwcBGAAAIBtLz3BVPgQHAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADCVHI4uAIA9y2iLo0sAgExljDQcXQJghzvAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVAjAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVAjAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVAjAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVAjAAAAAMBUCMAAAAEyFAAwAAABTIQADAADAVBwegE+fPq1XXnlF3t7ecnNzU8WKFbVz507bcsMwNGLECPn7+8vNzU0NGjTQ4cOH7bZx8eJFdezYUR4eHvLy8lK3bt105coVuz6///676tSpo1y5cikgIEDjx49/KMcHAACA7MWhAfjSpUuqXbu2cubMqZUrV+rAgQOaMGGC8uXLZ+szfvx4TZ06VbNmzdK2bdvk7u6u4OBgXb9+3danY8eO2r9/v9asWaPly5fr559/Vs+ePW3LrVarGjVqpKJFi2rXrl368MMPNWrUKM2ePfuhHi8AAAAcz2IYhuGonb/xxhvavHmzNm3adMflhmGoUKFCGjRokAYPHixJio+Pl6+vryIiItS+fXv98ccfCgwM1I4dO1S9enVJ0qpVq9SkSROdOnVKhQoV0syZM/XWW28pJiZGLi4utn1/++23Onjw4D3rtFqt8vT0VHx8vDw8PDLp6IE7s4y2OLoEAMhUxkiHRQ2YSEbymkPvAH///feqXr262rRpo4IFC6pq1ar69NNPbcuPHTummJgYNWjQwNbm6empGjVqKCoqSpIUFRUlLy8vW/iVpAYNGsjJyUnbtm2z9Xnuueds4VeSgoODdejQIV26dClNXQkJCbJarXYPAAAAPB4cGoCPHj2qmTNnqlSpUlq9erX69Omj119/XXPnzpUkxcTESJJ8fX3t1vP19bUti4mJUcGCBe2W58iRQ/nz57frc6dt3LqPW40dO1aenp62R0BAQCYcLQAAALIDhwbglJQUPfXUUxozZoyqVq2qnj17qkePHpo1a5Yjy9Lw4cMVHx9ve5w8edKh9QAAACDzODQA+/v7KzAw0K6tXLlyio6OliT5+flJkmJjY+36xMbG2pb5+fnp3Llzdstv3Lihixcv2vW50zZu3cetXF1d5eHhYfcAAADA48GhAbh27do6dOiQXduff/6pokWLSpKKFy8uPz8/rVu3zrbcarVq27ZtCgoKkiQFBQUpLi5Ou3btsvVZv369UlJSVKNGDVufn3/+WUlJSbY+a9asUZkyZexmnAAAAMDjz6EBODw8XFu3btWYMWP0119/acGCBZo9e7bCwsIkSRaLRQMGDND777+v77//Xnv37lWnTp1UqFAhtWjRQtLNO8aNGzdWjx49tH37dm3evFl9+/ZV+/btVahQIUnSyy+/LBcXF3Xr1k379+/X119/rSlTpmjgwIGOOnQAAAA4SA5H7vzpp5/WsmXLNHz4cL377rsqXry4Jk+erI4dO9r6DB06VFevXlXPnj0VFxenZ599VqtWrVKuXLlsfebPn6++ffuqfv36cnJyUuvWrTV16lTbck9PT/30008KCwtTtWrVVKBAAY0YMcJurmAAAACYg0PnAX5UMA8wHibmAQbwuGEeYDwMj8w8wAAAAMDDRgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqRCAAQAAYCoEYAAAAJgKARgAAACmQgAGAACAqTg0AI8aNUoWi8XuUbZsWdvy69evKywsTN7e3sqTJ49at26t2NhYu21ER0crJCREuXPnVsGCBTVkyBDduHHDrk9kZKSeeuopubq6qmTJkoqIiHgYhwcAAIBsyOF3gMuXL6+zZ8/aHr/88ottWXh4uH744QctXrxYGzdu1JkzZ9SqVSvb8uTkZIWEhCgxMVFbtmzR3LlzFRERoREjRtj6HDt2TCEhIXrhhRe0Z88eDRgwQN27d9fq1asf6nECAAAge8jh8AJy5JCfn1+a9vj4eH3++edasGCB6tWrJ0maM2eOypUrp61bt6pmzZr66aefdODAAa1du1a+vr6qUqWK3nvvPQ0bNkyjRo2Si4uLZs2apeLFi2vChAmSpHLlyumXX37RpEmTFBwc/FCPFQAAAI7n8DvAhw8fVqFChfTkk0+qY8eOio6OliTt2rVLSUlJatCgga1v2bJlVaRIEUVFRUmSoqKiVLFiRfn6+tr6BAcHy2q1av/+/bY+t24jtU/qNu4kISFBVqvV7gEAAIDHg0MDcI0aNRQREaFVq1Zp5syZOnbsmOrUqaPLly8rJiZGLi4u8vLyslvH19dXMTExkqSYmBi78Ju6PHXZv/WxWq36559/7ljX2LFj5enpaXsEBARkxuECAAAgG3DoEIgXX3zR9nOlSpVUo0YNFS1aVIsWLZKbm5vD6ho+fLgGDhxoe261WgnBAAAAjwmHD4G4lZeXl0qXLq2//vpLfn5+SkxMVFxcnF2f2NhY25hhPz+/NLNCpD6/Vx8PD4+7hmxXV1d5eHjYPQAAAPB4yFYB+MqVKzpy5Ij8/f1VrVo15cyZU+vWrbMtP3TokKKjoxUUFCRJCgoK0t69e3Xu3DlbnzVr1sjDw0OBgYG2PrduI7VP6jYAAABgLg4NwIMHD9bGjRt1/PhxbdmyRS1btpSzs7M6dOggT09PdevWTQMHDtSGDRu0a9cudenSRUFBQapZs6YkqVGjRgoMDNSrr76q3377TatXr9bbb7+tsLAwubq6SpJ69+6to0ePaujQoTp48KBmzJihRYsWKTw83JGHDgAAAAdx6BjgU6dOqUOHDvr777/l4+OjZ599Vlu3bpWPj48kadKkSXJyclLr1q2VkJCg4OBgzZgxw7a+s7Ozli9frj59+igoKEju7u4KDQ3Vu+++a+tTvHhxrVixQuHh4ZoyZYoKFy6szz77jCnQAAAATMpiGIbh6CKyO6vVKk9PT8XHxzMeGFnOMtri6BIAIFMZI4kayHoZyWvZagwwAAAAkNUIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADCVbBOAx40bJ4vFogEDBtjarl+/rrCwMHl7eytPnjxq3bq1YmNj7daLjo5WSEiIcufOrYIFC2rIkCG6ceOGXZ/IyEg99dRTcnV1VcmSJRUREfEQjggAAADZUbYIwDt27NAnn3yiSpUq2bWHh4frhx9+0OLFi7Vx40adOXNGrVq1si1PTk5WSEiIEhMTtWXLFs2dO1cREREaMWKErc+xY8cUEhKiF154QXv27NGAAQPUvXt3rV69+qEdHwAAALIPi2EYhiMLuHLlip566inNmDFD77//vqpUqaLJkycrPj5ePj4+WrBggV566SVJ0sGDB1WuXDlFRUWpZs2aWrlypZo2baozZ87I19dXkjRr1iwNGzZM58+fl4uLi4YNG6YVK1Zo3759tn22b99ecXFxWrVqVbpqtFqt8vT0VHx8vDw8PDL/JAC3sIy2OLoEAMhUxkiHRg2YREbymsPvAIeFhSkkJEQNGjSwa9+1a5eSkpLs2suWLasiRYooKipKkhQVFaWKFSvawq8kBQcHy2q1av/+/bY+t287ODjYto07SUhIkNVqtXsAAADg8ZDDkTtfuHChdu/erR07dqRZFhMTIxcXF3l5edm1+/r6KiYmxtbn1vCbujx12b/1sVqt+ueff+Tm5pZm32PHjtXo0aPv+7gAAACQfWXoDvDJkyd16tQp2/Pt27drwIABmj17doZ3fPLkSfXv31/z589Xrly5Mrx+Vho+fLji4+Ntj5MnTzq6JAAAAGSSDAXgl19+WRs2bJB0885qw4YNtX37dr311lt69913M7TjXbt26dy5c3rqqaeUI0cO5ciRQxs3btTUqVOVI0cO+fr6KjExUXFxcXbrxcbGys/PT5Lk5+eXZlaI1Of36uPh4XHHu7+S5OrqKg8PD7sHAAAAHg8ZCsD79u3TM888I0latGiRKlSooC1btmj+/PkZnlqsfv362rt3r/bs2WN7VK9eXR07drT9nDNnTq1bt862zqFDhxQdHa2goCBJUlBQkPbu3atz587Z+qxZs0YeHh4KDAy09bl1G6l9UrcBAAAAc8nQGOCkpCS5urpKktauXavmzZtLuvnhtLNnz2Zox3nz5lWFChXs2tzd3eXt7W1r79atmwYOHKj8+fPLw8ND/fr1U1BQkGrWrClJatSokQIDA/Xqq69q/PjxiomJ0dtvv62wsDBbnb1799bHH3+soUOHqmvXrlq/fr0WLVqkFStWZKheAAAAPB4ydAe4fPnymjVrljZt2qQ1a9aocePGkqQzZ87I29s704ubNGmSmjZtqtatW+u5556Tn5+fli5dalvu7Oys5cuXy9nZWUFBQXrllVfUqVMnu+EYxYsX14oVK7RmzRpVrlxZEyZM0Geffabg4OBMrxcAAADZX4bmAY6MjFTLli1ltVoVGhqqL774QpL05ptv6uDBg3bh9HHCPMB4mJgHGMDjhnmA8TBkJK9laAjE888/rwsXLshqtSpfvny29p49eyp37tz3Vy0AAADwEGV4HmBnZ2e78CtJxYoVy6x6AAAAgCyVoQBcvHhxWSx3//Ps0aNHH7ggAAAAICtlKAAPGDDA7nlSUpJ+/fVXrVq1SkOGDMnMugAAAIAskaEA3L9//zu2T58+XTt37syUggAAAICslKFp0O7mxRdf1DfffJMZmwIAAACyVKYE4CVLlih//vyZsSkAAAAgS2VoCETVqlXtPgRnGIZiYmJ0/vx5zZgxI9OLAwAAADJbhgJwixYt7J47OTnJx8dHzz//vMqWLZuZdQEAAABZIkMBeOTIkVlVBwAAAPBQZGgM8O7du7V3717b8++++04tWrTQm2++qcTExEwvDgAAAMhsGQrAvXr10p9//inp5pdetGvXTrlz59bixYs1dOjQLCkQAAAAyEwZCsB//vmnqlSpIklavHix6tatqwULFigiIoJp0AAAAPBIyFAANgxDKSkpkqS1a9eqSZMmkqSAgABduHAh86sDAAAAMlmGAnD16tX1/vvva968edq4caNCQkIkSceOHZOvr2+WFAgAAABkpgwF4MmTJ2v37t3q27ev3nrrLZUsWVLSzS/CqFWrVpYUCAAAAGSmDE2DVqlSJbtZIFJ9+OGHcnZ2zrSiAAAAgKySoQB8N7ly5cqMzQAAAABZLkMBODk5WZMmTdKiRYsUHR2dZu7fixcvZmpxAAAAQGbL0Bjg0aNHa+LEiWrXrp3i4+M1cOBAtWrVSk5OTho1alQWlQgAAABkngwF4Pnz5+vTTz/VoEGDlCNHDnXo0EGfffaZRowYoa1bt2ZVjQAAAECmyVAAjomJUcWKFSVJefLkUXx8vCSpadOmWrFiReZXBwAAAGSyDAXgwoUL6+zZs5KkEiVK6KeffpIk7dixQ66urplfHQAAAJDJMhSAW7ZsqXXr1kmS+vXrp3feeUelSpVSp06d1LVr1ywpEAAAAMhMGZoFYty4cbaf27Vrp6JFi2rLli0qVaqUXnzxxUwvDgAAAMhs6boDvGjRoju216xZUwMHDtSLL76otm3bZmphAAAAQFZIVwDu1KmT1qxZc8dlycnJatu2raKiojK1MAAAACArpCsA//e//1WrVq20bds2u/aUlBS1bdtWmzdv1tq1a7OkQAAAACAzpWsMcP/+/XXx4kU1adJEP//8s8qXL6/k5GS1a9dOmzZt0vr161W+fPmsrhUAAAB4YOn+ENzo0aN18eJFNWrUSBs2bNDbb7+tjRs3at26dapQoUJW1ggAAABkmgzNAjFt2jRdunRJlStXVp48ebRu3TpVqlQpq2oDAAAAMl26AvDAgQNtP+fLl0+GYahKlSqKiIiw6zdx4sRMLQ4AAADIbOkKwL/++qvd86CgIN24ccOu3WKxZG5lAAAAQBZIVwDesGFDVtcBAAAAPBQZ+ipkAAAA4FFHAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKaSoS/CkKS4uDht375d586dU0pKit2yTp06ZVphAAAAQFbIUAD+4Ycf1LFjR125ckUeHh52c/9aLBYCMAAAALK9DA2BGDRokLp27aorV64oLi5Oly5dsj0uXryYVTUCAAAAmSZDAfj06dN6/fXXlTt37qyqBwAAAMhSGQrAwcHB2rlzZ1bVAgAAAGS5e44B/v77720/h4SEaMiQITpw4IAqVqyonDlz2vVt3rx55lcIAAAAZCKLYRjGv3VwckrfTWKLxaLk5ORMKSq7sVqt8vT0VHx8vDw8PBxdDh5zltGWe3cCgEeIMfJfowaQKTKS1+55B/j2qc4AAACARxlfhAEAAABTyfAXYVy9elUbN25UdHS0EhMT7Za9/vrrmVYYAAAAkBUyFIB//fVXNWnSRNeuXdPVq1eVP39+XbhwQblz51bBggUJwAAAAMj2MjQEIjw8XM2aNdOlS5fk5uamrVu36sSJE6pWrZo++uijrKoRAAAAyDQZCsB79uzRoEGD5OTkJGdnZyUkJCggIEDjx4/Xm2++mVU1AgAAAJkmQwE4Z86ctmnRChYsqOjoaEmSp6enTp48mfnVAQAAAJksQ2OAq1atqh07dqhUqVKqW7euRowYoQsXLmjevHmqUKFCVtUIAAAAZJoM3QEeM2aM/P39JUkffPCB8uXLpz59+uj8+fOaPXt2lhQIAAAAZKYM3QGuXr267eeCBQtq1apVmV4QAAAAkJX4IgwAAACYyj3vAFetWlUWiyVdG9u9e/cDFwQAAABkpXsG4BYtWmTZzmfOnKmZM2fq+PHjkqTy5ctrxIgRevHFFyVJ169f16BBg7Rw4UIlJCQoODhYM2bMkK+vr20b0dHR6tOnjzZs2KA8efIoNDRUY8eOVY4c/3dokZGRGjhwoPbv36+AgAC9/fbb6ty5c5YdFwAAALKvewbgkSNHZtnOCxcurHHjxqlUqVIyDENz587Vf/7zH/36668qX768wsPDtWLFCi1evFienp7q27evWrVqpc2bN0uSkpOTFRISIj8/P23ZskVnz55Vp06dlDNnTo0ZM0aSdOzYMYWEhKh3796aP3++1q1bp+7du8vf31/BwcFZdmwAAADIniyGYRj3s+KVK1eUkpJi1+bh4fHABeXPn18ffvihXnrpJfn4+GjBggV66aWXJEkHDx5UuXLlFBUVpZo1a2rlypVq2rSpzpw5Y7srPGvWLA0bNkznz5+Xi4uLhg0bphUrVmjfvn22fbRv315xcXHp/hCf1WqVp6en4uPjM+UYgX9jGZ2+IUcA8KgwRt5X1AAyJCN5LUMfgku9m+ru7i5PT0/ly5dP+fLlk5eXl/Lly/dARScnJ2vhwoW6evWqgoKCtGvXLiUlJalBgwa2PmXLllWRIkUUFRUlSYqKilLFihXthkQEBwfLarVq//79tj63biO1T+o27iQhIUFWq9XuAQAAgMdDhqZBe+WVV2QYhr744gv5+vqm+8Nx/2bv3r0KCgrS9evXlSdPHi1btkyBgYHas2ePXFxc5OXlZdff19dXMTExkqSYmBi78Ju6PHXZv/WxWq36559/5ObmlqamsWPHavTo0Q98bAAAAMh+MhSAf/vtN+3atUtlypTJtALKlCmjPXv2KD4+XkuWLFFoaKg2btyYadu/H8OHD9fAgQNtz61WqwICAhxYEQAAADJLhgLw008/rZMnT2ZqAHZxcVHJkiUlSdWqVdOOHTs0ZcoUtWvXTomJiYqLi7O7CxwbGys/Pz9Jkp+fn7Zv3263vdjYWNuy1P+mtt3ax8PD4453fyXJ1dVVrq6umXJ8AAAAyF4yFIA/++wz9e7dW6dPn1aFChWUM2dOu+WVKlV64IJSUlKUkJCgatWqKWfOnFq3bp1at24tSTp06JCio6MVFBQkSQoKCtIHH3ygc+fOqWDBgpKkNWvWyMPDQ4GBgbY+P/74o90+1qxZY9sGAAAAzCVDAfj8+fM6cuSIunTpYmuzWCwyDEMWi0XJyckZ2vnw4cP14osvqkiRIrp8+bIWLFigyMhIrV69Wp6enurWrZsGDhyo/Pnzy8PDQ/369VNQUJBq1qwpSWrUqJECAwP16quvavz48YqJidHbb7+tsLAw2x3c3r176+OPP9bQoUPVtWtXrV+/XosWLdKKFSsyVCsAAAAeDxkKwF27dlXVqlX1v//9L1M+BHfu3Dl16tRJZ8+elaenpypVqqTVq1erYcOGkqRJkybJyclJrVu3tvsijFTOzs5avny5+vTpo6CgILm7uys0NFTvvvuurU/x4sW1YsUKhYeHa8qUKSpcuLA+++wz5gAGAAAwqQzNA+zu7q7ffvvNNmbXLJgHGA8T8wADeNwwDzAehiybB7hevXr67bffHqg4AAAAwJEyNASiWbNmCg8P1969e1WxYsU0H4Jr3rx5phYHAAAAZLYMDYFwcrr7DeP7+RDco4IhEHiYGAIB4HHDEAg8DBnJaxm6A5ySkvJAhQEAAACOlqExwAAAAMCjLkN3gG+dXuxORowY8UDFAAAAAFktQwF42bJlds+TkpJ07Ngx5ciRQyVKlCAAAwAAINvLUAD+9ddf07RZrVZ17txZLVu2zLSiAAAAgKzywGOAPTw8NHr0aL3zzjuZUQ8AAACQpTLlQ3Dx8fGKj4/PjE0BAAAAWSpDQyCmTp1q99wwDJ09e1bz5s3Tiy++mKmFAQAAAFkhQwF40qRJds+dnJzk4+Oj0NBQDR8+PFMLAwAAALJChgLwsWPHsqoOAAAA4KFIVwBu1arVvTeUI4f8/PzUsGFDNWvW7IELAwAAALJCuj4E5+npec+Hm5ubDh8+rHbt2jEfMAAAALKtdN0BnjNnTro3uHz5cr322mv3/NY4AAAAwBEyZRq0Wz377LOqXr16Zm8WAAAAyBSZHoC9vLy0dOnSzN4sAAAAkCkyPQADAAAA2RkBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmAoBGAAAAKZCAAYAAICpEIABAABgKgRgAAAAmIpDA/DYsWP19NNPK2/evCpYsKBatGihQ4cO2fW5fv26wsLC5O3trTx58qh169aKjY216xMdHa2QkBDlzp1bBQsW1JAhQ3Tjxg27PpGRkXrqqafk6uqqkiVLKiIiIqsPDwAAANmQQwPwxo0bFRYWpq1bt2rNmjVKSkpSo0aNdPXqVVuf8PBw/fDDD1q8eLE2btyoM2fOqFWrVrblycnJCgkJUWJiorZs2aK5c+cqIiJCI0aMsPU5duyYQkJC9MILL2jPnj0aMGCAunfvrtWrVz/U4wUAAIDjWQzDMBxdRKrz58+rYMGC2rhxo5577jnFx8fLx8dHCxYs0EsvvSRJOnjwoMqVK6eoqCjVrFlTK1euVNOmTXXmzBn5+vpKkmbNmqVhw4bp/PnzcnFx0bBhw7RixQrt27fPtq/27dsrLi5Oq1atSlNHQkKCEhISbM+tVqsCAgIUHx8vDw+PLD4LMDvLaIujSwCATGWMzDZRA48xq9UqT0/PdOW1bDUGOD4+XpKUP39+SdKuXbuUlJSkBg0a2PqULVtWRYoUUVRUlCQpKipKFStWtIVfSQoODpbVatX+/fttfW7dRmqf1G3cbuzYsfL09LQ9AgICMu8gAQAA4FDZJgCnpKRowIABql27tipUqCBJiomJkYuLi7y8vOz6+vr6KiYmxtbn1vCbujx12b/1sVqt+ueff9LUMnz4cMXHx9seJ0+ezJRjBAAAgOPlcHQBqcLCwrRv3z798ssvji5Frq6ucnV1dXQZAAAAyALZ4g5w3759tXz5cm3YsEGFCxe2tfv5+SkxMVFxcXF2/WNjY+Xn52frc/usEKnP79XHw8NDbm5umX04AAAAyMYcGoANw1Dfvn21bNkyrV+/XsWLF7dbXq1aNeXMmVPr1q2ztR06dEjR0dEKCgqSJAUFBWnv3r06d+6crc+aNWvk4eGhwMBAW59bt5HaJ3UbAAAAMA+HDoEICwvTggUL9N133ylv3ry2Mbuenp5yc3OTp6enunXrpoEDByp//vzy8PBQv379FBQUpJo1a0qSGjVqpMDAQL366qsaP368YmJi9PbbbyssLMw2jKF37976+OOPNXToUHXt2lXr16/XokWLtGLFCocdOwAAABzDodOgWSx3nu5pzpw56ty5s6SbX4QxaNAg/e9//1NCQoKCg4M1Y8YM2/AGSTpx4oT69OmjyMhIubu7KzQ0VOPGjVOOHP+X7yMjIxUeHq4DBw6ocOHCeuedd2z7uJeMTKsBPCimQQPwuGEaNDwMGclr2Woe4OyKAIyHiQAM4HFDAMbD8MjOAwwAAABkNQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATMWhAfjnn39Ws2bNVKhQIVksFn377bd2yw3D0IgRI+Tv7y83Nzc1aNBAhw8ftutz8eJFdezYUR4eHvLy8lK3bt105coVuz6///676tSpo1y5cikgIEDjx4/P6kMDAABANuXQAHz16lVVrlxZ06dPv+Py8ePHa+rUqZo1a5a2bdsmd3d3BQcH6/r167Y+HTt21P79+7VmzRotX75cP//8s3r27GlbbrVa1ahRIxUtWlS7du3Shx9+qFGjRmn27NlZfnwAAADIfiyGYRiOLkKSLBaLli1bphYtWki6efe3UKFCGjRokAYPHixJio+Pl6+vryIiItS+fXv98ccfCgwM1I4dO1S9enVJ0qpVq9SkSROdOnVKhQoV0syZM/XWW28pJiZGLi4ukqQ33nhD3377rQ4ePJiu2qxWqzw9PRUfHy8PD4/MP3jgFpbRFkeXAACZyhiZLaIGHnMZyWvZdgzwsWPHFBMTowYNGtjaPD09VaNGDUVFRUmSoqKi5OXlZQu/ktSgQQM5OTlp27Zttj7PPfecLfxKUnBwsA4dOqRLly7dcd8JCQmyWq12DwAAADwesm0AjomJkST5+vratfv6+tqWxcTEqGDBgnbLc+TIofz589v1udM2bt3H7caOHStPT0/bIyAg4MEPCAAAANlCtg3AjjR8+HDFx8fbHidPnnR0SQAAAMgk2TYA+/n5SZJiY2Pt2mNjY23L/Pz8dO7cObvlN27c0MWLF+363Gkbt+7jdq6urvLw8LB7AAAA4PGQbQNw8eLF5efnp3Xr1tnarFartm3bpqCgIElSUFCQ4uLitGvXLluf9evXKyUlRTVq1LD1+fnnn5WUlGTrs2bNGpUpU0b58uV7SEcDAACA7MKhAfjKlSvas2eP9uzZI+nmB9/27Nmj6OhoWSwWDRgwQO+//76+//577d27V506dVKhQoVsM0WUK1dOjRs3Vo8ePbR9+3Zt3rxZffv2Vfv27VWoUCFJ0ssvvywXFxd169ZN+/fv19dff60pU6Zo4MCBDjpqAAAAOFIOR+58586deuGFF2zPU0NpaGioIiIiNHToUF29elU9e/ZUXFycnn32Wa1atUq5cuWyrTN//nz17dtX9evXl5OTk1q3bq2pU6falnt6euqnn35SWFiYqlWrpgIFCmjEiBF2cwUDAADAPLLNPMDZGfMA42FiHmAAjxvmAcbD8FjMAwwAAABkBQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATMVUAXj69OkqVqyYcuXKpRo1amj79u2OLgkAAAAPmWkC8Ndff62BAwdq5MiR2r17typXrqzg4GCdO3fO0aUBAADgITJNAJ44caJ69OihLl26KDAwULNmzVLu3Ln1xRdfOLo0AAAAPEQ5HF3Aw5CYmKhdu3Zp+PDhtjYnJyc1aNBAUVFRafonJCQoISHB9jw+Pl6SZLVas75Y4LqjCwCAzMW/n3gYUq8zwzDu2dcUAfjChQtKTk6Wr6+vXbuvr68OHjyYpv/YsWM1evToNO0BAQFZViMAAI8rz3Geji4BJnL58mV5ev77NWeKAJxRw4cP18CBA23PU1JSdPHiRXl7e8tisTiwMgDIHFarVQEBATp58qQ8PDwcXQ4APDDDMHT58mUVKlTonn1NEYALFCggZ2dnxcbG2rXHxsbKz88vTX9XV1e5urratXl5eWVliQDgEB4eHgRgAI+Ne935TWWKD8G5uLioWrVqWrduna0tJSVF69atU1BQkAMrAwAAwMNmijvAkjRw4ECFhoaqevXqeuaZZzR58mRdvXpVXbp0cXRpAAAAeIhME4DbtWun8+fPa8SIEYqJiVGVKlW0atWqNB+MAwAzcHV11ciRI9MM9wIAM7AY6ZkrAgAAAHhMmGIMMAAAAJCKAAwAAABTIQADAADAVAjAAAA7o0aNUpUqVTK0jsVi0bfffpsl9QBAZiMAA0A21blzZ1ksFlksFuXMmVPFixfX0KFDdf36dUeXBgCPNNNMgwYAj6LGjRtrzpw5SkpK0q5duxQaGiqLxaL//ve/ji4NAB5Z3AEGgGzM1dVVfn5+CggIUIsWLdSgQQOtWbNG0s1vtBw7dqyKFy8uNzc3Va5cWUuWLLGtGxkZKYvFonXr1ql69erKnTu3atWqpUOHDtntY9y4cfL19VXevHnVrVu3NHeYd+zYoYYNG6pAgQLy9PRU3bp1tXv37jS1XrhwQS1btlTu3LlVqlQpff/991lwRgDgwRGAAeARsW/fPm3ZskUuLi6SpLFjx+rLL7/UrFmztH//foWHh+uVV17Rxo0b7dZ76623NGHCBO3cuVM5cuRQ165dbcsWLVqkUaNGacyYMdq5c6f8/f01Y8YMu/UvX76s0NBQ/fLLL9q6datKlSqlJk2a6PLly3b9Ro8erbZt2+r3339XkyZN1LFjR128eDGLzgYA3D++CAMAsqnOnTvrq6++Uq5cuXTjxg0lJCTIyclJixYtUtOmTZU/f36tXbtWQUFBtnW6d++ua9euacGCBYqMjNQLL7ygtWvXqn79+pKkH3/8USEhIfrnn3+UK1cu1apVS1WrVtX06dNt26hZs6auX7+uPXv23LGulJQUeXl5acGCBWratKmkmx+Ce/vtt/Xee+9Jkq5evao8efJo5cqVaty4cRadIQC4P9wBBoBs7IUXXtCePXu0bds2hYaGqkuXLmrdurX++usvXbt2TQ0bNlSePHlsjy+//FJHjhyx20alSpVsP/v7+0uSzp07J0n6448/VKNGDbv+twZqSYqNjVWPHj1UqlQpeXp6ysPDQ1euXFF0dPRd9+Pu7i4PDw/bfgAgO+FDcACQjbm7u6tkyZKSpC+++EKVK1fW559/rgoVKkiSVqxYoSeeeMJuHVdXV7vnOXPmtP1ssVgk3byLm16hoaH6+++/NWXKFBUtWlSurq4KCgpSYmLiXfeTuq+M7AcAHhYCMAA8IpycnPTmm29q4MCB+vPPP+Xq6qro6GjVrVv3vrdZrlw5bdu2TZ06dbK1bd261a7P5s2bNWPGDDVp0kSSdPLkSV24cOG+9wkAjkYABoBHSJs2bTRkyBB98sknGjx4sMLDw5WSkqJnn31W8fHx2rx5szw8PBQaGpqu7fXv31+dO3dW9erVVbt2bc2fP1/79+/Xk08+aetTqlQpzZs3T9WrV5fVatWQIUPk5uaWVYcIAFmOAAwAj5AcOXKob9++Gj9+vI4dOyYfHx+NHTtWR48elZeXl5566im9+eab6d5eu3btdOTIEdsXbLRu3Vp9+vTR6tWrbX0+//xz9ezZU0899ZQCAgI0ZswYDR48OCsODwAeCmaBAAAAgKkwCwQAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAAABMhQAMAAAAUyEAAwAAwFQIwAAAADAVAjAAQJIUGRkpi8WiuLg4R5cCAFmKAAwAGdS5c2e1aNHCrm3JkiXKlSuXJkyYkK5tREREyMvLK/OLewC1atXS2bNn5enpedc+xYoV0+TJk23PDcPQ4MGD5eHhocjIyKwvEgAyQQ5HFwAAj7rPPvtMYWFhmjVrlrp06eLocu5LUlKSXFxc5Ofnl+51kpOT1aNHDy1fvlwbNmxQtWrVsrBCAMg83AEGgAcwfvx49evXTwsXLrQLvxMnTlTFihXl7u6ugIAAvfbaa7py5Yqkm0MNunTpovj4eFksFlksFo0aNUqSlJCQoMGDB+uJJ56Qu7u7atSokebO6qeffqqAgADlzp1bLVu21MSJE9PcTZ45c6ZKlCghFxcXlSlTRvPmzbNbbrFYNHPmTDVv3lzu7u764IMPMjQEIiEhQW3atNHatWu1adMmW/hNTk5Wt27dVLx4cbm5ualMmTKaMmWK3bqRkZF65pln5O7uLi8vL9WuXVsnTpyQdOe76wMGDNDzzz9ve75kyRJVrFhRbm5u8vb2VoMGDXT16tV71gwAqQjAAHCfhg0bpvfee0/Lly9Xy5Yt7ZY5OTlp6tSp2r9/v+bOnav169dr6NChkm4ONZg8ebI8PDx09uxZnT17VoMHD5Yk9e3bV1FRUVq4cKF+//13tWnTRo0bN9bhw4clSZs3b1bv3r3Vv39/7dmzRw0bNtQHH3xgt+9ly5apf//+GjRokPbt26devXqpS5cu2rBhg12/UaNGqWXLltq7d6+6du2a7uO+cuWKQkJCdODAAW3evFllypSxLUtJSVHhwoW1ePFiHThwQCNGjNCbb76pRYsWSZJu3LihFi1aqG7duvr9998VFRWlnj17ymKxpGvfZ8+eVYcOHdS1a1f98ccfioyMVKtWrWQYRrrrBwAZAIAMCQ0NNVxcXAxJxrp169K1zuLFiw1vb2/b8zlz5hienp52fU6cOGE4Ozsbp0+ftmuvX7++MXz4cMMwDKNdu3ZGSEiI3fKOHTvabatWrVpGjx497Pq0adPGaNKkie25JGPAgAF2fTZs2GBIMi5dunTX4yhatKjh4uJieHt7G+fOnbtrv1uFhYUZrVu3NgzDMP7++29DkhEZGXnHvqGhocZ//vMfu7b+/fsbdevWNQzDMHbt2mVIMo4fP56ufQPAnXAHGADuQ6VKlVSsWDGNHDnSNrThVmvXrlX9+vX1xBNPKG/evHr11Vf1999/69q1a3fd5t69e5WcnKzSpUsrT548tsfGjRt15MgRSdKhQ4f0zDPP2K13+/M//vhDtWvXtmurXbu2/vjjD7u26tWrZ+iYUzVq1EhXr17VmDFj7rh8+vTpqlatmnx8fJQnTx7Nnj1b0dHRkqT8+fOrc+fOCg4OVrNmzTRlyhSdPXs23fuuXLmy6tevr4oVK6pNmzb69NNPdenSpfs6DgDmRQAGgPvwxBNPKDIyUqdPn1bjxo11+fJl27Ljx4+radOmqlSpkr755hvt2rVL06dPlyQlJibedZtXrlyRs7Ozdu3apT179tgef/zxR5pxtJnB3d39vtarX7++vvvuO82aNUv9+/e3W7Zw4UINHjxY3bp1008//aQ9e/aoS5cudsc9Z84cRUVFqVatWvr6669VunRpbd26VdLNoSPGbcMZkpKSbD87OztrzZo1WrlypQIDAzVt2jSVKVNGx44du69jAWBOBGAAuE9FixbVxo0bFRMTYxeCd+3apZSUFE2YMEE1a9ZU6dKldebMGbt1XVxclJycbNdWtWpVJScn69y5cypZsqTdI3V2hjJlymjHjh12693+vFy5ctq8ebNd2+bNmxUYGJgpxy3dvAv8ww8/6NNPP9Xrr79ut59atWrptddeU9WqVVWyZEnb3etbVa1aVcOHD9eWLVtUoUIFLViwQJLk4+OT5o7wnj177J5bLBbVrl1bo0eP1q+//ioXFxctW7Ys044NwOOPAAwADyAgIECRkZE6d+6cgoODZbVaVbJkSSUlJWnatGk6evSo5s2bp1mzZtmtV6xYMV25ckXr1q3ThQsXdO3aNZUuXVodO3ZUp06dtHTpUh07dkzbt2/X2LFjtWLFCklSv3799OOPP2rixIk6fPiwPvnkE61cudLuQ2RDhgxRRESEZs6cqcOHD2vixIlaunSp7YN2maVBgwZavny5Pv/8c/Xt21eSVKpUKe3cuVOrV6/Wn3/+qXfeeccuoB87dkzDhw9XVFSUTpw4oZ9++kmHDx9WuXLlJEn16tXTzp079eWXX+rw4cMaOXKk9u3bZ1t/27ZtGjNmjHbu3Kno6GgtXbpU58+ft60PAOni6EHIAPCoudMHtU6dOmWUKlXKqFmzphEfH29MnDjR8Pf3N9zc3Izg4GDjyy+/TPMBs969exve3t6GJGPkyJGGYRhGYmKiMWLECKNYsWJGzpw5DX9/f6Nly5bG77//bltv9uzZxhNPPGG4ubkZLVq0MN5//33Dz8/Prp4ZM2YYTz75pJEzZ06jdOnSxpdffmm3XJKxbNkyu7b0fghu0qRJadZzd3c3XnvtNeP69etG586dDU9PT8PLy8vo06eP8cYbbxiVK1c2DMMwYmJijBYtWhj+/v6Gi4uLUbRoUWPEiBFGcnKybXsjRowwfH19DU9PTyM8PNzo27ev7UNwBw4cMIKDgw0fHx/D1dXVKF26tDFt2rS71gsAd2IxDOaOAYBHWY8ePXTw4EFt2rTJ0aUAwCOBb4IDgEfMRx99pIYNG8rd3V0rV67U3LlzNWPGDEeXBQCPDO4AA8Ajpm3btoqMjNTly5f15JNPql+/furdu7ejywKARwYBGAAAAKbCLBAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBUCMAAAAAwFQIwAAAATIUADAAAAFMhAAMAAMBU/h83piOfMQeJlgAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "8335a6ec", | |
"metadata": { | |
"id": "8335a6ec" | |
}, | |
"source": [ | |
"MENGHAPUS DATA YANG HILANG" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "f89fa3c0", | |
"metadata": { | |
"id": "f89fa3c0" | |
}, | |
"outputs": [], | |
"source": [ | |
"df_cleaned = df_selected.dropna()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "1a127937", | |
"metadata": { | |
"id": "1a127937", | |
"outputId": "a9fdcbd7-ee12-4664-8113-1a7761f53728" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 30885 entries, 0 to 31809\n", | |
"Data columns (total 16 columns):\n", | |
" # Column Non-Null Count Dtype \n", | |
"--- ------ -------------- ----- \n", | |
" 0 Tanggal 30885 non-null object \n", | |
" 1 Kode ISO Lokasi 30885 non-null object \n", | |
" 2 Lokasi 30885 non-null object \n", | |
" 3 Kasus Baru 30885 non-null int64 \n", | |
" 4 Kematian Baru 30885 non-null int64 \n", | |
" 5 Baru Pulih 30885 non-null int64 \n", | |
" 6 Kasus Aktif Baru 30885 non-null int64 \n", | |
" 7 Total Kasus 30885 non-null int64 \n", | |
" 8 Total Kematian 30885 non-null int64 \n", | |
" 9 Total Pulih 30885 non-null int64 \n", | |
" 10 Total Kasus Aktif 30885 non-null int64 \n", | |
" 11 Provinsi 30885 non-null object \n", | |
" 12 Total Kasus per Juta 30885 non-null float64\n", | |
" 13 Total Kematian per Juta 30885 non-null float64\n", | |
" 14 Tingkat Kasus Kematian 30885 non-null float64\n", | |
" 15 Tingkat Pemulihan Kasus 30885 non-null float64\n", | |
"dtypes: float64(4), int64(8), object(4)\n", | |
"memory usage: 4.0+ MB\n" | |
] | |
} | |
], | |
"source": [ | |
"df_cleaned.info()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "cb3efcc9", | |
"metadata": { | |
"id": "cb3efcc9" | |
}, | |
"source": [ | |
"MENGURUTKAN TOTAL KASUS PERJUTA COVID19 , DAN MENAMPILKAN 10 KASUS TERBESAR DARI DATA SET" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "84d319e2", | |
"metadata": { | |
"scrolled": false, | |
"id": "84d319e2", | |
"outputId": "15a8ce7b-d569-4451-9180-02b4a20ee4b2" | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Tanggal</th>\n", | |
" <th>Kode ISO Lokasi</th>\n", | |
" <th>Lokasi</th>\n", | |
" <th>Kasus Baru</th>\n", | |
" <th>Kematian Baru</th>\n", | |
" <th>Baru Pulih</th>\n", | |
" <th>Kasus Aktif Baru</th>\n", | |
" <th>Total Kasus</th>\n", | |
" <th>Total Kematian</th>\n", | |
" <th>Total Pulih</th>\n", | |
" <th>Total Kasus Aktif</th>\n", | |
" <th>Provinsi</th>\n", | |
" <th>Total Kasus per Juta</th>\n", | |
" <th>Total Kematian per Juta</th>\n", | |
" <th>Tingkat Kasus Kematian</th>\n", | |
" <th>Tingkat Pemulihan Kasus</th>\n", | |
" <th>Outlier</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>31781</th>\n", | |
" <td>2022-09-15</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1116</td>\n", | |
" <td>0</td>\n", | |
" <td>58</td>\n", | |
" <td>1058</td>\n", | |
" <td>1412511</td>\n", | |
" <td>15513</td>\n", | |
" <td>1386134</td>\n", | |
" <td>10864</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130231.62</td>\n", | |
" <td>1430.28</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9813</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31746</th>\n", | |
" <td>2022-09-14</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1228</td>\n", | |
" <td>1</td>\n", | |
" <td>23</td>\n", | |
" <td>1204</td>\n", | |
" <td>1411395</td>\n", | |
" <td>15513</td>\n", | |
" <td>1386076</td>\n", | |
" <td>9806</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130128.72</td>\n", | |
" <td>1430.28</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9821</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31711</th>\n", | |
" <td>2022-09-13</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>16</td>\n", | |
" <td>0</td>\n", | |
" <td>313</td>\n", | |
" <td>-297</td>\n", | |
" <td>1410167</td>\n", | |
" <td>15512</td>\n", | |
" <td>1386053</td>\n", | |
" <td>8602</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130015.50</td>\n", | |
" <td>1430.19</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9829</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31676</th>\n", | |
" <td>2022-12-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>17</td>\n", | |
" <td>3</td>\n", | |
" <td>1350</td>\n", | |
" <td>-1336</td>\n", | |
" <td>1410151</td>\n", | |
" <td>15512</td>\n", | |
" <td>1385740</td>\n", | |
" <td>8899</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130014.03</td>\n", | |
" <td>1430.19</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9827</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31641</th>\n", | |
" <td>2022-11-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>855</td>\n", | |
" <td>3</td>\n", | |
" <td>1429</td>\n", | |
" <td>-577</td>\n", | |
" <td>1410134</td>\n", | |
" <td>15509</td>\n", | |
" <td>1384390</td>\n", | |
" <td>10235</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130012.46</td>\n", | |
" <td>1429.91</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9817</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31606</th>\n", | |
" <td>2022-10-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1125</td>\n", | |
" <td>1</td>\n", | |
" <td>1612</td>\n", | |
" <td>-488</td>\n", | |
" <td>1409279</td>\n", | |
" <td>15506</td>\n", | |
" <td>1382961</td>\n", | |
" <td>10812</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129933.63</td>\n", | |
" <td>1429.63</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9813</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31571</th>\n", | |
" <td>2022-09-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1166</td>\n", | |
" <td>2</td>\n", | |
" <td>2146</td>\n", | |
" <td>-982</td>\n", | |
" <td>1408154</td>\n", | |
" <td>15505</td>\n", | |
" <td>1381349</td>\n", | |
" <td>11300</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129829.91</td>\n", | |
" <td>1429.54</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9810</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31536</th>\n", | |
" <td>2022-08-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1318</td>\n", | |
" <td>1</td>\n", | |
" <td>1783</td>\n", | |
" <td>-466</td>\n", | |
" <td>1406988</td>\n", | |
" <td>15503</td>\n", | |
" <td>1379203</td>\n", | |
" <td>12282</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129722.40</td>\n", | |
" <td>1429.36</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9803</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31501</th>\n", | |
" <td>2022-07-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1486</td>\n", | |
" <td>4</td>\n", | |
" <td>1322</td>\n", | |
" <td>160</td>\n", | |
" <td>1405670</td>\n", | |
" <td>15502</td>\n", | |
" <td>1377420</td>\n", | |
" <td>12748</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129600.89</td>\n", | |
" <td>1429.26</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9799</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31466</th>\n", | |
" <td>2022-06-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1387</td>\n", | |
" <td>3</td>\n", | |
" <td>1418</td>\n", | |
" <td>-34</td>\n", | |
" <td>1404184</td>\n", | |
" <td>15498</td>\n", | |
" <td>1376098</td>\n", | |
" <td>12588</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129463.88</td>\n", | |
" <td>1428.89</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9800</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31431</th>\n", | |
" <td>2022-05-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>992</td>\n", | |
" <td>4</td>\n", | |
" <td>1899</td>\n", | |
" <td>-911</td>\n", | |
" <td>1402797</td>\n", | |
" <td>15495</td>\n", | |
" <td>1374680</td>\n", | |
" <td>12622</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129336.00</td>\n", | |
" <td>1428.62</td>\n", | |
" <td>0.0110</td>\n", | |
" <td>0.9800</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31396</th>\n", | |
" <td>2022-04-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1257</td>\n", | |
" <td>3</td>\n", | |
" <td>1673</td>\n", | |
" <td>-419</td>\n", | |
" <td>1401805</td>\n", | |
" <td>15491</td>\n", | |
" <td>1372781</td>\n", | |
" <td>13533</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129244.54</td>\n", | |
" <td>1428.25</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9793</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31361</th>\n", | |
" <td>2022-03-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1506</td>\n", | |
" <td>4</td>\n", | |
" <td>2215</td>\n", | |
" <td>-713</td>\n", | |
" <td>1400548</td>\n", | |
" <td>15488</td>\n", | |
" <td>1371108</td>\n", | |
" <td>13952</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129128.64</td>\n", | |
" <td>1427.97</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9790</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31326</th>\n", | |
" <td>2022-02-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1500</td>\n", | |
" <td>3</td>\n", | |
" <td>2199</td>\n", | |
" <td>-702</td>\n", | |
" <td>1399042</td>\n", | |
" <td>15484</td>\n", | |
" <td>1368893</td>\n", | |
" <td>14665</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>128989.79</td>\n", | |
" <td>1427.60</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9785</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31291</th>\n", | |
" <td>2022-01-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1702</td>\n", | |
" <td>4</td>\n", | |
" <td>1774</td>\n", | |
" <td>-76</td>\n", | |
" <td>1397542</td>\n", | |
" <td>15481</td>\n", | |
" <td>1366694</td>\n", | |
" <td>15367</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>128851.50</td>\n", | |
" <td>1427.33</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9779</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31256</th>\n", | |
" <td>2022-08-31</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1931</td>\n", | |
" <td>3</td>\n", | |
" <td>1537</td>\n", | |
" <td>391</td>\n", | |
" <td>1395840</td>\n", | |
" <td>15477</td>\n", | |
" <td>1364920</td>\n", | |
" <td>15443</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>128694.57</td>\n", | |
" <td>1426.96</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9778</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31221</th>\n", | |
" <td>2022-08-30</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1717</td>\n", | |
" <td>2</td>\n", | |
" <td>2000</td>\n", | |
" <td>-285</td>\n", | |
" <td>1393909</td>\n", | |
" <td>15474</td>\n", | |
" <td>1363383</td>\n", | |
" <td>15052</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>128516.54</td>\n", | |
" <td>1426.68</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9781</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31186</th>\n", | |
" <td>2022-08-29</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1216</td>\n", | |
" <td>4</td>\n", | |
" <td>1797</td>\n", | |
" <td>-585</td>\n", | |
" <td>1392192</td>\n", | |
" <td>15472</td>\n", | |
" <td>1361383</td>\n", | |
" <td>15337</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>128358.23</td>\n", | |
" <td>1426.50</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9779</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31151</th>\n", | |
" <td>2022-08-28</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1489</td>\n", | |
" <td>2</td>\n", | |
" <td>2737</td>\n", | |
" <td>-1250</td>\n", | |
" <td>1390976</td>\n", | |
" <td>15468</td>\n", | |
" <td>1359586</td>\n", | |
" <td>15922</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>128246.12</td>\n", | |
" <td>1426.13</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9774</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31116</th>\n", | |
" <td>2022-08-27</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1912</td>\n", | |
" <td>2</td>\n", | |
" <td>713</td>\n", | |
" <td>1197</td>\n", | |
" <td>1389487</td>\n", | |
" <td>15466</td>\n", | |
" <td>1356849</td>\n", | |
" <td>17172</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>128108.83</td>\n", | |
" <td>1425.94</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9765</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31081</th>\n", | |
" <td>2022-08-26</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1888</td>\n", | |
" <td>3</td>\n", | |
" <td>3100</td>\n", | |
" <td>-1215</td>\n", | |
" <td>1387575</td>\n", | |
" <td>15464</td>\n", | |
" <td>1356136</td>\n", | |
" <td>15975</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>127932.55</td>\n", | |
" <td>1425.76</td>\n", | |
" <td>0.0111</td>\n", | |
" <td>0.9773</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Tanggal Kode ISO Lokasi Lokasi Kasus Baru Kematian Baru \\\n", | |
"31781 2022-09-15 ID-JK DKI Jakarta 1116 0 \n", | |
"31746 2022-09-14 ID-JK DKI Jakarta 1228 1 \n", | |
"31711 2022-09-13 ID-JK DKI Jakarta 16 0 \n", | |
"31676 2022-12-09 ID-JK DKI Jakarta 17 3 \n", | |
"31641 2022-11-09 ID-JK DKI Jakarta 855 3 \n", | |
"31606 2022-10-09 ID-JK DKI Jakarta 1125 1 \n", | |
"31571 2022-09-09 ID-JK DKI Jakarta 1166 2 \n", | |
"31536 2022-08-09 ID-JK DKI Jakarta 1318 1 \n", | |
"31501 2022-07-09 ID-JK DKI Jakarta 1486 4 \n", | |
"31466 2022-06-09 ID-JK DKI Jakarta 1387 3 \n", | |
"31431 2022-05-09 ID-JK DKI Jakarta 992 4 \n", | |
"31396 2022-04-09 ID-JK DKI Jakarta 1257 3 \n", | |
"31361 2022-03-09 ID-JK DKI Jakarta 1506 4 \n", | |
"31326 2022-02-09 ID-JK DKI Jakarta 1500 3 \n", | |
"31291 2022-01-09 ID-JK DKI Jakarta 1702 4 \n", | |
"31256 2022-08-31 ID-JK DKI Jakarta 1931 3 \n", | |
"31221 2022-08-30 ID-JK DKI Jakarta 1717 2 \n", | |
"31186 2022-08-29 ID-JK DKI Jakarta 1216 4 \n", | |
"31151 2022-08-28 ID-JK DKI Jakarta 1489 2 \n", | |
"31116 2022-08-27 ID-JK DKI Jakarta 1912 2 \n", | |
"31081 2022-08-26 ID-JK DKI Jakarta 1888 3 \n", | |
"\n", | |
" Baru Pulih Kasus Aktif Baru Total Kasus Total Kematian Total Pulih \\\n", | |
"31781 58 1058 1412511 15513 1386134 \n", | |
"31746 23 1204 1411395 15513 1386076 \n", | |
"31711 313 -297 1410167 15512 1386053 \n", | |
"31676 1350 -1336 1410151 15512 1385740 \n", | |
"31641 1429 -577 1410134 15509 1384390 \n", | |
"31606 1612 -488 1409279 15506 1382961 \n", | |
"31571 2146 -982 1408154 15505 1381349 \n", | |
"31536 1783 -466 1406988 15503 1379203 \n", | |
"31501 1322 160 1405670 15502 1377420 \n", | |
"31466 1418 -34 1404184 15498 1376098 \n", | |
"31431 1899 -911 1402797 15495 1374680 \n", | |
"31396 1673 -419 1401805 15491 1372781 \n", | |
"31361 2215 -713 1400548 15488 1371108 \n", | |
"31326 2199 -702 1399042 15484 1368893 \n", | |
"31291 1774 -76 1397542 15481 1366694 \n", | |
"31256 1537 391 1395840 15477 1364920 \n", | |
"31221 2000 -285 1393909 15474 1363383 \n", | |
"31186 1797 -585 1392192 15472 1361383 \n", | |
"31151 2737 -1250 1390976 15468 1359586 \n", | |
"31116 713 1197 1389487 15466 1356849 \n", | |
"31081 3100 -1215 1387575 15464 1356136 \n", | |
"\n", | |
" Total Kasus Aktif Provinsi Total Kasus per Juta \\\n", | |
"31781 10864 DKI Jakarta 130231.62 \n", | |
"31746 9806 DKI Jakarta 130128.72 \n", | |
"31711 8602 DKI Jakarta 130015.50 \n", | |
"31676 8899 DKI Jakarta 130014.03 \n", | |
"31641 10235 DKI Jakarta 130012.46 \n", | |
"31606 10812 DKI Jakarta 129933.63 \n", | |
"31571 11300 DKI Jakarta 129829.91 \n", | |
"31536 12282 DKI Jakarta 129722.40 \n", | |
"31501 12748 DKI Jakarta 129600.89 \n", | |
"31466 12588 DKI Jakarta 129463.88 \n", | |
"31431 12622 DKI Jakarta 129336.00 \n", | |
"31396 13533 DKI Jakarta 129244.54 \n", | |
"31361 13952 DKI Jakarta 129128.64 \n", | |
"31326 14665 DKI Jakarta 128989.79 \n", | |
"31291 15367 DKI Jakarta 128851.50 \n", | |
"31256 15443 DKI Jakarta 128694.57 \n", | |
"31221 15052 DKI Jakarta 128516.54 \n", | |
"31186 15337 DKI Jakarta 128358.23 \n", | |
"31151 15922 DKI Jakarta 128246.12 \n", | |
"31116 17172 DKI Jakarta 128108.83 \n", | |
"31081 15975 DKI Jakarta 127932.55 \n", | |
"\n", | |
" Total Kematian per Juta Tingkat Kasus Kematian \\\n", | |
"31781 1430.28 0.0110 \n", | |
"31746 1430.28 0.0110 \n", | |
"31711 1430.19 0.0110 \n", | |
"31676 1430.19 0.0110 \n", | |
"31641 1429.91 0.0110 \n", | |
"31606 1429.63 0.0110 \n", | |
"31571 1429.54 0.0110 \n", | |
"31536 1429.36 0.0110 \n", | |
"31501 1429.26 0.0110 \n", | |
"31466 1428.89 0.0110 \n", | |
"31431 1428.62 0.0110 \n", | |
"31396 1428.25 0.0111 \n", | |
"31361 1427.97 0.0111 \n", | |
"31326 1427.60 0.0111 \n", | |
"31291 1427.33 0.0111 \n", | |
"31256 1426.96 0.0111 \n", | |
"31221 1426.68 0.0111 \n", | |
"31186 1426.50 0.0111 \n", | |
"31151 1426.13 0.0111 \n", | |
"31116 1425.94 0.0111 \n", | |
"31081 1425.76 0.0111 \n", | |
"\n", | |
" Tingkat Pemulihan Kasus Outlier \n", | |
"31781 0.9813 True \n", | |
"31746 0.9821 True \n", | |
"31711 0.9829 True \n", | |
"31676 0.9827 True \n", | |
"31641 0.9817 True \n", | |
"31606 0.9813 True \n", | |
"31571 0.9810 True \n", | |
"31536 0.9803 True \n", | |
"31501 0.9799 True \n", | |
"31466 0.9800 True \n", | |
"31431 0.9800 True \n", | |
"31396 0.9793 True \n", | |
"31361 0.9790 True \n", | |
"31326 0.9785 True \n", | |
"31291 0.9779 True \n", | |
"31256 0.9778 True \n", | |
"31221 0.9781 True \n", | |
"31186 0.9779 True \n", | |
"31151 0.9774 True \n", | |
"31116 0.9765 True \n", | |
"31081 0.9773 True " | |
] | |
}, | |
"execution_count": 53, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df_cleaned = df_cleaned.sort_values(by='Total Kasus', ascending=False)\n", | |
"\n", | |
"df_cleaned.head(21)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "a5173f90", | |
"metadata": { | |
"id": "a5173f90" | |
}, | |
"source": [ | |
"MENDETEKSI OUTLIER" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "23a65ea5", | |
"metadata": { | |
"id": "23a65ea5", | |
"outputId": "dd363f93-9b84-499e-a263-e55762f5ea9a" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"31781 True\n", | |
"31746 True\n", | |
"31711 True\n", | |
"31676 True\n", | |
"31641 True\n", | |
" ... \n", | |
"194 False\n", | |
"143 False\n", | |
"175 False\n", | |
"213 False\n", | |
"25 False\n", | |
"Name: Total Kasus, Length: 30885, dtype: bool\n" | |
] | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"# Membuat fungsi untuk mendeteksi outlier menggunakan Z-Score\n", | |
"def detect_outliers_zscore(df, threshold=3):\n", | |
" z_scores = np.abs((df - df.mean()) / df.std())\n", | |
" return z_scores > threshold\n", | |
"\n", | |
"# Dataset\n", | |
"outliers_zscore = detect_outliers_zscore(df_cleaned['Total Kasus'])\n", | |
"print(outliers_zscore)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "50f7f6aa", | |
"metadata": { | |
"id": "50f7f6aa" | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import seaborn as sns\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "9ed3ea29", | |
"metadata": { | |
"id": "9ed3ea29" | |
}, | |
"outputs": [], | |
"source": [ | |
"# Fungsi untuk mendeteksi outliers menggunakan Z-Score\n", | |
"def detect_outliers_zscore(series, threshold=3):\n", | |
" z_scores = np.abs((series - series.mean()) / series.std())\n", | |
" return z_scores > threshold\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "68829aba", | |
"metadata": { | |
"id": "68829aba" | |
}, | |
"outputs": [], | |
"source": [ | |
"# Mengonversi kolom 'Tanggal' ke format datetime\n", | |
"df_cleaned['Tanggal'] = pd.to_datetime(df_cleaned['Tanggal'])\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "019db905", | |
"metadata": { | |
"id": "019db905", | |
"outputId": "0fdf12e1-00ca-4910-f758-8cbd00029aae" | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Tanggal</th>\n", | |
" <th>Kode ISO Lokasi</th>\n", | |
" <th>Lokasi</th>\n", | |
" <th>Kasus Baru</th>\n", | |
" <th>Kematian Baru</th>\n", | |
" <th>Baru Pulih</th>\n", | |
" <th>Kasus Aktif Baru</th>\n", | |
" <th>Total Kasus</th>\n", | |
" <th>Total Kematian</th>\n", | |
" <th>Total Pulih</th>\n", | |
" <th>Total Kasus Aktif</th>\n", | |
" <th>Provinsi</th>\n", | |
" <th>Total Kasus per Juta</th>\n", | |
" <th>Total Kematian per Juta</th>\n", | |
" <th>Tingkat Kasus Kematian</th>\n", | |
" <th>Tingkat Pemulihan Kasus</th>\n", | |
" <th>Outlier</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>31781</th>\n", | |
" <td>2022-09-15</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1116</td>\n", | |
" <td>0</td>\n", | |
" <td>58</td>\n", | |
" <td>1058</td>\n", | |
" <td>1412511</td>\n", | |
" <td>15513</td>\n", | |
" <td>1386134</td>\n", | |
" <td>10864</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130231.62</td>\n", | |
" <td>1430.28</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9813</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31746</th>\n", | |
" <td>2022-09-14</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1228</td>\n", | |
" <td>1</td>\n", | |
" <td>23</td>\n", | |
" <td>1204</td>\n", | |
" <td>1411395</td>\n", | |
" <td>15513</td>\n", | |
" <td>1386076</td>\n", | |
" <td>9806</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130128.72</td>\n", | |
" <td>1430.28</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9821</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31711</th>\n", | |
" <td>2022-09-13</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>16</td>\n", | |
" <td>0</td>\n", | |
" <td>313</td>\n", | |
" <td>-297</td>\n", | |
" <td>1410167</td>\n", | |
" <td>15512</td>\n", | |
" <td>1386053</td>\n", | |
" <td>8602</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130015.50</td>\n", | |
" <td>1430.19</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9829</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31676</th>\n", | |
" <td>2022-12-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>17</td>\n", | |
" <td>3</td>\n", | |
" <td>1350</td>\n", | |
" <td>-1336</td>\n", | |
" <td>1410151</td>\n", | |
" <td>15512</td>\n", | |
" <td>1385740</td>\n", | |
" <td>8899</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130014.03</td>\n", | |
" <td>1430.19</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9827</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31641</th>\n", | |
" <td>2022-11-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>855</td>\n", | |
" <td>3</td>\n", | |
" <td>1429</td>\n", | |
" <td>-577</td>\n", | |
" <td>1410134</td>\n", | |
" <td>15509</td>\n", | |
" <td>1384390</td>\n", | |
" <td>10235</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>130012.46</td>\n", | |
" <td>1429.91</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9817</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31606</th>\n", | |
" <td>2022-10-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1125</td>\n", | |
" <td>1</td>\n", | |
" <td>1612</td>\n", | |
" <td>-488</td>\n", | |
" <td>1409279</td>\n", | |
" <td>15506</td>\n", | |
" <td>1382961</td>\n", | |
" <td>10812</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129933.63</td>\n", | |
" <td>1429.63</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9813</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31571</th>\n", | |
" <td>2022-09-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1166</td>\n", | |
" <td>2</td>\n", | |
" <td>2146</td>\n", | |
" <td>-982</td>\n", | |
" <td>1408154</td>\n", | |
" <td>15505</td>\n", | |
" <td>1381349</td>\n", | |
" <td>11300</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129829.91</td>\n", | |
" <td>1429.54</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9810</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31536</th>\n", | |
" <td>2022-08-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1318</td>\n", | |
" <td>1</td>\n", | |
" <td>1783</td>\n", | |
" <td>-466</td>\n", | |
" <td>1406988</td>\n", | |
" <td>15503</td>\n", | |
" <td>1379203</td>\n", | |
" <td>12282</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129722.40</td>\n", | |
" <td>1429.36</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9803</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31501</th>\n", | |
" <td>2022-07-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1486</td>\n", | |
" <td>4</td>\n", | |
" <td>1322</td>\n", | |
" <td>160</td>\n", | |
" <td>1405670</td>\n", | |
" <td>15502</td>\n", | |
" <td>1377420</td>\n", | |
" <td>12748</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129600.89</td>\n", | |
" <td>1429.26</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9799</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31466</th>\n", | |
" <td>2022-06-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>1387</td>\n", | |
" <td>3</td>\n", | |
" <td>1418</td>\n", | |
" <td>-34</td>\n", | |
" <td>1404184</td>\n", | |
" <td>15498</td>\n", | |
" <td>1376098</td>\n", | |
" <td>12588</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129463.88</td>\n", | |
" <td>1428.89</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9800</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31431</th>\n", | |
" <td>2022-05-09</td>\n", | |
" <td>ID-JK</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>992</td>\n", | |
" <td>4</td>\n", | |
" <td>1899</td>\n", | |
" <td>-911</td>\n", | |
" <td>1402797</td>\n", | |
" <td>15495</td>\n", | |
" <td>1374680</td>\n", | |
" <td>12622</td>\n", | |
" <td>DKI Jakarta</td>\n", | |
" <td>129336.00</td>\n", | |
" <td>1428.62</td>\n", | |
" <td>0.011</td>\n", | |
" <td>0.9800</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Tanggal Kode ISO Lokasi Lokasi Kasus Baru Kematian Baru \\\n", | |
"31781 2022-09-15 ID-JK DKI Jakarta 1116 0 \n", | |
"31746 2022-09-14 ID-JK DKI Jakarta 1228 1 \n", | |
"31711 2022-09-13 ID-JK DKI Jakarta 16 0 \n", | |
"31676 2022-12-09 ID-JK DKI Jakarta 17 3 \n", | |
"31641 2022-11-09 ID-JK DKI Jakarta 855 3 \n", | |
"31606 2022-10-09 ID-JK DKI Jakarta 1125 1 \n", | |
"31571 2022-09-09 ID-JK DKI Jakarta 1166 2 \n", | |
"31536 2022-08-09 ID-JK DKI Jakarta 1318 1 \n", | |
"31501 2022-07-09 ID-JK DKI Jakarta 1486 4 \n", | |
"31466 2022-06-09 ID-JK DKI Jakarta 1387 3 \n", | |
"31431 2022-05-09 ID-JK DKI Jakarta 992 4 \n", | |
"\n", | |
" Baru Pulih Kasus Aktif Baru Total Kasus Total Kematian Total Pulih \\\n", | |
"31781 58 1058 1412511 15513 1386134 \n", | |
"31746 23 1204 1411395 15513 1386076 \n", | |
"31711 313 -297 1410167 15512 1386053 \n", | |
"31676 1350 -1336 1410151 15512 1385740 \n", | |
"31641 1429 -577 1410134 15509 1384390 \n", | |
"31606 1612 -488 1409279 15506 1382961 \n", | |
"31571 2146 -982 1408154 15505 1381349 \n", | |
"31536 1783 -466 1406988 15503 1379203 \n", | |
"31501 1322 160 1405670 15502 1377420 \n", | |
"31466 1418 -34 1404184 15498 1376098 \n", | |
"31431 1899 -911 1402797 15495 1374680 \n", | |
"\n", | |
" Total Kasus Aktif Provinsi Total Kasus per Juta \\\n", | |
"31781 10864 DKI Jakarta 130231.62 \n", | |
"31746 9806 DKI Jakarta 130128.72 \n", | |
"31711 8602 DKI Jakarta 130015.50 \n", | |
"31676 8899 DKI Jakarta 130014.03 \n", | |
"31641 10235 DKI Jakarta 130012.46 \n", | |
"31606 10812 DKI Jakarta 129933.63 \n", | |
"31571 11300 DKI Jakarta 129829.91 \n", | |
"31536 12282 DKI Jakarta 129722.40 \n", | |
"31501 12748 DKI Jakarta 129600.89 \n", | |
"31466 12588 DKI Jakarta 129463.88 \n", | |
"31431 12622 DKI Jakarta 129336.00 \n", | |
"\n", | |
" Total Kematian per Juta Tingkat Kasus Kematian \\\n", | |
"31781 1430.28 0.011 \n", | |
"31746 1430.28 0.011 \n", | |
"31711 1430.19 0.011 \n", | |
"31676 1430.19 0.011 \n", | |
"31641 1429.91 0.011 \n", | |
"31606 1429.63 0.011 \n", | |
"31571 1429.54 0.011 \n", | |
"31536 1429.36 0.011 \n", | |
"31501 1429.26 0.011 \n", | |
"31466 1428.89 0.011 \n", | |
"31431 1428.62 0.011 \n", | |
"\n", | |
" Tingkat Pemulihan Kasus Outlier \n", | |
"31781 0.9813 True \n", | |
"31746 0.9821 True \n", | |
"31711 0.9829 True \n", | |
"31676 0.9827 True \n", | |
"31641 0.9817 True \n", | |
"31606 0.9813 True \n", | |
"31571 0.9810 True \n", | |
"31536 0.9803 True \n", | |
"31501 0.9799 True \n", | |
"31466 0.9800 True \n", | |
"31431 0.9800 True " | |
] | |
}, | |
"execution_count": 58, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"# Fungsi untuk mendeteksi outliers menggunakan Z-Score\n", | |
"def detect_outliers_zscore(series, threshold=3):\n", | |
" z_scores = np.abs((series - series.mean()) / series.std())\n", | |
" return z_scores > threshold\n", | |
"\n", | |
"# Deteksi outliers di kolom 'Total Kasus per Juta'\n", | |
"df_cleaned['Outlier'] = detect_outliers_zscore(df_cleaned['Total Kasus'])\n", | |
"df_cleaned.head(11)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "023c645f", | |
"metadata": { | |
"id": "023c645f", | |
"outputId": "0572ef43-0857-42eb-d133-8ec9391ef447" | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIhCAYAAACizkCYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXgT5fbHv2mbtimllL3sm4AoAnVDBLGAbMpWcLvcKyKisrlcBC4gOxVZFRUEWWQRiohAERdkF2TxB0rhAi7gVUAoVChdkzTb+/vjOM2eTJIJTdrzeZ4800xmTs68k7bvN+e856iEEAIMwzAMwzAMwzBMQESUtgMMwzAMwzAMwzBlARZXDMMwDMMwDMMwCsDiimEYhmEYhmEYRgFYXDEMwzAMwzAMwygAiyuGYRiGYRiGYRgFYHHFMAzDMAzDMAyjACyuGIZhGIZhGIZhFIDFFcMwDMMwDMMwjAKwuGIYhmEYhmEYhlEAFlcMwzA+oFKpZD3279/v1dasWbOQkZERsD/Tpk2TddyoUaOc9k+dOhUqlQrDhw+HxWIJyJdQQu64lEUuXbqEUaNGoUmTJoiNjUXlypWRkpKC9evXQwjht9309HQsXLjQ5WuO471//37ZvwcMwzBliajSdoBhGCacOHLkiN3zmTNnYt++fdi7d6/d/jvuuMOrrVmzZuHxxx9Hv379lHRRFkIIvPrqq3j//fcxfvx4vPXWW7fcB0Z5Dh06hF69eiE+Ph5jx45Fq1atkJeXh08//RT/+te/sH37dqSnpyMiwvfvVtPT03H69Gm89tprXo+9++67ceTIEVm/BwzDMGUJFlcMwzA+8MADD9g9r169OiIiIpz2hzImkwlDhgzBxx9/jHnz5mHMmDGl7RKjALm5uejfvz8qVaqE77//HjVr1ix5rW/fvmjVqhXGjx+PNm3aYPz48UH1JSEhQdHfCZ1Oh9jYWKhUKsVsMgzDBANOC2QYhlGYnJwcjBgxAnXq1EF0dDQaN26MN954A8XFxSXHqFQqFBUVYc2aNSWphCkpKQCAv/76CyNGjMAdd9yB+Ph41KhRA507d8bBgwcD9k2v12PAgAFIT0/HihUrnITV+fPn8dxzz6Fp06aIi4tDnTp10Lt3b/z3v/+1O85isSAtLQ3NmzeHRqNBYmIiWrVqhXfffbfkmMGDB6Nhw4ZOPkybNs1pkrxp0ya0bdsWlSpVQlxcHBo3bowhQ4Z4vZ78/Hy88MILqFq1KuLj49GjRw/8+uuvLo89d+4cBg4ciBo1aiAmJgYtWrTA4sWL7Y6R0tk2bNiAN954A7Vr10ZCQgIeeeQR/PLLL3bHCiEwa9YsNGjQALGxsbj33nuxa9cupKSklNxLgMb89ddfR5s2bVCpUiVUqVIF7dq1w7Zt25x8lNI3P/74Y7Ro0QJxcXFo3bo1vvjiC69jsWLFCmRnZ2P27Nl2wkpi3LhxuP322zFv3jwYjUYAwOrVq6FSqfDHH3+4HAcprS8lJQVffvklLly4YJf+6g53aYHHjx9Hnz59UKVKFcTGxiI5ORmffvqp3TGSTzt37sSQIUNQvXp1xMXFobi4GH/99RdefPFF1KtXDzExMahevTrat2+P3bt3ex0fhmGYWwFHrhiGYRREr9ejU6dO+O233zB9+nS0atUKBw8exFtvvYXMzEx8+eWXACi9sHPnzujUqRMmT54MgL7tB0icAbQeKikpCYWFhdi6dStSUlKwZ88eu4m7LxQUFKBnz544fPgwNm7ciAEDBjgdc+XKFVStWhWzZ89G9erVkZOTgzVr1qBt27Y4ceIEmjdvDgCYO3cupk2bhkmTJqFjx44wGo34+eefkZub67NfR44cwVNPPYWnnnoK06ZNQ2xsLC5cuOCUaumIEAL9+vXD4cOHMWXKFNx33304dOgQevbs6XTs2bNn8eCDD6J+/fpYsGABkpKS8M033+CVV17B9evXMXXqVLvjJ06ciPbt22PFihXIz8/Hf/7zH/Tu3Rs//fQTIiMjAQBvvPEG3nrrLbz44ovo378/Ll26hKFDh8JoNKJZs2YltoqLi5GTk4MxY8agTp06MBgM2L17N/r3749Vq1Zh0KBBdu/95Zdf4tixY5gxYwbi4+Mxd+5cpKam4pdffkHjxo3djseuXbsQGRmJ3r17u3xdpVKhT58+mDt3Ln744QefIksffPABXnzxRfz222/YunWr7PNs2bdvH3r06IG2bdti6dKlqFSpEj755BM89dRT0Gq1GDx4sN3xQ4YMwWOPPYaPP/4YRUVFUKvVeOaZZ/Djjz/izTffRLNmzZCbm4sff/wRN27c8MsnhmEYxREMwzCM3zz77LOiQoUKJc+XLl0qAIhPP/3U7rg5c+YIAGLnzp0l+ypUqCCeffZZr+9hMpmE0WgUXbp0EampqXavARBTp071agNAyWPZsmVej7d9b4PBIJo2bSr+/e9/l+zv1auXaNOmjcdzn332WdGgQQOn/VOnThW2/37mz58vAIjc3FzZfgkhxNdffy0AiHfffddu/5tvvuk0Lt27dxd169YVeXl5dseOGjVKxMbGipycHCGEEPv27RMAxKOPPmp33KeffioAiCNHjgghhMjJyRExMTHiqaeesjvuyJEjAoB4+OGH3fot3c/nn39eJCcn270GQNSsWVPk5+eX7Lt69aqIiIgQb731lsfxuP3220VSUpLHY5YsWSIAiI0bNwohhFi1apUAIH7//Xe746Rx2LdvX8m+xx57zOX9lPy2HW9X599+++0iOTlZGI1Gu3N79eolatWqJcxms51PgwYNcnqf+Ph48dprr3m8RoZhmNKkXKcFHjhwAL1790bt2rWhUqn8qtolhMD8+fPRrFkzxMTEoF69epg1a5byzjIMExbs3bsXFSpUwOOPP263X/pWfs+ePbLsLF26FHfffTdiY2MRFRUFtVqNPXv24KeffvLbt4ceegiJiYmYPn06zp8/7/IYk8mEWbNm4Y477kB0dDSioqIQHR2Nc+fO2b33/fffj5MnT2LEiBH45ptvkJ+f77df9913HwDgySefxKefforLly/LOm/fvn0AgH/+8592+wcOHGj3XK/XY8+ePUhNTUVcXBxMJlPJ49FHH4Ver8fRo0ftzunTp4/d81atWgEALly4AAA4evQoiouL8eSTT9od98ADD7hMhdy0aRPat2+P+Pj4kvu5cuVKl/ezU6dOqFixYsnzmjVrokaNGiXvHQji72qBt3rt0vnz5/Hzzz+X3CvHe5CVleWUdukqsnr//fdj9erVSEtLw9GjR0vSGxmGYUKFci2uioqK0Lp1ayxatMhvG6+++ipWrFiB+fPn4+eff8b27dtx//33K+glwzDhxI0bN5CUlOQ0ea1RowaioqJkpS+9/fbbGD58ONq2bYvNmzfj6NGjOHbsGHr06AGdTue3b61atcLu3buh1Wrx8MMPu1ybNHr0aEyePBn9+vXD9u3b8f333+PYsWNo3bq13XtPmDAB8+fPx9GjR9GzZ09UrVoVXbp0wfHjx332q2PHjsjIyIDJZMKgQYNQt25dtGzZEhs2bPB43o0bNxAVFYWqVava7U9KSnI6zmQy4f3334darbZ7PProowCA69ev253jaDMmJgYASsZAuo+u1jY57tuyZQuefPJJ1KlTB+vWrcORI0dw7NgxDBkyBHq93ul8x/eW3t/bva9fvz7++usvFBUVuT1GWltVr149j7aU5tq1awCAMWPGON2DESNGAHC+B7Vq1XKys3HjRjz77LNYsWIF2rVrhypVqmDQoEG4evVq8C+CYRhGBuV6zVXPnj1d5uZLGAwGTJo0CevXr0dubi5atmyJOXPmlKx3+Omnn7BkyRKcPn26ZB0CwzDlm6pVq+L777+HEMJOYGVnZ8NkMqFatWpebaxbtw4pKSlYsmSJ3f6CgoKA/bvnnnuwe/dudO3aFZ06dcLevXvt/n6tW7cOgwYNcorAX79+HYmJiSXPo6KiMHr0aIwePRq5ubnYvXs3Jk6ciO7du+PSpUuIi4tDbGysXREPW1uO9O3bF3379kVxcTGOHj2Kt956CwMHDkTDhg3Rrl07l9dStWpVmEwm3Lhxw06QOE60K1eujMjISDzzzDMYOXKkS1uNGjVyud8d0vtJosGWq1ev2kWv1q1bh0aNGmHjxo12nwlXYxMIXbt2xc6dO7F9+3Y8/fTTTq8LIfD555+jSpUquOeeewAAsbGxLn1xdY8CQfrcT5gwAf3793d5jOP/UVfRtWrVqmHhwoVYuHAhLl68iM8//xzjx49HdnY2duzYoajPDMMw/lCuI1feeO6553Do0CF88sknOHXqFJ544gn06NED586dAwBs374djRs3xhdffIFGjRqhYcOGGDp0aMlidIZhyh9dunRBYWGhU5rx2rVrS16XcBeNUKlUJZESiVOnTjn12PKXu+++G3v27EFxcTE6deqEn3/+2eN7f/nllx5T9RITE/H4449j5MiRyMnJKYmONGzYENnZ2XYCxGAw4JtvvnFrKyYmBg8//DDmzJkDADhx4oTbYzt16gQAWL9+vd3+9PR0u+dxcXHo1KkTTpw4gVatWuHee+91eriKFnmibdu2iImJwcaNG+32Hz161Cl9T6VSITo62k4sXL161WW1wEAYOnQoatSogQkTJiA7O9vp9blz5+Lnn3/GuHHjoFarAaBEBJ46dcru2M8//9zpfDnRM3c0b94cTZs2xcmTJ12O/7333muXCimH+vXrY9SoUejatSt+/PFHv/xiGIZRmnIdufLEb7/9hg0bNuDPP/9E7dq1AVA6w44dO7Bq1SrMmjUL//vf/3DhwgVs2rQJa9euhdlsxr///W88/vjjXqtcMQxTNhk0aBAWL16MZ599Fn/88QfuuusufPfdd5g1axYeffRRPPLIIyXH3nXXXdi/fz+2b9+OWrVqoWLFimjevDl69eqFmTNnYurUqXj44Yfxyy+/YMaMGWjUqBFMJpMifrZp0wZ79uxBly5dSiJYLVq0QK9evbB69WrcfvvtaNWqFX744QfMmzcPdevWtTu/d+/eaNmyJe69915Ur14dFy5cwMKFC9GgQQM0bdoUAPDUU09hypQpePrppzF27Fjo9Xq89957MJvNdramTJmCP//8E126dEHdunWRm5uLd999F2q1Gg8//LDba+jWrRs6duyIcePGoaioCPfeey8OHTqEjz/+2OnYd999Fx06dMBDDz2E4cOHo2HDhigoKMD58+exfft2n/9mV6lSBaNHj8Zbb72FypUrIzU1FX/++SemT5+OWrVq2TXp7dWrF7Zs2YIRI0bg8ccfx6VLlzBz5kzUqlWr5Ms6JUhMTMSWLVvQq1cv3HPPPRg7dixat26N/Px8bNy4EevXr8dTTz2FsWPHlpxz3333oXnz5hgzZgxMJhMqV66MrVu34rvvvnOyf9ddd2HLli1YsmQJ7rnnHkRERODee++V7d+HH36Inj17onv37hg8eDDq1KmDnJwc/PTTT/jxxx+xadMmj+fn5eWhU6dOGDhwIG6//XZUrFgRx44dw44dO9xGwxiGYW45pVtPI3QAILZu3VryXKoMVaFCBbtHVFSUePLJJ4UQQrzwwgsCgPjll19Kzvvhhx8EAPHzzz/f6ktgGKYUcKwWKIQQN27cEMOGDRO1atUSUVFRokGDBmLChAlCr9fbHZeZmSnat28v4uLi7CrMFRcXizFjxog6deqI2NhYcffdd4uMjAyX1ffgQ7XAkSNHOu0/efKkqFatmqhZs6Y4c+aMuHnzpnj++edFjRo1RFxcnOjQoYM4ePCgePjhh+0q4C1YsEA8+OCDolq1aiI6OlrUr19fPP/88+KPP/6ws//VV1+JNm3aCI1GIxo3biwWLVrkVC3wiy++ED179hR16tQR0dHRokaNGuLRRx8VBw8e9Hpdubm5YsiQISIxMVHExcWJrl27ip9//tnluPz+++9iyJAhok6dOkKtVovq1auLBx98UKSlpZUcI1W527Rpk9O5AMSqVatK9lksFpGWlibq1q0roqOjRatWrcQXX3whWrdu7VTVcfbs2aJhw4YiJiZGtGjRQixfvtxpHIRwf58aNGggq7KkEEJcvHhRjBw5UjRu3FhER0eLSpUqiY4dO4p169YJi8XidPyvv/4qunXrJhISEkT16tXFyy+/LL788kunan85OTni8ccfF4mJiUKlUtn57jjerqoFCkGftyeffFLUqFFDqNVqkZSUJDp37iyWLl1acoxULfDYsWN25+r1ejFs2DDRqlUrkZCQIDQajWjevLmYOnWqKCoqkjU2DMMwwUYlxN+lg8o5KpUKW7duRb9+/QDQotl//vOfOHPmTElPE4n4+HgkJSVh6tSpmDVrll21Ip1Oh7i4OOzcuRNdu3a9lZfAMAzDlDK///47br/9dkydOhUTJ04sbXcYhmGYWwynBbohOTkZZrMZ2dnZeOihh1we0759e5hMJvz2229o0qQJAJRU32rQoMEt85VhGIa59Zw8eRIbNmzAgw8+iISEBPzyyy+YO3cuEhIS8Pzzz5e2ewzDMEwpUK4jV4WFhSW9XpKTk/H222+jU6dOqFKlCurXr49//etfOHToEBYsWIDk5GRcv34de/fuxV133YVHH30UFosF9913H+Lj47Fw4UJYLBaMHDkSCQkJ2LlzZylfHcMwDBNMzp8/j2HDhuHkyZPIzc1FpUqVkJKSgjfffJMryDIMw5RTyrW42r9/f0m1KVueffZZrF69GkajEWlpaVi7di0uX76MqlWrol27dpg+fTruuusuAMCVK1fw8ssvY+fOnahQoQJ69uyJBQsWoEqVKrf6chiGYRiGYRiGKUXKtbhiGIZhGIZhGIZRCu5zxTAMwzAMwzAMowAsrhiGYRiGYRiGYRSg3FULtFgsuHLlCipWrAiVSlXa7jAMwzAMwzAMU0oIIVBQUIDatWvbNYD3l3Inrq5cuYJ69eqVthsMwzAMwzAMw4QIly5dQt26dQO2U+7EVcWKFQHQACYkJJSaH0ajETt37kS3bt2gVqtLzY9whMcucHgMA4fH0H947AKHxzAwePz8h8cucHgMA0Pp8cvPz0e9evVKNEKglDtxJaUCJiQklLq4iouLQ0JCAv9i+QiPXeDwGAYOj6H/8NgFDo9hYPD4+Q+PXeDwGAZGsMZPqeVCXNCCYRiGYRiGYRhGAVhcMQzDMAzDMAzDKACLK4ZhGIZhGIZhGAUod2uu5CCEgMlkgtlsDtp7GI1GREVFQa/XB/V9yiLBGLvIyEhERUVxeX6GYRiGYRjGb1hcOWAwGJCVlQWtVhvU9xFCICkpCZcuXeIJvY8Ea+zi4uJQq1YtREdHK2aTYRiGYRiGKT+wuLLBYrHg999/R2RkJGrXro3o6OigCR+LxYLCwkLEx8cr0rCsPKH02AkhYDAY8Ndff+H3339H06ZN+Z4wDMMwDMMwPsPiygaDwQCLxYJ69eohLi4uqO9lsVhgMBgQGxvLE3kfCcbYaTQaqNVqXLhwocQ2wzAMwzAMw/gCz+pdwGKnfML3nWEYhmEYhgkEnk0yDMMwDMMwDMMoAIsrhmEYhmEYhmEYBWBxxfhNw4YNsXDhwtJ2g2EYhmEYhmFCAhZXZQCVSuXxMXjwYK/nZ2RkKO7XtGnT0KZNG7t9Bw8eRGJiIl5++WUIIRR/T4ZhGIZhmLBFpwOKiwGLhbZFRYBeX/o+GQzkk8FAz0PJXojB1QLLAFlZWSU/b9y4EVOmTMEvv/xSsk+j0ZSGW058+eWXeOKJJzB27FhMnz69tN1hGIZhGIbxHZ0OiIwEoqIAkwkwm4FA5lo6HRARAajVJDiOHgVWrwb++1+gXz9gxAh6j4gIee+jlH86HQm7xYuBzZuB3FwgMREYMAAYORKIjfXNrtL2QhSOXHlBCAGtwRSUh85g9vi63MhOUlJSyaNSpUpQqVR2+9LT09GkSRNER0ejefPm+Pjjj0vObdiwIQAgNTUVKpWq5Plvv/2Gvn37ombNmoiPj8d9992H3bt3+z2O6enp6N+/P2bPnm0nrHbs2IEOHTogMTERVatWRa9evfDbb7+VvG4wGDBq1CjUqlULsbGxaNiwIWbPng0A+OOPP6BSqZCZmVlyfG5uLlQqFfbv3w8AuHnzJv75z3+ievXq0Gg0aNq0KVatWuX3dTAMwzAME2SUjGwobevmTWDBAqBtW6BJE9ouWED7fbWt11vtPfAA2evQATh4EJgzB1i3jh61awOLFgFGI13DrfCvuJhEUM2awOTJQGYm8McftJ08mfYvXkzHlYa9EIYjV17QGc24Y8o3pfLeZ2d0R1x0YLdo69atePXVV7Fw4UI88sgj+OKLL/Dcc8+hbt266NSpE44dO4YaNWpg1apV6NGjByIjIwEAhYWFePTRR5GWlobY2FisWbMGvXv3xi+//IL69ev75MPixYsxevRorFy5Ev/617/sXisqKsLo0aNx1113oaioCFOmTEFqaioyMzMRERGB9957D59//jk+/fRT1K9fH5cuXcKFCxdkv/fkyZNx9uxZfP3116hWrRrOnz8PXRkLPzMMwzBlGKWjJErbVNqWUpENpaMkkjiYOJFEji2ZmcCMGcCsWcDLLwMxMfJsLl8OjB/v2l5aGjBzJnDoENC+PR2nUgGDBgEJCYBjP1Yl/dPpyNbYse6PMRrpdZWKImuexlJpeyEOi6syzvz58zF48GCMGDECADB69GgcPXoU8+fPR6dOnVC9enUAQGJiIpKSkkrOa926NVq3bl3yPC0tDVu3bsXnn3+OUaNGyX7/n376CaNGjXIprABgwIABds9XrlyJGjVq4OzZs2jZsiUuXryIpk2bokOHDlCpVGjQoAEefPBB5Ofny3r/ixcvIjk5Gffeey8Aa6SOYRiGYUoIRQETjBQqJW3q9UBhYWiKF6WFkNLiQFpDNWmSs3+29iRBlZEBtGxJxw8aRJ+lYPs3caL7122ZMAEYMuTW2gtxWFx5QaOOxNkZ3RW3a7FYUJBfgIoJFd02r9WoIwN+n59++gkvvvii3b727dvj3Xff9XheUVERpk+fji+++AJXrlyByWSCTqfDxYsXfXr/unXrIjExEXPnzkXPnj1Rq1Ytu9d/++03TJ48GUePHsX169dhsVgAkChq2bIlBg8ejK5du6J58+bo0aMHevXqhUceeUT2+w8fPhwDBgzAjz/+iG7duqFfv3548MEHfboGhmEYpoyitEAAlBEwwYiSKG3TU9SlNMVLMKIkSomDoiIS29HR9PzMGWDFCmD2bEpbdIUkqLp2BXbupHEfMABo0ACoUEFZ/wDr+LkTfY4YjcAHHwCjR7u2qbS9MIDXXHlBpVIhLjoqKA9NdKTH11UqlWLXYIsQwqvtsWPHYvPmzXjzzTdx8OBBZGZm4q677oLBU66vCypWrIjdu3ejYsWKSElJwZUrV+xe7927N27cuIHly5fj+++/x/fffw8AJe9z99134/fff8fMmTOh0+nw5JNP4oknngCAElFquzbN6PDL27NnT1y4cAGvvfYarly5gi5dumDMmDE+XQPDMAxTRlm+XNk1IEqsK9HpgPffp8m/p6jG2LG0DkdOqruSNuVGXXzxz1dx4Kl6npK2AP/Fge11FxXRPZfEglZL2yNHgNdfB3JySDy5s7d8OQlzANi6FahTh0SaUv7ZEhlJXwr4wubNVGzjVtgLA0rV8wMHDqB3796oXbu2z+XADx06hKioKKdS34w9LVq0wHfffWe37/Dhw2jRokXJc7VaDbNDiPngwYMYPHgwUlNTcddddyEpKQl//PGHXz5UrlwZu3fvRuXKlZGSkoLLly8DAG7cuIGffvoJkyZNQpcuXdCiRQvcvHnT6fyEhAQ89dRTWL58OTZu3IgtW7bg5s2bJSmNttUSbYtbSFSvXh2DBw/GunXrsHDhQixbtsyv62AYhmHKCMEQCEoJGKXFgdI2fSkLfqvESzBsSfgrDiIjSVAVFtLParW1IIU013n0URJWmzYBn3/uXmBt3Qo89BD9nJtLESu1OjD/3ImXqCh6D1/IzbX6E2x7YUCpiquioiK0bt0aixYt8um8vLw8DBo0CF26dAmSZ2WHsWPHYvXq1Vi6dCnOnTuHt99+G1u2bLGL3jRs2BB79uzB1atXS8TNbbfdhi1btiAzMxMnT57EwIEDS1L2/KFSpUrYuXMnqlWrhpSUFPz555+oXLkyqlatimXLluH8+fPYu3cvRo8ebXfeO++8g08++QQ///wzfv31V2zatKmkKqJGo8EDDzyA2bNn4+zZszhw4AAmTZpkd/6UKVOwbds2nD9/HmfOnMEXX3xhJywZhmGYcojSAkGyGaiACYY4UFq8LF8uz45c/5QUB8GIkvgjDqQ16wYDiYToaBqL69eBY8esxSi0WiApCejfH1i/nkSWK19yc4GKFennxESKhEn3U2nxYjLRe/hCYqL7z5fS9sKAUl1z1bNnT/Ts2dPn81566SUMHDgQkZGRXqNdxcXFKLYJv0uFEIxGo1MKmdFohBACFoslICEhBymVTXo/pZBsSds+ffrgnXfewbx58/DKK6+gUaNGWLlyJTp27FhyzLx58zBmzBgsX74cderUwf/+9z8sWLAAQ4cOxYMPPohq1aph3LhxyM/Pd/LXk//SNUqvx8fH4+uvv8Zjjz2GlJQU7NmzB+np6XjttdfQsmVLNG/eHAsXLkTnzp1L7kFcXBzmzJmDc+fOITIyEvfddx+2b9+OiIgICCGwYsUKDB06FPfeey+aN2+O2bNno0ePHiXnq9VqTJgwAX/88Qc0Gg06dOiA9PR0lz5bLBYIIWA0GkuqJpZVpM++4+8AIx8eQ//hsQscHsMA0OthXLkSaNECRrlrOpYuBUaNovVSbmxiyRKa6EbJnFq5smmxAF984dtak+3bgddecz8ZVdKmxQLjjh3AnXfKHztv/glB4svXYh+As00lbUkYDJTOee2aPHvPPgvMm2eNWAlBkaqTJ4GrV4FHHoHx7/mRUSp2UlwM3H8/vdfEiVQ63ZYaNciGRkPrrS5eBOrXJyHmq3+SPZ3OuvbLluJi4IknAJt+qV554gnyw5UwVNoelP/7p/TfUZWQ20wpyKhUKmzduhX9+vXzeNyqVavwwQcf4MiRI0hLS0NGRobLVDCJadOmuWxYm56ejjiHMpZRUVFISkpCvXr1EO3qA8eUaQwGAy5duoSrV6/CZDKVtjsMwzAMwzBMkNFqtRg4cCDy8vKQkJAQsL2wqhZ47tw5jB8/HgcPHkSUzG+GJkyYYJdqlp+fj3r16qFbt25OA6jX63Hp0iXEx8cj1t23UwohhEBBQQEqVqyoWOGK8kKwxk6v10Oj0aBjx45Bv/+ljdFoxK5du9C1a1eowzivuTThMfQfHrvA4TEMAIsFxvvvx64ZM9B1yBCo5aynatCAilK4Sx+zWCgVzJeKuq5sGgxAly7AqVPy7bRqBezZ4zoKobRNgwHGnj2x6/XX5Y+dN//0elqrlpYm37/Jk11HEpW0ZUtuLnDbbe6jWyoVVUccPNgavTSZaOz/+AP46SfgkUcokrV7N4zt22PXDz+g6wMPQG00UkQqNxe4cIEiWDVqWG2r1VRVcNgwICUFePpp6nNlG53z5p8tajVw/rznVD29ntI/HZZauOTNN4GhQz2Pn8L2lP77J7e9j1zCRlyZzWYMHDgQ06dPR7NmzWSfFxMTgxgXZUDVarXTDTGbzVCpVIiIiHBbHl0ppLQ06f0Y+QRr7CIiIqBSqVx+Nsoq5elagwWPof/w2AUOj6EfGAwlE1O1TidPIEgTWXdjLdn0pUm9K5smE9CrF/B35VxZ9O5NAs3TGhqlbJpMQI8e5LbcsfPmn1oNDB8OTJsmXxwMG2ZdgxQsW7bEx5MIc1XevVkzYPduEiuXLlElv9hYEhRXrgCNGwNNm1JK4P79wL/+RcUrYmKgjoiA+tdfKa2vfn2galVaj2U7rtOmAfn5QMeOwIsvkm1HoerJP0fS0uh4T3831GqqTigErQ90NZZqNfDWW1TK3lu5faXtlZyizN8/pf+Ghs2svqCgAMePH8eoUaMQFRWFqKgozJgxAydPnkRUVBT27t1b2i4yDMMwDBPqmM1Anz6+nTNggPs+RJLNAQMCt6nR0CRU7mRPrfbep0lJmxoN8MIL8uzI9Q8gwTBrljybs2d7jpIoaUtCo6GeXfPn249j8+bA8eNApUokeG6/nexptdYS/DodUFBgX7hCKsi2axfZqFuXzo+PJ6EO0PvMnUviLynJeg9dRQDd+WeLWk2vjxwpb01aTAzdu2vXSJAlJwONGtE2LY32+yCEFLcXwoSNuEpISMB///tfZGZmljyGDRuG5s2bIzMzE23bti1tFxmGYRiGCXWCIRCUFDDBEAdKixe5BCpebJErDoIhNABncZCaSpX/AODPPylSJQRtL14EGjYE+valwhbbt5OQNpuBdu2sojopCahWzVpaXa8Hbtywio2RIynFMC6OjvHkazDEi0YDVK5MDX2PHKF0wiNH6Hnlyr43+VXaXohSqmmBhYWFOH/+fMnz33//HZmZmahSpQrq16+PCRMm4PLly1i7di0iIiLQsmVLu/Nr1KiB2NhYp/0MwzAMwzBuCYZAkASMnNQsTzYlcaBSeU+hGjlS3mRZSZuS32lpwPjxyvgHWMXBkCFUvn3zZlpLlJhIUb4RI+i95dhT0pYtGg09Xn+d1k/pdGTj9ttpHKSI1enTlOInBAmoxx8HNm4E/vEPer5jB4mlVq1orAoKKCJlsdB6q9Gj/RMakn+jRwNjxlh7a1ksgQkX23OViCwpbS/EKFVxdfz4cXTq1KnkuVR44tlnn8Xq1auRlZWFi74sDmUYhmEYhvFGMASCkgImGOJAaZsvvAA891xwxIsS4iBYQgMgG1L/MNtrT02la2/ShNZY7d1LBSjMZqB9e4pMFRaSwCooIIFlNAKXLwP16pHAUqsDb6Ab6uJFpyNxKhX+MJvLTNQKKGVxlZKSAk+V4FevXu3x/GnTpmHatGnKOsUwDMMwTPlAaYGgpIAJhjhQ0mZsLJ0fDPGipDhQWmgUF9O9nTjRWUBnZpJgnzmTCms4Rqy+/prW+8XHA4cOka3ISBJWarVvEVV3BEO4KGVTpyOB6ShKBwygLxxiY8uEyAqbaoEMwzAMwzCKEgyBoLQoCkYUIpTFSygjRas8pX4ajRQNVamAQYPsI1a1a1N0SmonZLHQcyGooqLF4r94CYZwUdJmcTHZcSdKZ8ygtNqXXw77z1HYFLRgGIZhGIYJChoNTegiImirxLfnwbDJ+I5ORxX4LBba+lIu3xGTiar73bxJP9+8CWzbBnTvTmLKFqmnU1IS8M03tAYrOZnEdnExvRYVRT+/8w7Qti2lE7ZtCyxYQLbl+ioJl5o1qSR7Zqa1WuHkybR/8WLr+95qmzod9R8bO9Z9iXyjkV5ftCiwexQCsLgKFkr+MocIgwcPRr9+/Uqep6Sk4LXXXis1fxiGYRiGKWMoNX/S6UigLFgQmHCR0GpJSJw4AXTqRE17O3UisbF6NRWxaNrUerzRSI1zs7KsEav4eHsxsmJF4OIlGMJFaZt6PUWs5DBhAh0fxrC4Uhqlf5l95NKlS3j++edRu3ZtREdHo0GDBnj11Vdx48YN2Tb++OMPqFQqZGZmejxuy5YtmDlzZoAeMwzDMAxzy1D6y99QFENKR3KkdVa1awNTp9rbmzqVGgBv307rqGwF1tat1MNKiljp9RTxivh7+j1pUuDiJRjCRUmbUiqlnKbOAB33wQdhHZRgcaUkwQjL+sD//vc/3Hvvvfj111+xYcMGnD9/HkuXLsWePXvQrl075OTkKPp+VapUQUVvXc09YDabYfHUlJFhGIZhyjNKCiGlv/zV60NTDCkddZFrb/x4YNUqICPDmiKYm0sVAaWIlcVCKaK+zAM9iZdgCBelbUZG0notX9i82SpAw5Dw9TzU8PGXWRUEgTVy5EhER0dj586dePjhh1G/fn307NkTu3fvxuXLl/HGG28AAFQqFTIyMuzOTUxMLKnO2KhRIwBAcnIyVCoVUlJSXL6fY1qgwWDAuHHjUKdOHVSoUAFt27bF/v37S15fvXo1EhMT8cUXX+COO+5ATEwMLly4gP379+P+++9HhQoVkJiYiPbt2+PChQtKDQvDMAzD3FoCFUVKC6FgfPm7fHloiiGlIzm+2Js0CahSBejalZ4nJgJFRdaIVXQ0FatYvlyePcCzeAmGcFHaZlQUiUxfyM0NvBx9KcLiSin8+GWOilKuWGNOTg6++eYbjBgxAhqHRbNJSUn45z//iY0bN3osfS/xf//3fwCA3bt3IysrC1u2bJHlw3PPPYdDhw7hk08+walTp/DEE0+gR48eOHfuXMkxWq0Wb731FlasWIEzZ86gSpUq6NevHx5++GGcOnUKR44cwYsvvgiV48JQhmEYhgkWoZTaprQQCoZ4AZRJaZPshWoKWlERCSLpvrorXmFrb/lyqqQHUN+rP/+kz5VUaj0yEvj8c3n+SbgTL8EQLkrbNJlIZPpCYqL8exiCsLhSAj9/mWNkCB25nDt3DkIItGjRwuXrLVq0wM2bN/HXX395tVW9enUAQNWqVZGUlIQqVap4Pee3337Dhg0bsGnTJjz00ENo0qQJxowZgw4dOmDVqlUlxxmNRnzwwQd48MEH0bx5c5jNZuTl5aFXr15o0qQJWrRogWeffRb169eXeeUMwzAM4yehltoWjOIEwYjkyOVWiyGloi4GAzX5jYqiKo8mEwmt+HjXxSts2boVeOghEhsvvEBrrqKjrT2slBQvwRAuSts0m6l0uy8MGECCNExhcaUEfvwyqzZvRlR0dJAcckaKWAUrIvTjjz9CCIFmzZohPj6+5PHtt9/it99+KzkuOjoarVq1KnlepUoVDB48GN27d0fv3r3x7rvvIisrKyg+MgzDMIwdoZbaprQQUlq86HTKpbQBoZmCptfTIyKC7BUUAIcPA99+C7RpQ2Lrv/91Ll5ha69iRWomDDg3B1ZSvARDuChtU6OhSJ7cND+1mppth3HrAhZXShAC+aS33XYbVCoVzp496/L1n3/+GZUrV0a1atWgUqmc0gONAYZfLRYLIiMj8cMPPyAzM7Pk8dNPP+Hdd98tOU6j0TgJvFWrVuHIkSN48MEHsXHjRjRr1gxHjx4NyB+GYRiGcUsoprYFoziB0uJFyZQ2IPRS0PR6ilpFRpIgKiwEfvwRuHIF6NwZuHoV2LQJ6NsX2LfPvniFrT29Hhg+HKhcGYiLs3/dbAb69PHNR3fiJRjCJRg2Y2OpQbAcZs+2F6NhCIsrJQiBfNKqVauia9eu+OCDD6Bz+EN79epVrF+/Hk899RRUKhWqV69uFx06d+4ctFptyfPovyNqZrNZ9vsnJyfDbDYjOzsbt912m90jKSlJ1vkTJkzA4cOH0bJlS6Snp8t+b4ZhGIbxiVBMbQtGcQKlxUuoiSFH/I26ANY+VpcukV8SNWoAPXsCOTnAd9+RsFq/ntZe2RavcLSnVlNlQEc0GkoXlIs38RIM4aK0TY0GePllYP58958FtZpeHzkyrKNWAIsrZfDjl1kMGACTwaCoG4sWLUJxcTG6d++OAwcO4NKlS9ixYwe6du2KOnXq4M033wQAdO7cGYsWLcKPP/6I48ePY9iwYVDbfNhr1KgBjUaDHTt24Nq1a8jLy/P63s2aNcM///lPDBo0CFu2bMHvv/+OY8eOYc6cOfjqq6/cnvf7779jwoQJOHLkCC5cuICdO3fi119/dbt2jGEYhmECIlRT24KRBaO0eAkVMaRkCtqoUfSzJKAbNqS1VVLUKjOTolmVKwOPP07RqnbtyIezZ63FKyR7I0bQ+Z4Ehy+RGW/iJRjCJRg2Y2JobK5do5TJ5GSgUSPapqXR/hEjXAvSMIPFlRL4GUItVnj9U9OmTXH8+HE0adIETz31FJo0aYIXX3wRnTp1wpEjR0oKUyxYsAD16tVDx44dMXDgQIwZMwZxNmHrqKgovPfee/jwww9Ru3Zt9O3bV9b7r1q1CoMGDcLrr7+O5s2bo0+fPvj+++9Rr149t+fExcXh559/xoABA9CsWTO8+OKLGDVqFF566aXABoNhGIZhXBGqqW3ByIJRWrwomdIGhEYKWkwMpfZJa6OkAhaFhYAQQJcuFLXavp3udadOFLH6+mugeXMqXmFrT25kCCBRoYR4CYZwCYZNjYZE6ujRwJEjwPnztB09mvaHecSqBFHOyMvLEwBEXl6e02s6nU6cPXtW6HQ63w1rtULMmycE/Sp6fixYICxarbh586Ywm80KXFX5wmw2B2XsArr/YYbBYBAZGRnCYDCUtithC4+h//DYBQ6PYQCYzcLQvDmNn0Yj7/92o0ZCuPufU1wsRJs28uxIj+RkIfR6eztarRAzZ/pmJy2NzvNETo4QarU8e2o1He8BQ3a2/LGTYc/X+ZPX6xWCxnb+fPfXrVbT68XFQuh0QuTlCVFYKITJJERurhB79wqxfr0QN27Q808+ESI7W4hly4QoKBBi3To6Rq8Xwmi02nO8p+7GUPr9zc+n8UlLo89Eo0a0TUuj/XKu1dV46vX0edXr/bNxK2wGgNJ//zxpA39QrtFSeUcKoapUlJ/t6psktRp46y1g5EgItdq3Zn0MwzAMwwROIBEiV9/SS9GhzEz59lxFc6QozowZ8tZvya2qJkVyxo71blNO5EXJlDbA5/mTrEiJFHUZMoRSOjdvpmhhYiKN/YgRQIUK1r5mrgpYdOlCBSwOHwb+9S+KdrZvT+mDLVsCDRqQX1otRXFiY31PaYuNJRujRwNjxtDPRiP55W8Ux/Y8pVLsgmGzDMNpgUpSjvJJGYZhGCYsCeXUtmAUJ1B6/YzSKW1A6aSgmUz+FbD45hugcWNaV2U0kigMNKVNo6Fri4igbVlJjyuncORKaTQaeij5LQTDMAzDMMogVWs7fFje8b6s8wk0OhSMKA4gL5Lja+TlhReA555Tzl6w5k+uoi4GAwmq2FigRQt6H62W+pydPg1UrWotYLF5M0WspAIWtWtTU2C9npIMK1b03zemTMLiKlhwCJVhGIZhQpNQTm0LhhCSfFRSvAQjpU3yUyIY8yetlqKXf/4J1KlDRSr0enresCHQpAmlA+7dCzz9NBWwiI+nAhYPP0zphNLSjjDvx8QEBxZXLhAODXaZ8gHfd4ZhmHKCbWrb+PG3bp2PXFEUzCwYpcVLOH2ZbDRSxComBrj9dtcRKyGApCSKWm3cCPzjH8C2bRSxqlaN1mcZjRS9+rsvKMPYwuLKBqnXk1arhYZT+ModUiNltdy8eYZhGCa8CfXUtnASLqGOXk/CKjrael8MBlpb5SpiZTa7L2ChUlEEi2FcwOLKhsjISCQmJiI7OxsA9WBSKdyLSsJiscBgMECv1yPCU3d1xgmlx04IAa1Wi+zsbCQmJiIyMlIBLxmGYZiQJ1xT2xjf0GpJJDmK6NRUEtGRkXSMY8QqKYnSAfv0oXsqfTYSEkr7im4dOh2NT1QUiVOzObDfDaXthSAsrhxISkoCgBKBFSyEENDpdNBoNEETcGWVYI1dYmJiyf1nGIZhyhEshsoukqiaONE5/TMzk1JDZ84Ehg+nfbYRq8JC+wIWEREkDAyG0BUbStnT6eiaFy92juqOHGltuFxa9kIYFlcOqFQq1KpVCzVq1IBRTp8JPzEajThw4AA6duzIaWg+EoyxU6vVHLFiGIZhmNJEaaFRVETbf/8bGDoUOHCAhNbOnbS2CiDBNX48pfoNGkTFK2wjVomJFNGUSrcrKQ5yc4EPPww98SJdpztBOmMGVcd8+WV5X0YobS/EYXHlhsjIyKBOtiMjI2EymRAbG8viykd47BiGYZhyQahGNZS2d6uiJKmpwOrVtM6qXz/g3DnrOZMmkbgym4H8fGvESopULVminDgwGGh72230XoHaU1K86HRky1NbAaORXlepvLcpUNpeGMCLfRiGYRiGKb/odDTZtVhoq9OVvj2dDrh5E1iwAGjbloottG1Lz2/e9N2m0vYAEixK2JOEQc2awOTJJAb++IO2kyfT/sWL6Tg511lcTKJIpQJataLzL1wge1OnAvXrA9u3A4cOAU2bWs81GoHly6kke9Wq1MBYKrm+aBFN/t1lNEniYNEi79eu01G0SjpPCXvvv6+cf3o9iTQ5TJhAx99Ke2EAiyuGYRiGYconSgkEQDkBo6TYCIY926iLEmJICWFQWEjvJ0VldDqKThUUUKTq9GmrkJLSAFetAjIySIRJbN0K1K1L4iw+no4tLlZebEyfrqw9pfyTokxyl8UYjZRm6e6+KG0vTGBxxTAMwzBM+UJJgQAoJ2CUjkIEw56SUZdAhYEkquLi6LlWC1y+DHz+OVC5MqX+FRcD333nHKmaNAmoUgXo2tW6LzfX2iRYr7dO9kNVbChtLzKS0ih9YfNmKvRxK+yFCeHtPcMwDMMwjC+EclpWqKdkKRl18VUYmEzAjh0koIqLKe3SttCErajq25fWMm3YQML2yScpSmUbqZLSAEeOtL5HYiIVwbC1H8piQ2l7UVEkMH0hN5fG6VbYCxNYXDEMwzAMU34I1bSsUI9qlEaURKUCevQAjh8nO089ReeZTBR9LCgAvv+eBFHNmhSpshVVjz8OrF9Pk/z27Z0jVVu3Ag89ZH2emkoizbbZcCiLDaXtmUwkMH0hMdH9Z0Jpe2ECiyuGYRiGYcoHoSw4Qj2qcSujJCoV8PzztG4qI4OKSwA0bmYzcP06RZdiY4EHHqC1Vl98QZP5pCTg6aepMIVGAzz3HImJ+vWBs2ftI1W5uUDFivSzWg288AJQrx79HBtrFQcqFdC9O7BtG62fM5lou20b7bddtyVHbEjHb9ignD0l/DObqUKjL/YGDKAo362wFyawuGIYhmEYpnwgCQRfJrdyBYfcCaQ7e5LY8GUiKjeqIdemHHvuxu7wYeD8eYrMmc20PXjQvmqitC0upvPOnqWftVraf+0araMymUi0XrkCjB5Na+MeeICKg2i1VM0vKop+tljIp379aF2V0UiPTz6hc5o0oe3ChUDr1kCXLta1V4mJFP0CqJmwdE9jY+lns5kE1+nTVBgjMxPo1In86dSJnjsWzPAmNl54ATh6lJ7/97/K2Pv9d2DjRrq2ihVpDE+ccF3Qw5M9jYbKtZ8+DaSn09hJ91uloufp6VZ7arXn0ulK2wsTWFwxDMMwDFM+iIqi1DBpctu4sefJHiBPcDRvLn+C686eyQS0aePbRFlOVMOTb/HxwKefWiNCP/1k7RFlK4YMBhJBv/wCXL1K9lNSrCIkNha4805K0WvXzipoFiyglD2jkZr2ms20tVjoZ4C2KhVtK1WiibXBAPz4I/k4eTJFpYqKqJR67dokvMxmayELnY7SATt1ApYuBZ55hsqw79tHgm/fPnr+7LPUr0oqbpGaSsUu5swBhg+n9VqSTYB8GTKExvzYMeCVVyhF8cQJSi09fBho0MBa2v2OO7yLjSFDaO0YANx1l72PbdpQs2Nf7A0eTEU43n0X6NCBhFpKCgnbLl0o+icV9PBmT7qXVarQPdi8mWxJNjdvpv2VK9Pv0NKl1s/ArbIXBrC4YhiGYRimfGAyAZ99RpM5gCI3niZ7TZt6FzA9e9KEW+4Et1Ur1/aEANatk2+naVPvUY2xY137NngwTeTvv9+6tshopGuXUu7MZro+W1EkbQESREKQsPn3vyky1LkzXYNabe0rVbs2FfIwmShiJwRtLRaKEkk23nnHGmlq1w7Yswd45BHna5ZKqS9dSiKxsJDEQlwcra964gnauhKnK1YAjz5qLW4xfDjQsSOlCqrVzg129XoSw4884l6InzgBrFxJpd337PEsDnQ68m3AAHqekuLax969yT9v9qRGydL9dCfUUlPl2ysuBg4c8Cwm166lLxb+8Q/PQk1pe2ECiyuGYRiGYcoHZjNN6A8fpufDhnme7H31lWcBY7FQdObrr4EjRzxHNqQJ7pIlru0JQeux5E6UMzK8RzX693f27eRJ4OOP6foWLrSPNL3zDgmxyEhryp3FYi+KpJTGyEgSI2o1MH8+TaRtoziOfaWWLqX0QSFoK92Pr74i8TRqlP3YffedteGv7TVLAmfSJNpKDYPNZip4IUec9utHa7Pi40lsVKjgWnRIAlJO1GXNGhoPT+LAZCIfpehY9+6efdRo3NuThNpjj5Egc5WyaCvU2rf37p/FQhHCjh3pPrhKWZTE5NKl3tdGKW0vXBDljLy8PAFA5OXllaofBoNBZGRkCIPBUKp+hCM8doHDYxg4PIb+w2MXODyGflJUJMSVK8Jw6RKNX9u2QjRsKESbNkJMny5EVpYQZ84I0bSpEHPmCFFQIER+vnt7Oh2dk5VF57dp49nemTNC5OQ429FqhVixgl73ZmvZMtr+9ZcQer1rvwoL6TWzmbYFBeTrDz8IMXKkEDNm2PtGEoIearUQs2cLkZdH52Vn07GFhUIUFAhDdrbz2M2cSdfleK0qlb3drCwaz/x8uhe+jl1WlhDdulltzpghxOnTQty4QWM4dy69j+31OF5XdjaN4ZUrdI47tFoag9mzvdvMyxPi3Dkh0tLc29TpSnw0JCTQGGo0/vt48yYdJ8e/7Gx6pKe7t1dcTD7KtXfHHZ4/g0rbs0Hpv39KawMWV6UE/2P0Hx67wOExDBweQ//hsQscHkM/sJnsyZrcSpM9nc69TV8nj1lZrie4SkyUtVp7QVVYSPt++02I9etJ/BQWkqg5d478kew5CiyABE1WFgmsmzfpWufN8zx2c+faX6utEJLE0JkzJEb8Gbt164TYts16THKyELm5dE3z5rm24+q6zpwR4upV+ky4o7CQ3l+uzYICEq7uxIGNjwaNxvUYyvVRqyXh5Yt/V64IsXevZ//mzvVtDGfMoHG6FfZsCHVxxWmBDMMwDMOUfUwmavY7frznZr/jx9P6mU2bKIVPKrzgiFbru73lyykdzbZaoE5Hj48+km/LZKLiBEJYG95GRMjr/xQRAdSqRWlo0loh23Q7CSntTkqlXLTIe6PkcePsr9W27DlAfaXq1KGURH/GrnZt+75UubmU2udLr7FJk6jAwu7d7u+tVMFw8mT5NvV6KlbhrviJkj5GRdH98sW/iAjgvvs8+/fGG775d/Uq+XIr7IURLK4YhmEYhin7hMrkMTnZfoLr60T544+pyEaTJjRhdlWMwl3/J6mprrSOKCOD3texuS5ANpcvJwFjNPouDK5etRdCgL0Y8nfspL5UAI2DVktr1XzpNSYJNXcl9k0mEta+2FyyxFpwwxGdTlkfTSZg2TLf7C1bRraU9K9fP9diTWl7YQaLK4ZhGIZhyjahNHmMj7c/z5eJcs+ewA8/0DlqNRVzMBpJVB075lyMQur/tGMHFZGIiqICFkYjHZuURMUUXEWZAIo0Vani/7XaCiEgMDEkjZ3UlwqgQhdqte/NjbdudRa5tkRF0TG+2oyOdl2UwZ8GzJ58jIjwz7/ISGX9u/9+1/dRaXthBosrhmEYhmHKNqE0edTr7Se4cibKKhVV8tu0iaJOFSrQ/qIi4OefgW+/pYqCajXw5ZfWync6HYmq7t3puRBAvXpUQVCvB7KySFRt3eocZQIo0hQd7f+12gohIDAxJI3dwYO0T62mBrrR0dZmyXKRImjuJvJqtX821WrX1fhsGzor4WMo+edKrCltL8xgccUwDMMwTNkm1CaPthNcbxPlZs2ACxeA55+nrV5PIkmvBy5eBBo2BPr0oRLemzYBfftSpErq/xQdTQLu7Fng0iU6r1YtICEBqFuXRFVurnOUCaBIk78T+fh4qxCSrjNQMWQ2U18nAEhLo63RSH76QmKis8i1xV+b3ho6+2rPnY/+2lPaP6PRtViT7KlUJOy3bSORbzLRdts22m+7zs+TvTCDxRXDMAzDMGWbYE0e/bHn2KjWk61mzaiHklpNUarPPnPutaTTUYQoKYn6Wq1fb41Umc1UyOLSJaB5cyomkZBgTTerUIFEVWKic5QJoEiTweD/tUpCCAhcDBmNJLL27wfmzKEeZfHxNH5SU165pKY6i1xbLBbfbXpr6Kykj5I9X8SLHP98sde/v/uCIGYzCenTp6mXlaseXKtX0+tSPzRP9sIMFlcMwzAMw5Rt/Jnceps8+mvPUVy5s6VSUYpfZCQ1qK1fH5g6lSamf/xB26lTaf/atTRxNptpTZXFQpGqP/8EqlYlUVWtGokptdqablZURKIqNdU+ygRYI03+iJf+/SlytmsX2ZHEUOXK9L7+2DOZqDjH5cvUPDkqisamQgVKbZRbCEGtBoYPd74Ptmg09B6+2PTW0FlJHzUa4OWX5YsXOf75am/kSGt6qit7Q4ZQA2hPn1up4fQdd3i2F2awuGIYhmEYpmzjz+TW2+RRKXvubHXvTtGoJUvklSxfupRsJSXRmqrmzSntLzraKqqKiuh4vZ4iWn/+CXz3HYko2ygTYI00RUX5LjRGjqTS7dOnA1eu0POoKBJ9/tqLiQEGDyZhqFYDcXFWsRAbC8yaJc/erFl0ridxBZBtuTZnz7auc3OH5GP37lQSH6BUTleRITk+xsSQ+JYjXpYu9e6fkvZ0Orr/ckvt79nj3b8wgsUVwzAMwzBlH18m4L5MlpWw58rWlCk0SfW111J+Pq2pso1USaLq8mV63WKh96xVi94jJ4eiTIA10jR8OEWahPDvWidMAEaPtvqgUlGkyV97UhpjbKyz6JAiL/PnuxdtajW9PmoUCRdvSDY/+wz4/HPXaXLR0WRz5Ejva4WkaNi6dcB//0v72rRxjgytXOndR0m8jBvnXbysWQM8/bRn/5S252tPr5iYMrHWSoLFFcMwDMMwZR9fJuByJ8tK2XNlq2VL/3otVa1qXVNVVER9ry5fprVT9erRpF16zWAAunSh927TBpgxwz7SJEVSoqJowu/LtcbEkBiSimrYbuPilL0XAL3fqFFUlr6wkIRQbi6wdy+Qng5cu0bixpcIicUCdO4MnDzpnCa3bh2JUimq5o3iYipBX7u2VVhevGgfGfrqK2DgQO8++iJeJk6k975V9nQ6ioL68rn94AM6r4zA4ophGIZhmPJBTAxNsM+fp+etWgGNGpEYSUuzTsDlTJZt7V27RucnJ/tvz9FWdLT/vZakNVWXL9O2Xj16XaWih8VCUalKlaigxa5dwJEjFGmqWNG1KIqNDc7Y3bgBnDlDQkgSRGfO0H5f7Ol01EPrvfeADh2sRT8OHQJ69CD/fYmOFBeTSKhZk6KHjmlytWuTmLUt8uDJt/ffB8aO9RwZGjuW3tOT0FBavChtz582BZs3u2/oHIa4aTvOMAzDMAxTBtFoKBID0FoPjYYmjJ6qx3mzp9GQMBkzhiIu/tqztRVILyOt1trTymgkYREZaRVWQjiLlpgYeeuQTCb6+dtvaWsy0XjKFUGOmEzAli00wc7NpcqAAwZYo2dykITQxInOIiEzkyJys2ZRtEyOn5LgGDvW/TGSGFKpPBeLAHyLDE2YQMUg3NnzV7yMGXNr7PnbpkDuGrwwoFRl4oEDB9C7d2/Url0bKpUKGRkZHo/fsmULunbtiurVqyMhIQHt2rXDN998c2ucZRiGYRimbCH1gFJizYeUCqeEPUnw+VOyvLjYWnI7IoKiWELQ86go/yMEUkPi99+n561bAw88QM2NtVrf07o8RYYmT6b9ixd7T2nzJSq0aJE8P30VQ3q9Z/+UjAwpLV6Utqd0D64wpFTFVVFREVq3bo1FixbJOv7AgQPo2rUrvvrqK/zwww/o1KkTevfujRMnTgTZU4ZhGIZhmFuATkdrodRqquTnqseQOwYMoMltdDQJPJWK1la98w4JoSZNgLZtgQULSCjJFUS2QkiqIiitF/JFCNleo1KCSEkhJPkWymlyodRA2BX+tCnw1IMrDClVcdWzZ0+kpaWhf//+so5fuHAhxo0bh/vuuw9NmzbFrFmz0LRpU2zfvj3InjIMwzAMw3hAEkUWC219jeRIkaEFC0gANWlCa4dcNVx1hdTLSK2mibkQNOkvy5GhYBRPUFoMKR0ZUlq8KG3PnzYF3tIqw4ywXnNlsVhQUFCAKlWquD2muLgYxTZ/OPLz8wEARqMRxlIMQUrvXZo+hCs8doHDYxg4PIb+w2MXODyGgWEsLKStwWAVRP722dHr6bF8OZXsltYN9elD/aNiY73bNhiADz+kvlC29/TaNSpFvmABlaz+9lugWzfgt9+cbbz5JgmDyEirP1Om0OTe3dqlKVNIFEh+uqKwEJg5s2Tya3TY2jFjBjBokOe1Uno9FYLw5JcjS5dSJUBHHy0Waizsy8R8+3bgtdfcCzIhSHz5YlMSa65sGgwkZK9dK9nlcQwBoEYNshkd7fxaVBTw0kvAvHnyRKVaDbz4Ip3n6nil7Uk2Z8+mz6w33nzTsy0XKP33T+m/oyohpETc0kWlUmHr1q3o16+f7HPmzZuH2bNn46effkKNGjVcHjNt2jRMnz7daX96ejri5PQ5YBiGYRiGYRimTKLVajFw4EDk5eUhISEhYHthK642bNiAoUOHYtu2bXjkkUfcHucqclWvXj1cv35dkQH0F6PRiF27dqFr165Ql6EKKbcCHrvA4TEMHB5D/+GxCxweQz+wiQ4Zo6Kw66OP0HXIEKilqINaTSW2X3rJdcTAESk6JOfb+bQ099EhrRYoKKDUvy++sEa+evUCBg+mVMGBAylapVYDZ89SxOnMGaBvX2DoUPvomF5PaXzS2ig5TJ7sOjIk9cE6dapkl1GjcR47W1q1oiqM7sbQYqFiGBcvyvevQQNKZ3RMvXPhn1e8+edp/FQq6ns1dCjQvj0VCyksBLKygMaN3dvMzaXS8FLERRrD55+Hul07e3smE6XqxcbSzyYTRSMdqxy6ina68s9slheZVdqeNJZ6PbBiBa0dzM8HunYle40bU8TKZPI5cqz037/8/HxUq1ZNMXEVlmmBGzduxPPPP49NmzZ5FFYAEBMTgxgXZTfVanVI/EMKFT/CER67wOExDBweQ//hsQscHkOZ6HSUiiaV1v47HUut01kFgk4HvP46pYXJWQNSWAiMH++czqRSUereiBFAx47UN6qggOw63iu9Hli2DHjjDWc7//d/wNGjlK51/DhNRAsKqMnvBx/QMa7KvQsBbNrkel2RO99OnKDJu6N/kZGUzubCllqvh7pjR2dbx46RT+7WIBkM9Lqv/qlUzv6ZTCRCv/9evq0rV2gsPTUvHj4cmDbN/p40a0Z9xKpUoXs2bZpz6fiICNefm/h4ErAOpd3V+/ZBXb26s73UVBL5BQXAjh3A00/T9djal/x87jn6PBw/DsyZQ73L3PnnqdeX0vYkmxUrUhrm66+TMNPraZ2cq9L7PvYiU+rvn9J/Q8OuY9eGDRswePBgpKen47HHHittdxiGYRiGCXXcFVBQqagS37ZtFCEymYDnn/e+/sNdIYVmzajwxOrVFGnp1IkiFp06Ae++a1+hT6ejAhD/+Q9FB2x9yM0FsrOBtWtJKD3wgNXOZ59RtMtdHy13BRQ8+XbwIFUVdBQ8nirJHT3q2taRI0BenvuiEe4KKHjy77vvXPvnrniCJ1tbtngvHR8bS32xbO199x2t16pfnyKcvhQI0WiAV18F/vqLPos3b9L+6tVJyEyf7tykuF49EiBPPQU8/DB9VoxGEqe2ditXJuGyYQOt+atXjyKb/hQwUdqerV0hlCm9Hw6IUqSgoECcOHFCnDhxQgAQb7/9tjhx4oS4cOGCEEKI8ePHi2eeeabk+PT0dBEVFSUWL14ssrKySh65ubmy3zMvL08AEHl5eYpfjy8YDAaRkZEhDAZDqfoRjvDYBQ6PYeDwGPoPj13g8Bj6gFYrxMyZQtD0TghAGDQaGr9Tp4TIyhJi+nQh2rQRomFD2s6YIURODp3riuJiOs7GpmjWTIjsbCFmzxZCrbZ/TXqo1ULMmyeEXi9Ebq4QLVsK8ccf9HNhoRAmE/28d68Q69eTb2fOCNG0qXs7wfDN09jddReN3dy5vtmyJSfH/lx//ZN8nDdPGVu26PVCzJ8vRHQ03YPZs13bcnzMn2/93Gi1ZMdspm1hoRA6nTDk59MYrl8vxI0bdM+7dnVtb84cen+Vin7OyhKiqMjzGMj1zx0hbk/pv39Ka4NSFVf79u0TAJwezz77rBBCiGeffVY8/PDDJcc//PDDHo+XA4ur8IfHLnB4DAOHx9B/eOwCh8fQB1yIjYAFgtlMQkw6VqXyfQJ+/TpNIvPynIXVunVWYfXhhyQWHAWWu4mooyDyxzdbm7ZCSKUShlOnaOw0Gv8nyraT7UD9E0IZIeQKrVaI/Hwaf3efE8dHy5ZC6HRCFBTQVhJW+fklQtpw8yaNYV4e7Vu+nI51JbDUavosdOtm/Tk/395PR7Hq6aFW0/GeCHF7oS6uSjUtMCUlBYIEnt1j9erVAIDVq1dj//79Jcfv37/f4/EMwzAMwzB2OKbJqVTA+vX089Sp/vVuckyX69aN0qkmT5bn0/79lCplMACXLpE9iRo1gJ49gZwcSkVLTQUyMujh2EjYVQ8ox1Q5X31ztGmbIifZkou7HlUaDfDyy8D8+cCjjwbmH0DrxUaMAK5fp1S7QGw5+hkVRYUePKWKqlRAjx5UWOP4cSpsoVZTCqTBYF2LVqECrWPTauk8iwVISgIef5w+k5s2Oa9VMxqpcMrIkdafL12iNElA+V5foW4vDAi7NVcMwzAMwzCycSeE5OJqAu64bmjECJr0yplANm9Ok+j8fJpAbt4MpKTQmqCUFHpuMJCPjz9Ooqp9eyqk0LWrvS13E1FbQeSLb65s2gqhkSNpHZNcPE2UJUGUnk7V5AKdfMsVQnL9k/DUVDgiAnj7bVpjlpEB3Hkn7ddqKQ5z/TqtIYqNpXVzMTHAl19aK+NJjaOjooB27Uhs/ec/zu+zdSvw0EPWn+vUsfYIU7rpcajbCwPC13OGYRiGYRhvuBJCgQoEx+hQx4406fWGSgXs3k3iac0a18URpk6l/WvX0gS6UycSVnv20Hs64moiaiuI5PrmyaYkhLp1o3Lxgdhy9DM2lopMKGEzGBN5VwVCVCqq8JifT+NSoQLtLyoCfv6ZCkHodEC1avQZkQqQqFRAv370GQDo+qOjSYjVqwd8/TUwbJizD7m5VHVP+rlCBetnz10BE0/k5rqvlmhrz1XBl5s36Xn37tZI6q20FwawuGIYhmEYpuziSggpIRBso0MVK8qb4HbvTlG0JUuAffuo8p+rSabJRGXely6ltLE9e4Data3RC1vcTUQlQZSQoMzkW6OhfUpO5AFlxYHSQgNwjnw2awZcuEAV9d55hyJSTZrQ9p13KKrUpw9w4wZV3IuIsIovKVLVpQs9N5tJvBcXk8h6+mmqmucoNhITKbVQ+rmoyBqdk/yTK1wkG+6ie5I9TxUXMzNp/+nTQNOmt9ZeGMDiimEYhmGYso0/QsgWd2JDig4VFLgvWW7LlCkUterdW94kc9IkSkls2RJITrZGL2zxNBHVaDyXU3eHO5tK2nK0qYQ4sPVPrj1v/kmRT5WKyvQfO0aRxIQEarw8fTqlep48SVHH2rVpjVGNGkD//rSWSgjqiyZFqmyFenQ0iWhbkeb4OUhNpXL5AP18+bJ1nZ7ZTA2q5QoXgK7HYnF/vS+84Ln0vBRd3b4dOHSIjr9V9sIAFlcMwzAMw5Rt/BFCtribgEvRoYgImkh74667KLpy+jRN0l95hQognDhBk/TDh4EGDWiS+X//B3z1Ffl+11201WqdhYaniTJgLw7kihd3Ns1misoA8u3J8U8pcSBdqy9REm/+SZ+d06eBuXOpX1mHDu7tGY3WqKPBQGupjEaKXpnNlEqYnU2216xx3ffJUWwMG0aCTa2msapXzxoN02iAIUPkC5c77vDcJFujAZ59FvjoI9dNsiWk61y1Chg06NbZCwcUqTkYRnAp9vCHxy5weAwDh8fQf3jsAofH0E/+Ln1uSEuj8YuLE6J7dyG2bRPi5k0qh37zJj3v3p3KhANCpKV57+Vz4waVAndnr0cPspGVRceePk2l16US7KdP0/5z54T49Vch/vqLSqrb9t+aOdO+95WcMthCkP0zZ1z39Jo+3Sebhuxszz3CbO3dcYc8/3Q6732pZs+mkujebObmyutzJdnz1CtVq6VS/mYzlcv//HP7z4Ure1LJfKls+o0b1LMsO5vucX6+MOTmyi9nP28e+RgR4brPlS89pKTz5XyWlSzFrrA9LsXOMAzDMAwTCmg0lM71wgv0/OhR79ENb9/0S8TF0Vocd/bWrqXjIiIoouGqSqDRCNSqBRw4QOlljhGNyZPtoxBLl1orz3lCqlInJ7LhzaY0Djt2eLd39Kj3cdPpqNy93KjGnj2e/VOr6R7Isbdmjev1VkVFtA4qJoam/DodPSpUcI6iOfonlcyXyqZnZdE9TUgA6tYlm8XFnsfElokTKTV0wwaKYFWpQp81Cb2ejpHDpEn0/p7uiU5HBVyULMWupL0wgMUVwzAMwzDlC2lyqpRAAGhCvW6de3udOtHE8cAB9ymB9evTxLJPH6BhQ9fvYysMnn5avngZN06e2PBmUwjaeusRNn48sGyZ9Xh3KC0Oioupkp8cJk60FzqSqJLs63SURvr99/S8bVsSWP/9LwlRW4El+WdbMn/rVhJUyckk4qTUwBUr5PkH0FiuWEH9wNRqWqMlEYweUlyKPWDC13OGYRiGYRh/UFog6HTA++9T02FX9lQqimgUFdF6nRMnXEfKTpygaIdtBMQdjsLAHb6IFzk2PTXddcRbk97SbFirUlHVvsJCumaLhdbDmUzWxr+2oiomhqpMCkHl1Pftc75Htg1/AWvZ9Ph4eq2oiETD55/Lu16JzZtJWDmKyltVet4bckuxK2EvDGBxxTAMwzBM+UJJgSDZ8yRghgyhEt0HD3ovZHHoEEWQXDUNtkVOFCIY4mX5cnm25NgrjSiJY+PfOnVov6fGv7aiascOKtzRvbvre2Tb8Fcqm67XUyGLy5eVLWd/K0rPy0FOKXal7IUBLK4YhmEYhik/KC0QvAkYlQqYN48m8x07eo5arVxJUatNm+wjIO7wFoUIhnjxJ+rizt6tipKoVEDPnsD58ySiXn2V0utMJhJSly97b/xrK6oAuqazZ53vkW3D39RU4M8/yU5sLFX5MxpDuzS+Y9NtOXgr7a5UtcowgcUVwzAMwzDlB6UFgjcBM2QIpXOtWSOvoIQUtbp61XXTYFtuZYNeR3tdusibKHuyF6wGuLb2cnNp/9atJKRGjyZh+8ADwIIFFFmqWZMEVH6++8a/3buTIIuMBCpVotcffJCKkbhq+CuVTa9bl36WUgJNJms5e7lj6K30PKBcaXyp6XZ0tDx7arX30u5SKXs5pfG92QsDWFwxDMMwDFN+UFogSPbcTW7ffpuE08SJQOfOrt+vc2dKP7SNWj3/PKWkBdIANxji5a676OclS+T1pPJkT4keVzqddc2UENSstqiIBHTr1lTcQhJTn31GFRe/+IKOkZr+LlpE15aUBDz+uHPj39hYus9CAAsXkqhq0oR6WL33nuuGv2lp5J9aTb5VrkzCrEIF4KWX5I+hJ7EhCaE775Q3hnIrX2o0nitf2vo3e7b3ipVKVqsMA1hcMQzDMAxTflBaIJhMNIl3N7l97z2KbuTkUFTK0/utWQNUrw489xzQqBEJs0Aa4CrZoBeg/R9+SD/feaf3ibI3H901wL1wgYTOI4/Q2N9+O1XoKywEXn+dzjUYSFhFRpJ9k8lahKKoiO5X9erU+HfnTquYcvTPtunvzZskomwb/wpB4mDJEiqp7q08/rBhtMZq+HASVBER9IiJsYqGmBj5YyinNP7hw/IaU/tS+fK777zb++EHYNQo76XdFy2iEvqffeZa3JtMvlXADHFYXDEMwzAMU36wFQhGI/Cf/9Ak8eefabJXXExl0OUKBIuFelidPg3873/AmDFWewcOAI89RtGHnTuB//s/z5PVAweospzJRBPqiRNpQnzqFK37OnLEvvCFt4mtJF7c+fbEE1TAoXFj2qfXA6+9RpNrnc4qYKRtRIQ1gnfxIu03m+m8rCxau1RQQFUTExLoGkePJgFka6e42N7ma6/RZFuvJ3s6HU3E69Qhn23T+AoL6RiTiYSP2WzdxsWRMIqPp/eIjLSudfrhBxKrZrNzTyqAyqgDZKtePeDrr8kfi4WiLu3aUYRSut78fLp3PXrYi4O4OLrnUVFkOzbW/h7pdFSBEiAxJV2zXk+icuJEq49yxYbJRCKlc2da71VYSGNfUGC/nk9uafybN8lW48bW8VGpKFqXnm5vz2z2bM9goDLy6el0vit7kriXWwEzxGFxxTAMwzBM+UGlsq6fSk+nSXuTJrRds4YiI9eu0Tft0gTcWyqVXk9Rlr17gfbtrfbeeYeEmlpNKYieilns3WudZK9bZ009k+w0bUopg2fO0MTWXQNcR7/0ehIArVtTxKSggN4PIBFx2220vsZopImwVC3PnYCRJsdRUSRejEbyae9esnPpEo2F7Zomo9HejsVitWWxWCfUUVHk3+HDJHQrVKC0M9vIU+3aVEDEZKJzIyLIZkQE2VOp6DpiYuztbd8ODB5MEcSuXZ17Ukll1C9dojGrVYvWVkVFkXCpXNl6HXo9ics77qB78uuvVnFgMJDfGo19TyoJk4lSPgF6f1sfv/uOPn+Sj3LEhsVC9+HPP8m2RI0aVMQjJ4fsHjoEfPSR98qXKpV1bVnDhiRUCwuBH3+kz6vBQGNx9Kh3e3o92UlKkmevYcOwbyAMsLhiGIZhGKY8IQSwaxf9/NJL9lGkQ4doUr1sGa3Z2b+fJqlS02F3HDhgjSTZ2rt4kSa8H3xAE0x3KWBffEFiYvt24JlngFatqI/S+fO0bdOGhMHixeTP0aMk/NxNvKXoUHQ0TfIjI2nSfPIkrUHavduaRvfUU/YirkIFOl6qlicJGGnspIlvly7W8776igRVdjaJrI0bXa9pshVCANkuLKR1TB06kNBLSaE1S507k730dOs1O6bxFRZSlEXyS1on5c5eVhaJoc8/p/2OFRm3bqVoWUICcM89ZK+ggK7ls8/oHMnm5s3WJsNJSfLEgcFgjeIBJNocfbx61d5HT/aKiymCptORP47+ScLl8cfpS4JNmzzb0+utovXdd53HsEsXEmvbt5Mo3LbNuxiSBLQce199BWzZEtYNhAEAopyRl5cnAIi8vLxS9cNgMIiMjAxhMBhK1Y9whMcucHgMA4fH0H947AKHx9BPtFohsrKE4dIlGr+2bYVo2FCINm2EmD5diKwsIc6cEaJpUyHmzRMiN1eItDQ6z4M9kZVF57dpY2/vxg0hrlwRYsgQIbZtE+LmTSFMJtpu2yZE9+5CqFRCAEKsWEHv586W5NuyZdafHX0rKBBCrxfCbKZtQYEQOp0Qf/xBtgsKhCgsFOLcOSHuuEOI2bOFyM6m6yUpIYRaTfvz8uj47Gx66HRCzJsnDAkJNHYajfUc2/Oys8nHM2es1wYIMWcO+S3Z1OmEmDuXzrO1486edM2STbWa9t24Yb1Oufaksb7nHiFycqzHNGokhNFI46fV0hjMnu3dZl4e2T1zRoi776axd8XfPsoaQ1sfXdnT6Xzz79w5Gq8RI7z6J/ueFBQIMXKksvaefZbG3wNK//1TWhtElba4YxiGYRiGuSWoVJRON2sWrZM6dcr6rXtmJlV4mzmTolApKZS+VamS+2/SJXuTJzsXvMjMBD79lKJk8+cD779PkZzcXCrSkJpKKYE5OcC//03luZcvp1QwV7Yk34YMoX1JSRTlUKspWqNWU4TNaKSoU3Y2RVN69qTeTSoVHRcXR+cePEhRJ5WKohotW9KUV4oMqVTAoEGUxqVSUfRp7Fj36ZG25/XqZU2527mTXp80iewJQdGxRYuAcePc3ytHe9I1SzalNL7+/Wkdmq/2LBaK2kk9qQBr01+Nhl5fsoTOkWNzxAjyr2VL1+maUj+0cePkj6Hkoyt7ZrPv/m3bRiXnXdnTaikK5csY6vX0eVTS3r//Tfuloh/hiCISLYzgyFX4w2MXODyGgcNj6D88doHDY+gHRUX0LTogDBqN68iBbZTlzBkhZs4U4tIl19+k29hz+WjWjL6RlxNZ0GqF+PBD97YcfbtyRYirVykKZRupys8XIjNTiPXrKSJTWEhRq+XLKYpQWGiNHEmRoOho+rlbN2ffsrLonBs3Sq7B69hJ561bR9E529dmzCB/bOx5fdjaO33a3mZyspN/su2tXy/En3/aR65mzKAxKSykMfLF5l9/CfH770Ls3es6kuPPGEo+OtrT6/3zLzOTomFe/PPpnuTnK2uvoMB9pPhvQj1yFeZJjQzDMAzDMDLQ62m9kRykYgdZWVTO21UZdk/2VCpav/PRR/TNvLsy7tI39x98QOtRbPtNuePjj2kdjbQ2Sq22FqPIyaF1P336ADduUEPcmjVd926KjqZIi6u1R5Jvy5dbIxCe+mm5Oq92becmyFu30rj6a69uXXubUn8xf+zVqkURvYMHab/U9LdePXq+ZIlvNpcsAapWBe67z7mypE4XmI+O9kwm//xr3JgikUr5V7s2fY6UtKdWcyl2hmEYhmGYkMbfyZ6UQuXr5LFbNxJAkyfLa+A7YYJ95Tp39OxJJcWNRvJLqvJ3/Tr1JLItRpGURClz69c7924ym6kQQlYWiaqtW52FEED7ExKoOIIvbN0KJCfbp9wBJIaio/23V6GCcxpfZKT/9tRqStUDrE1/VSoar61bfbcZHU1pl47iIFAfHe0F4p/RGHz/ArUX5rC4YhiGYRimbOPvZO/++/2bjI4YQeKsUSN5DXwbNnQdPbJl6FCqpKbX0xow2xLe335LFQXVaurJJDWdNZutosq2d9Off1KURYoE5eY6CyGA9qvVtPWF3FyKkBQU2O9PTAzMXlGRvc3U1MDsGY1UEXLOHGr+W7kyCRB/bUpRREeiogLz0ZFA/HPVl0pp/5S2F2awuGIYhmEYpmxzqyePHTtSH5/vvqMy0/Xruy/DLjUE/uEH19EjgITV++9bS3nHxlp7BV25Yl/Cu29fYMcOa/pfUpJVVNWqRZGounVJREiRoMREZyEE0H6jkba+kJhI7yel3EmkptI1+Gvvzz+d0/gC8a+wkBofjxxJ9oSg1/21WVzsutm0yeS/j7a9qyT89U+KXCrpn9LX665ZdxjB4ophGIZhmLKNv5M9o5EElq/2KlYE5s6lNVf79lGPJFcpgSYTrblatYqOdxU96tGDegQVF1ODW0+NYvv2pTTA7t3pdSn9TxJVUtpVhQq0lSJBqanOQgig/QUFwIABvowcnWc2W1PuAKsYMpn8t1erlnMan17vnz2LhcZbGguNhkSrtIbIV5sDBpCPrtYLmc3+++hKDPnrnyuhFqh/nq5XTkqsHHthBosrhmEYhmHKNv5MHvv3d51CJceeTkcpZr17e08JbNqUCmhUquTcjLV5c0pP9KVRbLt2NEk9e9aa/ieJKikSV1REYu3PP0mUvfCCvRACrGIoLo7SHOWuhVGrgeHDKbInNWsGrGIoMtI/e2YzReds0/ji42ky7o+96Ghrk+XoaPtj/LHp6XiNxhod89VHd/b88c+VULP1LzpanhiS/HNXLl2jAV5+WV5KbNOm3u2FGSyuGIZhGIYp2/gzuR050vtk1J29/HyaKMpNCZTWXN28abWhUgG7d5N4WrPGs521aylVsVMnKozx9dckzKT0P0lU6fXk2+XL9LxWLRJtOTn2QgiwiiEhKKIza5a8sZs1i47v1o3OVavt1zRZLL7b02hoPPbtI99HjKDrjYgg0eWrvbg467o0d2g08m3Onk3325M4UNpHX/2Tc70XLsgTQ5J/nq43JobW/8n5/C9Z4t1eGMHiimEYhmGYso8vk1s5k1F39lQqikItXSo/JTAjgyJUlSpZ7XTvTqmHUqNYb+Xcly6l9VV79lhLeEspb5KokoRNvXr0/gYDTZ779bOuN5LE0PDhJIYiIugxahQ1Q3YnKNVqen3kSKswnTGD1oSNHEliyGKh8fHF3qhRdG6FCsDgwSQUIyNpn0pFP0dEUKRErr24ONfH2CJFX+TYHDHCu01f7MnxUbL32WfA55+7/oxFR1vvibd0O5UKWLfOuxj64Qd6X0/+6XTWps7ePrdr1gD/+Ie8exImsLhiGIZhGKbs48vkVs5k1J29bt1o4tirl/yUwCpVgJYtSThItqZMoUnq5Mnyrm/SJBJRLVta0wCl9D+LhSav0r6ICBIrERHWdVDJyc5iSEoDi/h7ujh8OHD+PP3cqhVVQ0xOpijXtWv0emQkCcYjR4DRo60CTxJCKpVVYA0fTuelpZEdV/ZiYymiIRXgiI21pvJJW+mYESM82xsxwrtotkVpmzExJJx+/52e5+RQ+uTevUB6uu/2LBYqZnLypPNnbN06sj9ypPeIkE5HBVPGjvUuhpYt8150Qq8HJk6Udw0TJ9JntAwRVdoOMAzDMAzD3BKkyfKgQVTCvFUrIDubIkQDBlgntnLTkyR7Q4ZQ36vNm0kMRUTQt/yTJztPVjMzaWI+cyalRLVvTymBgweTyLl2jWy1bAm8847vjWJfe41Eh9FIKXT16lkr4VksFI0SgnyvWBHYuNFaQtxkIlHl6fol8bdnj/V9XBUi8JYmB1j7Qo0eDYwZY/XD38IGGg09lLKntE2djoTH0qXAnXdS+XyNhj57I0dahaMciotpndzEie4/Y7Nm0RcA3vBFDE2YQJ93d37qdOSXL5/bDz6g8S0DxSwAjlwxDMMwDFOe0Gislf727KFIjBRlqVzZ9wmeRkPnjR5NdpKTafIsJ5VPSgnMyADuu88qfkaPJuHhb6NYvZ5S/iRhJaXORUSQ4JEiIxoNPZf2V6ggX1hGR1vPC3RS7OhHqNnT6WgM1WoSoP4IK0kM1axpXc928SIJocmTaf/ixfKiOHIjTWPHUnqeY6EUR1v+iCF3Nm17wMmtFrh5szU6WgYoO1fCMAzDMAzjC8EQCHo9pejJwTYlMC7O6oNGE1ijWCltS0rDA3yLijCETkdiYMECoG1boEkT2i5YQPs9iRZHO0qJIcD3SJNe7/51fxpsexJDUg+4Zs3kVwuUPrdlBBZXDMMwDMMwSqDT0bf6vkQBpJRAx3MCaRQrlRmXKrC5K+ldFtHpKGpnsdBWrgByxDbSNHmyfYEHXyNNSoohpSNN/jbYdieGTCagdWvfGmi3aiX/esIAFlcMwzAMwzBK4E8UYOtWa0qgLYE0ipWiceGCEoJIqSiTZCsc0u7k4inSZNsQW24anyTiXWE209q/jz6Snxq7ZIn3IhlhBIsrhmEYhmEYJfA3CmCbEigRSKPYcIlUKSWIlIwyAeGRducLniJNUkNsX9L4BgxwL4ak9FhfqlyWsZRVFlcMwzAMwzBKYBsFkIunKIDSjWKVQBISoZJ2p/R6pnBIu1P6M/byy76l8Y0a5blaoK+psZ7GLwxhccUwDMMwDKMEUhTAF7xFAZTszRUIUpTp/ffpeevWoZF2p2SUCQhu2p1cvKXdDRggP4UP8PwZA+gztHq1vDS+NWs8R1OVHr8wpOxcCcMwDMMwTGmi0ZDI8TWVz5MoktvI1tMaq0DXNClZRhxQThApHWUCgpd25wtyBLfcFD45n7HiYuCNN+T55q3pr9LjF4awuGIYhmEYhlGK2NjAUvlcCSHHXlpye3MpsaYplNPughElCUbaXTAE95dfykvhW7rUc7qo0gJV6fELQ1hcMQzDMAzDKIW/qXxyhJAvzXGVWtMUyml3wYiSKB1pAgIX3LbodCRix42Tl8L39NOePydKC9RgjF+YweKKYRiGYRgmUGwjTioVMGwYcOOGvFQ+pavdKRVtCvW0u2BESYIRabIV3I89BmzYQPtzcqzrpB57TN7aOV/ErrcUPkB5gRqM8QszWFwxDMMwDMP4i7uI0zvv0OT/3/8Gjh51n8qndNodoFy0KdTT7oIVJVEy0iQREwMMHw58/DGthwKANm1ondTJk7R/+HDva+eUFrvBEKjBGL8wgsUVwzAMwzCMP8iJOH3wASCE+1Q+pdPulJyAh3raXbCiJMGo0lhcTONcsybw5pu0TyoKMmWK9bPiKdIUDLEbDIEaSlUuSwEWVwzDMAzDlC+U6NWkRMQpGJEIJSfg4ZB2F6woiRJVGiWUik4GQ+wGS6AqOX5hBosrhmEYhmHKB0r2alIi4hQZCWzZIr9fEeA9EqHkBDwc0u6CGSXRaOi9x4wBjh8HfvoJOHiQnnuq0uiIUtHJYFXiC5ZA9bfKZZjD4ophGIZhmLKPkr2alIo4RUUBn3wCpKfTWi1JSKlU9Dw93dqvSMJbJELJCXi4pN0FI0piu5bugQfofjzwAK2l02rlC3Elo5PBErvBTuPzpcplGYDFFcMwDMMwZRuli0YolXpnMgEJCZSauHkzkJJCzWBTUui5wUDf8B89ahVY3iIRSk/AwyHtDlA2SqJk9UYl0zSDWYmvHKfxKQ2LK4ZhGIZhyjZKF41QIvVOr6fHgQPAsWPAK69Q6tmJE8D06cDhw0CDBsDatfR+X31FES05xQSUnIAHO+0uGGljthFAX1FaiCu9TiqYlfjKaRqf0pSquDpw4AB69+6N2rVrQ6VSISMjw+s53377Le655x7ExsaicePGWLp0afAdZRiGYRgmPAnV8tUWC1BUBHTsSIKqUyeKWnXqRBGS1atp/8qVwNKlQFIS8Oij8iIRSk/AbaMakyfTvgYNlItqKJE2JqcJsxyUFuJKr5O6FZX4ylkan9KUqrgqKipC69atsWjRIlnH//7773j00Ufx0EMP4cSJE5g4cSJeeeUVbPY13MowDMMwTPkgFMtXGwxkf+1aoH59YOpU+9SzqVNp//btwKFDwJo1NIlfskReJCIYE3ApqjFqFD3PzAydqIZSaXzBEOLBWCfFKXwhTamKq549eyItLQ39+/eXdfzSpUtRv359LFy4EC1atMDQoUMxZMgQzJ8/P8ieMgzDMAwTloRi+WqTiVLP9u0DPvvMdZVAkwkYPx5YtQrYtImEVZUq8kVMsCbgkrgLlaiGkml8wRDiwSwKwil8IUlUaTvgC0eOHEG3bt3s9nXv3h0rV66E0WiE2sUHt7i4GMU231Tk5+cDAIxGI4xyv5kIAtJ7l6YP4QqPXeDwGAYOj6H/8NgFDo+hDxgMFLm4dq1kl/HviafR3QS0Rg2ahEdHu7cbFUUpdZMmeffhzTfpeOl+abVAjx7AP/5B6X+zZpGgS0wEevUCVqwgoTVwIJ07cCDw119/O+/DPY+KAuLjaT3Xa6/Rc5OJoiKSSPLxM6T4Z0+vJ3Hiyjc5FBYCM2fKExMzZgCDBtF7uUIIuu++CBNJrHkaD4fPisfPn+NnxRvStZjNNI4RET7f03BD6c+g0n9HVUIIoahFP1GpVNi6dSv69evn9phmzZph8ODBmGiTC3v48GG0b98eV65cQa1atZzOmTZtGqZPn+60Pz09HXFxcYr4zjAMwzAMwzBM+KHVajFw4EDk5eUhISEhYHthFbkCSITZImlDx/0SEyZMwOjRo0ue5+fno169eujWrZsiA+gvRqMRu3btQteuXV1G3Bj38NgFDo9h4PAY+g+PXeDwGPpIbi4Vi5C+8dZosOujj9B1yBCoHdPE1GpKsZJbhECq+rdiBaX05eUBlSoBffsCQ4dSFMY2EqPTAcuW0bqqzp3pmPbtKcJUWEhrrFasAPbupaqB3bsDL74IfPEF2fEUTbsFKPLZMxiADz+k63MVNVCraXxeesnz9RoMQJcuwKlT8t+7VStgzx7XdvV6SjGU+qDJYfJkWocmJ9r292fF+NFH2HX77eg6dSrUsbHuPyuMS5T++ydltSlFWImrpKQkXL161W5fdnY2oqKiULVqVZfnxMTEIMZFPrFarQ6Jf0ih4kc4wmMXODyGgcNj6D88doHDYyiT+HiaBI8da7dbrdM5i6u0NDrelzUyFStS2t3o0fTcaKT0NldpXwUFlAp47BitoVq2DJg2zZoWmJoKLF8O5OQATzwB/OtfQLNm9JrBIN+vIOP3Z0+no/VjDvfC6ZjXX6c0PU/rjyIjKd1TbiVAAMjOJnuu1kmp1cDw4XQ/5KSKqdXAsGF0/+UgfVZGjAD27oX6+++hBtx/VhiPKPX3T+m/oWHV56pdu3bYtWuX3b6dO3fi3nvv5X8uDMMwDMO4JlTKV+t0wCefUCGL7du9Vwrcv58KJgweTJP9sjABV7LUudJlzoHg9pGyfQ8gdIqCMIpSquKqsLAQmZmZyMzMBECl1jMzM3Hx4kUAlNI3aNCgkuOHDRuGCxcuYPTo0fjpp5/w0UcfYeXKlRgzZkxpuM8wDMMwTLgQ7F5NcoiMBLp1Az76iCoBeqpuJ1UK7N4duO8+KlgQCkhix2KhSJovUSOlS50Ho8z5rRDiTJmmVMXV8ePHkZycjOTkZADA6NGjkZycjClTpgAAsrKySoQWADRq1AhfffUV9u/fjzZt2mDmzJl47733MMDXXyyGYRiGYcofpd2rSareN2UKiaZt21yXYZfWkU+aRGlkcXFAhQrB9c0bUpPe99+n561b+96kV+lS58Eqc859pJgAKNU1VykpKfBUrHD16tVO+x5++GH8+OOPQfSKYRiGYZgyjW1a1q1cVqDTkVg4ccK63mrqVPv1VqtX03qrfv2Ac+fomNGjS1dcSU16J04kgbhhA3DxIl1PZiaVOJ81iyI+ngRHMHqOSWl8ntZwSfiSxqfR0GP0aGDMGO9r6Rjmb8JqzRXDMAzDMEzYolYDTz8tb73VoUNA06bA1q3u+zLdCpRs0huMNVLBTuOTs5aOYWxgccUwDMMwDHMrMJupzLrc9VYZGVTaPZDomk5Ha6P8WSMFKFuAIhhrpABO42NCChZXDMMwDMMwtwKdzlpMwxuTJlHqYI8e8gtAOL7XzZu0JqptW6BJE9/XSCldgCJYa6Qk25UrUxrfkSPUq+xWrqdjmL9hccUwDMMwDBNsdDoSHiaTvGIWRiP1uxo50nvkxhFpjVTNmiTmbFMPJ0+m/YsX03GeULoABRD8UuecxseUMiyuGIZhGIZhgk1kJHD8OHD6NBWtyMwEOnUCbruNtpmZtP/0aVprBdB6q8aNfRMISq6RCkYBCi51zpRxSrVaIMMwDMMwTLkgKorWW61cSdEjW+GjUlE0KTkZ6NwZ+PlnoKAA+L//A6KjfXsfX9dIDRniXsAEUoDC0/omaY3UkCEUzdu82VoxccAAei02ltdIMWEJR64YhmEYhmGCjV7vunlws2bWaNaJE0CHDrQ+KiWF1gzl5ckvQhEOTXoleI0UU0ZhccUwDMMwDBNs9HoqUqFSWddc5eYCP/0ENGgAHDsGHD4MnDxpX5pd7vooIHya9Dq+B6+RYsoQLK4YhmEYhmECwVu5c6mYRaNG9muuUlIoStWhA0WtHNdcAfLXRwHBbdIrB38KUDBMGYPFFcMwDMMwjD/ILXcuFbP47jsST8eOAa+8QvtOnACmT6eoVYMG9g2EbfHWQwoIzya9DFPGYHHFMAzDMEz5QhIp/jbWBXwrdx4VBbzzDomfjh1JULmqFHjiBBW8kBoIS2XZAe/ro4Bb06RX6tPVoAE36WUYF7C4YhiGYRimfCBFmt5/n563bu17Y13Jji/lzouLgaQkYO1aoH59WktlK8amTqX9UtRqzRpqINy1q71Nbz2kbkWT3lGj6HlmJhegYBgXsLhiGIZhGKbsYxtpSkujfRcv+t5YF6DI1xtvyGsGPHEiRYYWLwb27QM++8z18SYTVRJctQrYtMnaQNgWb+ujgOCvkZKO5wIUDOMSFlcMwzAMw5RtlGysq9MBGzZYC1B4awbcqRMJtkcflXf8pEkUtbp6FXjoIfv39rY+CuA1UgxTyrC4YhiGYRimbONrY11PhSMiI4GnnpJfmGLKFFpztX27vJTAhg0patWvH1Cxov17y+0hZbtGKi2N1kY1asRrpBjmFhBV2g4wDMMwDMMEDX8b644e7TqqIxXB6NgRWLaMxFNuLkWVUlMpCpWTQ+JIpaI1SosWUcqfp/ccP56Oz8gAnnmGRFtBgfUYX3tIaTT0GD0aGDOGzjcayX+OVjFM0ODIFcMwDMMwZRelG+sCwMGD8qJWa9ZQSuC339o3D3a3RktKCWzZEoiPp/eR8LeHFDfpZZhbCkeuGIZhGIYpuyjZWFenA/LygEceAbKyrEUrVCrqcZWeTmulpKjVpk0UNRs9Gpg3j4TTsmWUCugu2rV8OTB4MEWZFi8mP956i9ZHcRofw4Q8HLliGIZhGKbsomRj3YgIQAhKC9y8GUhJocIUKSn03GCgsuRHj1rLqZvNQPv28tdc/fADcN99QFERpR7y+iiGCStYXDEMwzAMU3ZRqrGuTkcpft5SAteupWjZtm0UhXr5ZeuaK0+VCqUy7HPnAnFxQEIC95BimDCExRXDMAzDMGUXpRrrCkFRsO7dgc6dqZJfYSGJq4ICSu07cQJYuRJYupSaBlepQufK7Yk1aRJQqRK9rlazqGKYMITFFcMwDMMwZZtAG+saDLSNjAT+/JPEj0SNGkDPnrRm6rvvrIUs9HrgySeBTz6R3xPLaKRol9zKhgzDhBwsrhiGYRiGKdso0VjXZCLR1aIFbbVa67opaa3V449TKfVNm4AlS4AKFagnltz1Vk2bAlu2UFohwzBhCf/2MgzDMAxT9pEa6w4ZQml7AK2R0mhojdWIESSaHAtH6PUkrKKjrb2iDAaKVDVsSFUCr14F9u4Fnn6aIlLx8VSIAgBWrPCtx1Xv3vJTGBmGCTk4csUwDMMwTPlAo6EI06hR9DwzEzhyxH3hiKIiEj1xcbTV6Wh91bFjFJWKjKQIVlISRa02bqSf9+whEafXA5Mny/NN6nHVowenBTJMGMPiimEYhmGY8oW0pspVY12pKqDFQul5JhM9FwK4fp2iSm3b0nlffmm1JZVc1+upCXDTpsAHH1iLYHgrZiGttxo50rlSIcOEKzodRXotFtrqdKXtUdBhccUwDMMwTNnGVjAVF1O0CSAhJBWr0OlI9CxYADzwAKX7PfAAPS8qIvFUvTqJKymilZpK6YFqNVC1Kp2Tn0/CKjqaSrWfPu29mEWzZiS0OnQgGzExykxElZ7YSvaA0PZPyYk8j6H/dqTfp7Zt6XPdti09v3mzTIssFlcMwzBKEsr/6Gwnl0VFtA3Er1C2B1ht2Nosq/4Fw8dg25M+24WF1s+2nK0n/zydo1JZI1A3btA+s5kiSTodPTp0oDQ+x6ITtWtTryqTiVIB4+PJXlERsG6dvRhLT7f69dFH3otZSI2D16yhHlqSrUAmokpPbG3tdelC+7p0CU3/lJrI8xj6b6+4GFi8GKhZ0/n3afJk2r94ceB/Q0MVUc7Iy8sTAEReXl6p+mEwGERGRoYwGAyl6kc4wmMXODyGgeM0hnq9EHl5QhQWCmEyCZGbK8TevUKsXy9ETo4QWq1vb6DVCpGfL8SZM2RLsnnmDO2Xa0+rpfefOVOINm2EaNiQttOnC/HXX+SvThe4X6dP01aGPbuxU8CeEzqd53tRVHRLrzcY/gV1DKXPclGREGYzPddqhSguttqSnnvb6nS0dedfTo4QV65Y/dRq6X3dbXU69+O3bp31M+3JhlYrDHl5NH6XLwtRUEAPvV6ImzeFaNpUCJJgzo85c4TIziYf5s0TQq12fZxaTa/n5Xm216wZ2Zs717stvV7+/ZPjm5/2DBoNjZ1GE5L+BWzvFvhYpsdQq6Vj3X3mbR/z5/v+v1EoP4dRWhtw5IphGCZQtFpKL7p0ybn/TY8eQFaW9dtsOUjfuFssVM0sPp6+3f/xR+qXU1QE5OXZf4vviuJiWhPy3Xe0gP/4cTp/+nTg8GGgTh36Nt5g8G5L8isvj97/s8+AlBRKcUpJATZvJp/z82kMSsMeQPeisBBYuJCiEJK9gwep8asv9yLU/XPl4xtv0D2OibGWDJewjeYUF7uO8Oj19HjvPVo/JEVj5s2jb6/z8ugapIiPEPSzp63JRI/Nm53HULpOsxnYsIGiQULQWijHrUpFvxPuxq9LFyA7G1i/nt7PlQ3bLUBFKaSxuXmT1lhlZFjXQTkyeTKtz1q0CBg71n3hCaORXl+6lOz16OF6zdXOnRTdGjfOu61Fi7xHD3Q64P335fnG9sLTx1C3p9cDEyd6PkZiwgQ6vozB4ophGCYQDAaaYOt0riePUv+b1FSa9Hn7x2S7kD4qiibHkrC6coUmkDk5wOef07Hu/jHp9TSB69wZaNzYOllUqWjCnJ5Ok/CVK2kCmJPj2Tdp0n3gAFVKe+UVZ7HWoAGwdi35n5cn71qVtKfXk5g8csS9ve3bgb59KZVLWndzq65Xr6dUmMGDgTZtgH37gPPnadumDTB0qHz/HMfw7FmaoL/3HhVTMBpJQOj1lI5TXGwviCwWeg7YiyGLhYTZ8OHA/v32/j3/PPDxx3RcejrZsljci5fISPq8ffUVCfyXX3Y/hlFR9DuzaBGde/Om/TY/n2zJGb/UVKra52jDcQvQtrCQBFN0ND2vVw/o2tX1eHfqRPdZ7uRx7VpK/VuzxnnN1cmTQMWKVHq9aVPvtuRMRJWe2JY3e8GwWZ7s6XT0Oyq32qXRSEVfytj6KxZXDMMwgSBXIERFAR07ev9HZzZ7/mY+J4cmqqmpwCefWCfIjkgRAIPBs+g7epQmfoB91M0Ri4WiIx070vW5WphvK9Y0Gs/2ABIPStnT64HcXOChh7zbW7UKaNfOc3RI6evV6UhcP/YY9T1yVdxgxQqaaGdk2PvnuDZLWqMEUCGFrl3ps9auHQnndu2Ad96hynZ//UXiQyohbrFYBZG0jYy0iiHJ1yVLrJ8ZV/516EDXXVjoXrwYjXRPOnSQN4ZJSSTojEaKKAlhv/Vl/Nq3p2txtGG7tX3dbCYBd+kSfZZGjnR9H0eMoLGRM3ls1ozGfskSoG5d5zVXU6bQNds2EPaEt4mo0hPb8mYvHHwMdXuRkfT/xRc2b6a/Q2UJRZILwwhecxX+8NgFDo9h4JSM4aVLQmRl0RomxzVNWVm0zqRpU1qrUVAgRHq6+xxznc772ovZs2mNxrJlZPuvv5zz4LVaWusxe7Z3W3l5Qpw7J8SMGWTPlW/S2hk59rKzhbjjDvLrjz9c2jMUFtLYyb1WL/ZKxs4X/7KyaI1TYWHQr1cIQWt5srM924yOFmLjRlqfpNdb1zvZrnP67Tch1q8XhuxsGsP8fFpH9Mcfzmt7HH2U7nd2Nl1/QYF1K6138rbuQrKXnS3Eo4/S+TdukM+2D63WvzE8fJjWB2Zn0+cxO5uuTc74Ofq3bp3VhsPWcOoUjd+pU7T/9GnyOzeXxjwnx/V73LxJv9/e1pKoVPRes2fLW3syZw4dr1J5Pi452f26l+Jieb4FaM9pvVCI+ee3PR7DwO2ZzfQ/0Bd7jRrReT7Aa64YhmHKIlLkYMMGz5XApG+l16yhb8TvuMP1t3Q6HaVEeVt7MX48RV7at6eGo9984xwxsVjo2/Lx473bkiIG167RGixXvplMlJMvx96qVcCmTfT+Vaq4tidF26ZOVcaeVuu7f8uXA7VqUUQx2NcrVaL76CPXNiMigLffpkhT377WdUBaLU0/rl+3pvUlJQH9+lEUCrBGKJOSgP/7P/voh6OPEyZYo2xSCpwUxZFS7rytu5DsmUzASy/ROGZlWSM+0tZs9m8M77wT2LIFSEigz2NCAo2rp/Fz51/t2lYbjtvatemc2rXped26NCYVKlA0sGJF1+9RsSJF47zRrRtFhqdMkdfjSmog7C4dUSI3l/xzRVSUPN/YnvvXQ93HULdnMgGJib7ZS0wsc02zWVwxDMP4g78CoXFj1/+YfFnHIU3E9uyhyaGtQJB6+EyeLN+WXg8MGWKdWDqi11OhBF98u3qVJqvu7MlFrj1//EtOvjXXGxVFk2jHexIRQalxeXmUbmYrqi5fpnV1Oh1QrRrZ1WqtaX01a9Kxn35K4shTMQbbibt0v21T4HJyfFt3MWkS+d6pE7B1KwkTW/FSqRJ9+eDPGMbEWCdv0ucxJsb1+Hnz7777rDYct3FxdGxcnP3+oiL6vZXEqyMFBfImjyNGkEg8ccJ7j6umTe0bCHvC00RU6YltebMXDJvlzZ7ZDAwY4Ju9AQPKXNNsFlcMwzD+EIhAcPzHpNNRHrsvee/Ll5OwchQIJpP8NSGSrSVLaIInTSyV8K1fP/LLlb0VK+TZkmvPX//i44N/vQDdk2XL7F/r0YMm6qmpJByiouj54cMkqipXpihWfj5FRyMinCvbASQgbNcouSrGYDtxl+531ar2kSFfr3nZMlpfkZtL720rXsxmsmcyyYvaOI6hNHmTPo9mM72fL/aWLaMxk2w4bqViIVqtdX9xMYna/Hxa4+iKgwflTR5TUoCnn/be48p2vdXWrbRm0BOeJqJKT2zLm71g2Cxv9jQa+jvjKTpoi1pNX0RoNL75EOKwuGIYhvGVQAWC4z8mfxYBb91KwspRIERF0Wu+2oqOpomlUr7df7+1CIOjvc8/V9aev/7p9c4plUpfL0CT/K1bafLfvTsVPcnIoEqQkZGUzjdkCEU0bEuyb9hAEarHH6diDkLYV7YDqGBKbq41pS06mj5rtmJD8lGauEv3WxJE0dF0zZJ/3sSLZCMigoRQUZG9eImIoGs8fVpe1MbxnvTvTwJHEjoREVQt01d7kZFWG47bK1fouCtXrPuNRhKnsbGUIukKvZ4mg54mjyoVvb5iBRW0+Owz1+NpMlkj2xkZFMF0l44IeJ+IKj2xLW/2wsHHULcH0O/PrFny7M2ebd8uoozA4ophGMZXAhEIRqPzPyZ/897j42myZzuhV6v9z6GvV09Z38zm0LZnsVijQY72fBEanvwDaGyrVKHJ/5o1wNdfU++oJk2okt7Bg8CcOVR+fd06a0Sjb18SVVFRVAFQilCZzdZqXcXFdIxk74EHqDqlo9jIzbVO3KX7LQkiW//kihfJRmoq8Oef9uJFEha+RG2kMczMpMlebKxV6PhrT/pM29qStnXr0nXUrWvdbzLRfb10Cdi1y/kezplD997b5LFbN7ovvXvLG08psi1FM90hZyKq9MS2vNkLhs3yZk+jobYL8+e7F21qNb0+cmSZi1oBABQpixFGcLXA8IfHLnB4DAPEbBaG5s3dV3tyVxHJZHJfnc6fik0FBVT9zRa93v/qT+4qBfpjT6dzXVGquFgY2ralsevVS4ht26gCm8lE223bhOje3b5qmhd7Jf6pVHSuN5uSPZ3Otb2+falym5wqkN78k2xevy6/0p1kV6ogl5NDlezWr6fXf/1VGAoKaAwTEuTZS062VsBLTqZ7LVXQ0+t99y85mT57rqoFFhWR73I+K9I13n03jeGmTfZVDLOyArPnaOvvreHmTRq/mzdpf2EhjUNxsRAffEDX16gRbWfMoEqGhYXki/TZmT/f9Xjt3i2/Wqc0njNmUMXCbdtcHzt/vucqd45/A9z5poA9p0p3IeZfwPZugY/lYgy1Wvqbk5Zm//uUlkb73VVWlUGoVwuEIlbCCBZX4Q+PXeDwGAaIrUCQK66kCbgrtFoqP+2LgJkxgyZwrsqw+2orLY0mjd58kyteZs50LSL/tmf44ANrGXs54sWLPTFzphDNmskXRJ7s6XS+T4w92ROCxnbuXN/EgUpF7yOVjM/OFmLv3pLS7IYFC+R9/iR7M2ZYJ+5paXSNkhgqLPTdv7Q0Ic6eJf9sxYtWS2LL3di5GkvpGnNzafwloVNYSGLHH3vp6XS+rS2brSE3l8ZPKr1uK461WudS+Fot+WL7++Zq8nj33YGJwfR0ZSaiSk9sbeyV/O1r2zYk/VNsIs9jqIwYsv39k36nAhBWQrC4CjlYXIU/PHaBw2MYIFqtMLz5pm/iytsEPCeHJoZyBIxaTd+kuxNrN25QzyQ5Qkitpvf2RE6OEHfeKU+83HGHV3s+RV1k2BO5ub71QMrNdW9L6vXky8RYzvj5Kg66dbOKaElU3bxJk5MbN4QhIUHe50+yd+MG2ZTu940bJIhu3PBPvOTm0ue5oMB+8lRQ4P8XBVIvr6Ii67awMLAvHmxt2WwNeXnWPmHFxZ7vnzdsxZi/YnDQIDrfUdgFOAkNhr2SPnWS6Awx/xS1FyQfy80YSoJt5kz7/xkzZwYk2EJdXPGaK4ZhGF/RaIAXXqCfu3Txvi5Hrabccsf1PbbExlIVNznrXpYsoRLS7nLf4+KACxfkrfeQm0N/+LC8NS9Hj3rOodfpqJIbIK+E/Z493v1Tq+ma5PRAWrPG8+JtX0uS16hhLevtiqIiKhghVfhztWbL0U/bktxS4RK1mtYk+VPNcMUKWl+2axfdb6mYhUpFZc79sRcZSedHRJBtlYq2arV/BUFiYkhuSHalbVSU//ZUKntbttvISDo2NtZaHMRfNBp6v4gIa6VEX6tNDh5sXY8p2YqJCXw9SjDsSeMVHR2a/ilpL1g+locxLC6mwjA1a1IbBdv/GZMn0/7Fi+m4MgaLK4ZhGH+Q/uEsWaKcgPnnP4Evv/QsYL78ko7zNKFXqayFETwJoR9+AEaN8v7PUwgSRHLEy7JldLw79Hpg+nTP7ycxaZK8f+7FxfJ7Kk2c6P6fuU5H/+x9mRh/+KHrCoHFxVTgAaB7X1hIPY8KCpyLQzhiW9lPKvRgNNLY+SM2tmyh8+bNo0pfkiCKiPDfnlpt7d9lK1oCKagiTTptt4HYc7Rluw1UULnD32qT991X5nr9MOUYnY6aiHtrSj52LLBokbVATxmBxRXDMIw/SJGHO+9URsDodPRPZtw4z/+Mxo0jAeDun5Hcf2qSEJKaIXvCl2jOhAnue4D5I14++MDzP14lbfozMd68mUSKLVotiaiFC6ka4G23Ud+jgwcp0pmTA3z3nbWynSO2lf0SE61Nf6XIkD9iIyEBGD7c6mtEROBiyJVoCfUmp8HG3+qVcXFls2oaE57odNQI3GKhra/iR6n/GWGKz+JqzZo1+PLLL0uejxs3DomJiXjwwQdx4cIFRZ1jGIYJSXQ6ilgAoSdglP6nForiJVg2/Z0Y26YZ6vUUXTxyBHjlFer3dOIEResOH6a+VNu3UwnzjAx6OKYIJiZaS3KnptIEJy7O2qTYX7ERF2cVQjExwRFDod7kNNiEmxhkGFuk9OUFC4C2bam9Q9u29PzmTXkiKxhfooUZPourWbNmQfP3tytHjhzBokWLMHfuXFSrVg3//ve/FXeQYRgm5PAlte1WCphg/FMLNfESTJuBToz1erLdpQvQuLFVNKlUNElJTyehtXIlrSdr3576G3Xtam8zNZWiXGo1RZvUauuaJpMptMVLODQ5DSbhJgYZRkKpNVLB+BItzPD5Si5duoTbbrsNAJCRkYHHH38cL774It566y0cPHhQcQcZhmFCilAWMMH4pxZK4sUVStoMdGKsUlE0KDISaNiQ1koVFgI//kgTFIMBqFyZin6sWUPCas8ea/EKgMbthRfoMzZrFkWbIiPpHkVEkP1QFy+h3uQ0mISbGGTCn0BT+CQbSq2RCsaXaGGGz+IqPj4eN27cAADs3LkTjzzyCAAgNjYWujIU0mMYhnFJKAuYYPxTCyXx4golbQYyMdbrqZBHVBQ9pCIWP/4IXLliXWu1fTu9vm0bVYmrXdtavAIA0tLouG7daK2ebVU7qcBDbCyt65NDaYgXjQZ4+WVg/nz3Y6lW0+sjR3oXFkrbCzbhJAaZ8EWJFD4JJdPJOTXWd3HVtWtXDB06FEOHDsWvv/6Kxx57DABw5swZNGzYUGn/GIZhQotQFjDB+KcWKuLFHUrb9HdibLFQusylS3QfJGrUAHr2tBaxSE0FNm4EkpKAa9eozHrFiuTX3LnAsGFAnTqUDhgba10b5XjNL71kvR5311ma4iUmhsb52jUSjMnJQKNGtE1Lo/0jRtBxclDaXjAJNzHIhB9KljlXOhuDU2N9F1eLFy9Gu3bt8Ndff2Hz5s2oWrUqAOCHH37AP/7xD58d+OCDD9CoUSPExsbinnvu8ZpauH79erRu3RpxcXGoVasWnnvuuZJIGsMwTNAJZQETjH9qwRAvSkZdJJtKRQr8mRhLZdd1OopSpqRYKwRu3mxNB3z8cSpg0b49ffM7ZAilDur1JA5GjiQhVamS51L7gFVwnT8fuuJFo6HrHj2aCnycP0/b0aNpv6+iQml7wSScxCBz65EiP/6k8ild5lzpbAxOjQUUaUXsJ5988olQq9Vi+fLl4uzZs+LVV18VFSpUEBcuXHB5/MGDB0VERIR49913xf/+9z9x8OBBceedd4p+/frJfk+luzD7i9LdpcsTPHaBw2MYAFqtEDNnCoNGQ2Oo0QhBCWHuH2lp3jvR5+QIoVZ7twXQcTk5wbXjeM3z5smzuWCB12s1FBbS2CUkuPdr/nwh9Hrvvkno9XSOu2v31aZWS2OTliZEcrIQjRrRNi2N9kvXqNMJkZcnxMaNQnz+uRA3bwphMtF22zYhuncXIjpaiNmz6bhz54TIyhJi3Toh8vOFKCgQorBQ/nX+jd3vsFZL12U209bbZ03OtStpLwS5pX8Dy9h48v+PAPj774rhzTdpDJs3F6JNGyFmzrT/u+IJpf/Gm81CNGwoz570aNSIzvN0nQr+z3BE6c+g0trA58jVgQMHPD584e2338bzzz+PoUOHokWLFli4cCHq1auHJUuWuDz+6NGjaNiwIV555RU0atQIHTp0wEsvvYTjx4/7ehkMwzD+Eaxv5ZSKvgRjvYfSaU5KR10A5SMFcqMkFgtQVAR07EiVAF01k5YqBC5dSumAe/bQWqvoaDq/QgX51+nO15gY+iZZTtPlW22vvMPjyQD2qXxpabTv4kXfUvmCUVApGNkY5Tw1NsrXE1JSUpz2qWx6dJjl9HMBYDAY8MMPP2D8+PF2+7t164bDhw+7POfBBx/EG2+8ga+++go9e/ZEdnY2Pvvss5J1X64oLi5Gsc0HNT8/HwBgNBphLMXFc9J7l6YP4QqPXeDwGAZIVBSM06YBAIze/im8+Sat0/I21lFR1iav06e7Pl6tppS6l15yb1MpO45ERAAvvggMGgSsWEEFGfLyKIWtb19g6FASahERXu2VfP4qVKBeUK+9Rn6YTCQ2JMHn6+czKorS7JS2CVDKpVSxT7JhMNB3rwcPkv0RI6jJc2EhNQhesQJ4+23gjTeAb78FHnuMxu+OO4B69chGZKRfC7n5dzgwePz8p9yNnV5Pv/eu/p74YmP5cmDKFPr/8ff/Daf/H1Om0Hu98ILr97BYgC++8E2MbN9Ofw/d3a/iYuCJJ4BffpFv84kn6O+fp0JNCv7PcETpz6DSn2WVEEL4ckJeXp6TQydOnMDkyZPx5ptvokuXLrLsXLlyBXXq1MGhQ4fw4IMPluyfNWsW1qxZg1/c3OTPPvsMzz33HPR6PUwmE/r06YPPPvsMajfKeNq0aZjuoh9Neno64rzltDMMwzAMwzAMU2bRarUYOHAg8vLykJCQELA9nyNXlSpVctrXtWtXxMTE4N///jd++OEHn+ypHDrTCyGc9kmcPXsWr7zyCqZMmYLu3bsjKysLY8eOxbBhw7By5UqX50yYMAGjR48ueZ6fn4969eqhW7duigygvxiNRuzatQtdu3Z1KwwZ1/DYBQ6PYeCUjOH990O9erX7b+X8LbOsxLelStpRkDLz+SsuBpYsoRQfdxHCSZOAf/2Lolaff04VAd96i46PjPT7XpSZMSwlePz8p1yMncEAfPihvOi/YzVPR/R6KkAhpQKCIla7PvoIXYcMgdpVyt7kydSKwfHvg8FAbR1OnZJ/La1aUSqyJz+lyNqkSd7tvfmm9f9bKaH0Z1DKalMKn8WVO6pXr+422uSKatWqITIyElevXrXbn52djZo1a7o856233kL79u0xduxYAECrVq1QoUIFPPTQQ0hLS0OtWrWczomJiUGMixx7tVodEn8UQsWPcITHLnB4DANHXa0a1K+9Rmtx1Gr6R2yxBJ5DbntfAqkoppSdIBDWnz+tloTVf/5DPalGjKB1VxUrAgUFwIEDtNbhP/+h1MF164BVq4DevemzYTbTsQES1mMYAvD4+U/Ijp1OR19cSF8omc2+/T3W6eh3+++5pttjXn+dfre9rakVAti0yeW6J7VO51pcbdpk/Z9ii8kE9OoFfP+9zIsB/c2JiPC8TlitprVPQlAfK3eC8q23QqrKpVKfQaU/xz4XtDh16pTd4+TJk9ixYweGDx+O1q1by7YTHR2Ne+65B7t27bLbv2vXLrs0QVu0Wi0iHPI7I/9usOhjdiPDMIxy8IL18odeD6xZA5w+TUUrMjNdF7M4fZqOq1IFuHoVuP9+mriEyOSEYUodnY4iMv6UJXe0o0RTXSUb6gLK9kYMZplzbh+gGD5Hrtq0aQOVSuUkZh544AF89NFHPtkaPXo0nnnmGdx7771o164dli1bhosXL2LYsGEAKKXv8uXLWLt2LQCgd+/eeOGFF7BkyZKStMDXXnsN999/P2rXru3rpTAMwzCM7+h0wCefAPv20UOjoSIab7xhH7V6801gxgxg/37g00+Bfv2sfa0CrRDIMOGOTke/C4sXU9+k3FyqQjdgAAmI2Fj5X1RJlfgmTnSOumRm0u/hrFlUwc6TOPC3Gt/o0e59DaQanytfpYqwniJrEnIrwkpoNPQYPRoYM0bZbIxyhM/i6vfff7d7HhERgerVqyPWj9zLp556Cjdu3MCMGTOQlZWFli1b4quvvkKDBg0AAFlZWbh48WLJ8YMHD0ZBQQEWLVqE119/HYmJiejcuTPmzJnj83szDMMwjF9ERtIaqshIoHt3+mY6NpaqBJ44QQJr9WogJ4cElUoF9O8PVK9OExUWVkw449gA19e0O0A5MQRYBZEnsSE11VWpPEdy/G2oO2aM+9el5u6ZmfJtemruLpU5V6m8p/CNHOlfpMl2fDhS5TM+iytJ+NiSm5vrl7gCgBEjRmDEiBEuX1u9erXTvpdffhkvv/yyX+/FMAzDMAETFUVCSasFFi0Ctm61fuuemkrlh3NygO++o5LsKSnAs89ao1YME45IkaYlS4A77wRat6ZJuK+RJiXFEOB7Gt+QIe7tKZnCJyGl8s2YIS8iJieVT0rhGzKEImeOkb8RI+h+sDAqFXxeczVnzhxs3Lix5PmTTz6JKlWqoE6dOjh58qSizjEMwzBMyGEw0ORw8GCgTRtKDTx/nrZt2lAlre3bSWhlZNDi9GXLOB2QCV+UaIAroeSaJqWb6gajoS4QvObuchqdM7ccn8XVhx9+iHp/Nz/ctWsXdu3ahR07dqBnz54lVfwYhmEYpkyi0wHr11Na4IoVrgtZrFhBFboyMoD27a3FLKIUK9DLMPIJtGCETkelxMeOdS8ipEjTokWe7SsthvxN43PX/FZK4fMFTyl8ElIq3/z57qNcajW9PnKkb8KICyqFHD6Lq6ysrBJx9cUXX+DJJ59Et27dMG7cOBw7dkxxBxmGYRgmZCguBvr0oSqAx45RIYvjx2mt1fTpwOHDQIMGFLnq14/SB/fsoZ9DsWw1U3YJxep5SoshpdP4blU1vsmTaV+DBlyNrwzis7iqXLkyLl26BADYsWMHHnnkEQBUCt1sNivrHcMwDMOEClIEwGSinlYnTrguv37iBLByJfW1MpmA2rWtJdgZxhNKlSW3TeObPJk+m3/84Xsan9KRJqXFUDDS+IKRwichpfKNGkXPMzM5la8M4rO46t+/PwYOHIiuXbvixo0b6NmzJwAgMzMTt912m+IOMgzDMExIEBVFjX/XrgXq1wemTrWftE6dSvu3b6dCFmvW0Dfu991HxSy8pQ4x5RelokySLaXS+JSONCkthoKRxhfMFD4JSZBxKl+ZxGdx9c4772DUqFG44447sGvXLsTHxwOgdEF3Vf8YhmEYJuwxGmkyum8f8NlnNOk1mWi7bRuVZTeZgPHjKWolFbKIiKBzeQJVdgkk4qRUlElCyTQ+pSNNSouhYKXxcUNdJgB8Xl2rVqsxxkU9/9dee00JfxiGYRgmNDEYqJDFM8+QaJo61b4Eu21vq0mTgEGDqJBFZCSJLiZ0UKJXExB4I1yly5Ir3QRX6Qa4wShLHqymutxQl/ETv0sXnT17FhcvXoTBYLDb36dPn4CdYhiGYZiQQq+nCNT27RRNcNX4NC0NmDmTUgLbtweWL7cWsuBvuEMDpXo1Aco0wlWyRxOgfBNcpRvgAsqLoWA31eWGuoyP+JwW+L///Q+tW7dGy5Yt8dhjj6Ffv37o168fUlNTkZqaGgwfGYZhGKZ0sViApUtp8ta5M6UBOqYFdu5Mr69aRWXYMzK4kEUooWSvJp2OhHa7dhStMptJKOXnU8XIHj3os+FpXZPSxSKA8KieF4w1TZzGx4QQPourV199FY0aNcK1a9cQFxeHM2fO4MCBA7j33nuxf//+ILjIMAzDMKWMXk+FLE6fpvQ/V/2tVq+m19esod5WLVtyIYtQQckiDwBFSbp1o6bRMTFAQQGJqs8/B5o2pfV2v/5KP7tb16R0sQggfKrnBUMMcVNdJkTwWVwdOXIEM2bMQPXq1REREYGIiAh06NABb731Fl555ZVg+MgwDMMwpYdOB3zyCRWy2L7de6XA/ftpEjx4MBeyCBWULPKg19N9jY6me2sykeBp3Bjo2RPIzgbS04EaNYCjR4GGDV1HnJSOMgHhVT0vWGKIm+oypYzP4spsNpdUCKxWrRquXLkCAGjQoAF++eUXZb1jGIZhmNImMpKiFB99JL9SYPfuVIKd+z+WPkqm3xkMVmEVHU0/X79ODaUrVKB91aoBjz8ObNxIx2dkAFu2OEecghFluhXV85RugMtiiClj+CyuWrZsiVOnTgEA2rZti7lz5+LQoUOYMWMGGjdurLiDDMMwDFOqREUBlSoBvXt7Twls2pQqBVasCMTF0YSbKV0CTb/T6WgdlsUCCEH7haB9ly8D335L6YFqNfDll5QWFx1Nnw0ASEqiFFFHwROMKBMQvCa43ACXYWThs7iaNGkSLH//YqelpeHChQt46KGH8NVXX+G9995T3EGGYZiwIpB+N8G2F8q+hbI9vZ6EkkpFE9E33qAI1rvvUhGEadPsmwc3bEil2r29n9LXGwybwbSn1VpFS3ExUFREYy0d425rS1GRvY3CQudzAFoPVVxsfc9r12j/tWvA2bOUzhcRQdtTp0g0qNVW2xYLRZosFnqP4mISR7VrA3370uejYkWqDpmTQ++dlATs2QNkZVlTRG2xjTKpVBTtdFUopXt3el1ulElK4/vsM1oD5spedLR/TXB1OqvolMYjEFEV6p/XYPoIhOY1h7q9MMBncdW9e3f0798fANC4cWOcPXsW169fR3Z2Npo3b664gwzDMGFBcTFVCrNY6JvyggKaaG/dSpMaX/+h6HRk4/ff6WchaPv777Tf1yalSvoW6vaUHDuAJpNmMwmoihVpcn3iBNmSIlYNG1pTAqVKgVFuup0o7R9Ak5aCAvI1Koom8n/9RWt+/BlDSbTExFijNADdIzkCSNpKa5dc+SdFgbRa+vn6datoMZlon9nsvJWEWHGxdWJfVAT8/DOJiaIi8tPVubZbgLYNG5IQyc8HNmwgAfLAA0CTJrRdsIBsSj4nJJA4ke7lO+9Q1UDp+HXr6DWVCrj7bqBuXUoRdRVxio2lsvByCqUsXSo/ymSxUPXKkyed7a1bRwLQl7LkOh19jhYsALp0oX1dutBzf39HJXtt29LYtW0bOvaC7WN5GMNg3JNwQcjklVde8fj65cuXRdOmTeWaKzXy8vIEAJGXl1eqfhgMBpGRkSEMBkOp+hGO8NgFDo9h4NiNYVGRELm5Qpw+TVuTyfr8xg0hzpwRYsUKIfR6ecaLi+m83FwhCgut9vbuFWLdOiGysuhRXOzdlk4nRF6eezu++qbAtYbN2Dleb2EhPdfrhTCbafvXX0J8+aUQ2dlCNG0qhFpN9gcNomOC5J/TGObkCDFjhhBt2gjRsKEQyclCrF9P72Hrb2GhEFot/VxcTD/bbnU6IfLzhZg502qrTRshpk8X4upVIS5fJv8LCuh9i4roXHdb6eecHGebM2bQ/oICek9pfK9do30FBVaf9Xrr+7myNX063YuCAiHOnRNi+XK6Fulch60hN5fGLzfX/vWbN+k+koyyPtRqIWbPpt8laZzmzaP9jsdKx8+bR8cZja4/CxI6nRBz53q2NXeu/N8BvV6eb37aM2g0NHYajSL2lPYvYHu3wMcyP4bBuCc2KD2HUVobyI5crV27FjNmzHD52pUrV5CSkoKkpCSFJB/DMEyYYDDQN946Ha3TSEmhb4lTUui5wUDrEVJTgfXrvX9bV1xM35BbLJR21qGD1d7Bg/RNZ04OfUNfXOy5qplWS1GWhQvd2/nuO6BPH/m+KXmtoTx2ttcr+VFYSKlUtlGNpUspaiEE8NVXFHFZvtx1GpjS/kk2v/yS7uPLLwPHj1ME5+BB4OmnrVEik4kiR99/T1EYk8labMM2omOxUPrZ8OFU9fD8eUqBbNMGeP554OOP6bj0dGtamLQGyXEbGUnRm6++Iv9GjSL/TpwApk+n6GRSEkVupPVKERHWdWrSN99C0H2IiKBCE888A7RqRX7Z+jd4MBWuqFED6N+fPjNCWG04bgHn/VFRFHVUqezH2WikyOTSpfR5WLRIXll3qW+Wu+N0OrI1bpxnW+PGySsRr3TJ+fJmLxx8LG/2whG5KuzAgQMiLi5OLFq0yG7/lStXRLNmzcSDDz4oCgsLFVF8wYQjV+EPj13g8BgGTskY3rhB32h7+oZO+sb73Dn61t0Tcr7Fnj2bIiXLltE37p7sPPaYENu20TfyJhNtt22j/bZ2zpzx7JsUAdu4UYjPP3e21727ENHRsq7VbuwUsGfn46eferfnbexsr/err+wjf7b2VCrnKMVzz1HUqKCAojaB3BMP/pWM4aVLFOmyjVrZRprOnRNi0SIaOylqlZ8vxCef0HVJEazCQtp6igxJkU7p8zJnjjXSVlDgvC0stL4+fbp7e02b0vjl5tLW1saNG9ao1ooVdLw3e8uWWX/OyaHzHR6GnBwaPzevi27dXP/+PfYY+eTu99PV7+uNG+6/oc/J8c2Wt9+BW2DPKeoSYv4FZI/HMPTsuaDMRK4eeughfPrpp3j99dexYcMGAMDVq1fRqVMnVKlSBd988w0qcFUkhmHKGytXyivPvXQpfUu/Y4f7b+q0Wvomb88eeeW+27e3VjKzRaejb+0fewxYscL1Oo4VK6j6XUYG2alSxbNvFgtFPDp2pMiDq3UhJ07QeMi5Vul6lbKn01EPoIce8m7P09g5Xm/btvZRJlfVAW2jFPPmAXl5VODAdqG/Vuv7PXF3b6XF4QBd89Chrvtu1atHEcAnnyT/P/iAIjIREVR4YccO+mxJi+vNZjqmZk0qt+2uj1e/fkD16lQlD6D1R0JQxEnaRkbSY80a733BDh2ie2Kx0NgZjWTDbKaIVU4O7evTR16fsX796L2TkoCvv6YI4KVL9ts//yTf//zT9esjR7r+XLz4ou9l3Zcscb3eSskS8WwvcHvh4GN5sxeu+KrG1q9fL2JjY8WqVavE7bffLu67775SjwL5Akeuwh8eu8DhMQwcQ2EhjeGpU/K+mVeraU1IZqb7b7Fv3pT3zbzt2p5165wjHDdvUvRDTkQtO5se69bRuh9XvklrTOTau+MOj9daMnZyI3Re7AkhfPfP3djZXu+cOVZ7KhVFq2wjToWFFP0ZMoRel76FHTHC2U9/74lOZ10jZbNuylBQQGO4e7f958KV3Tlz6HWVyj4ylJtL2/x8iljNmyfv2+Y5c4S4coXGYsYMWo925gz5LG0LCihKJ9femTMULbtwgbbZ2WRXiiRduUJj44t/p09bP9PS2qq/t4br12n8rl93+brIyXFt++ZN+n2U44f0SE52/3ullK1baM9t1CVE/PPbHo9h6NlzQ6hHruDPSYsXLxYRERHi3nvvFbm5uYo4cqtgcRX+8NgFDo9h4Bjy8nwTCE2b0kQ0P9/14nYpDU3u5Fuy5yiItFr/JqJ799LE0ZVvRUW+T5Q9XGvJ2LmaWPhhz2//3IlJR3vNmrkXvTNmWAtvNG0qRFoa/WybEujPPbl2je5Hfj7Zcyj2USIO8vKsaX7S58LV5yYri1LdJAEoiZY9e4T44w/fU92uXqXzk5PJJ1txIhXt8MVeVhaJUp3OOtmSbBYX0+u++ldYaP1MS0Ul/t4atFoaP63W5evCaHRt22Sie+/L5LFRI9efW7NZOVu30J5HYRAC/vltj8cw9Oy5IdTFley0wOTkZNx99924++67sWLFCqjVauTm5qJTp04l++++++5gBdgYhmFCk6lTPS/adSzPHR3t+niLhdLfxo/3zV5ysn1z0qgoSv2aPFme/5MmUZrYffcB8fGu31uvp95Ocu1VqQJcver+WuUUavDVnj/+OY6dK3vNmlExBnfpaFOmUPrZF19QetuxY0DjxvYpgb7ek7VrqWmx1F+pQQO6N4WFwI8/0vtKaTQWC9nu14/SU90VY1i+nFLdjEZK25FS4Jo3p/H44APfUnmWLaPUu9xcSuGrUIHGUkrn89Xe8uV0DdHRZFOypVaTvWXLfPdPpbJ+pqVS6tJWq6VjtVrXrxcUuLZdUAAkJsrzQyIx0bXvJpNytthe4PaCYZPtBWYvTJEtrvr164e+ffuWPCZMmIB//etfdvv69u0bTF8ZhmFCB38EQsuWNFl0tf5Cr6fjfLXnKIhMJv8mohER5IOjbzqd/xNlV9eq09HaIrnIseevf67EpK09lYp6bX30kXfR+5//kOidO9faA0nCl3uiUlHVPKkSn7uqgjdv0vEWi7WqXvfu9Lno2tXZ7tattB4NALZsoV5NdeoA1aqRv5s3e/fN0V5EBE2MiorsxUlEhH/27r+f1n9Jky2pl1VEBL0up9Gurb3ISPpM5+cDly/bb69coeOuXHH9+sGDrv08cIAqEfrCgAGuf+fNZnpNCVtsL3B7wbDJ9gKzF64oEv8KIzgtMPzhsQscHsMA0WqF4c035ae2AZ7T0LRaWmfiSyqFZM+xKp1e73/Ou6u/i/7m0EspXS7sGdq29W3svNjz2z9XFf1s7XXvTul8vqajOfao8uWePP+8rKqHhrlzaQyXL7evqrdnDx3nKvVGSnWT0nCkFDh/U3lMJtdrrgKxZ7vm6swZ+kyazUJ07ix/PaKtPSltsjSrBXqqhhbqldrKW6U7HsPQs+eCMpMWyDAMw/xNZCT1IvKFrVsp9c5kcm3Pn2/677uPvvGzTUFTqymtyhekNKyYGOfXoqL8sxcf7/paQ8me49g52hsxgqJcvkbFHI+Xe09UKmDBAjq2SxdKL5SiMSoV9dZKT6eqh2vX0v62ba3RGSnNT4pQ2ZKYaE11s40MGY3WaJEvSBGrF14AatWiyoSxsbQ1Gv1PDZLSFyVbJhM9Pv1UXqXAQ4eogmNiIp2nVpOfKpXzVhpXx/2XLgG7drn2s2NHivTNmiXvumbPpmtxR2yscrbYXuD2gmGT7QVmLwxhccUwDOMr/k7o4+KsDVKVsucoiALJeXclrgKx5+paQ8met+vt2JFErC9s2UL30x8fn3+exJ70OWnRgiYeWq1VSEgNjffsoXMqVwa++QaoWtWa5lexorPt1FRrqlv//tYUOIOB/PMnlefyZfrZYLAXJ3q97/b696d7UqmSVRBJDYWNRnmpmbbrEQcMsKZWVq5MfjluAef9JhOljAphb1+tBubMAYYNI3E1ahQ1lHa1Zk86fv58EoqOAt4WjYaaPythi+0Fbi8cfCxv9sIQFlcMwzC+EkqLgB0FQijk0PfvT+e5s9enj7L2/PXPlbiytVexov9RQF99vP124P33SahER5MNKaqUkwM0bAj07UtFLbZvtwq4NWuA2rXpHKkAhGMxBrWaIkyLF9PPtpEhgCKnI0a4nwg5olYDL71E0aL4eGfRotH4bm/kSIrIjRpltRXx9xSluNj3giWvvEJ2VSpr0Q/HLWB9HhFBgkqlAp59loqdNGpE2xkzaG3WyJE07tJncfhw4No1IC3N/vi0NNo/YoTrz5gjMTF0rBK2boW9Vq1of6tWoelfoPZuhY9lfQyDcU/CCUWSC8MIXnMV/vDYBQ6PYYD4s+YqLc15fY+NPZ/XXHmyF+I59IbsbPljV5prBpTsaeTJxx49rKX4CwutJdf37qVeV3/9Reuqrl0rWV9lWL6cxvCVV6zlxqV1aY5rrtz1uSoqspY696XP1YIF5GdRET20WtfbefOce4PZrh1TqeztFRbSuVot+aTV0j5ffzdmzqTzJBsutob8fBq//HznNXIu+oo52fF0vLvfSzkoaStI9kr61EnjEmL+KWovSD6WqzEMwj3hNVcMwzBlDY2GIgFyUavpWzp36Q8aDX0r7ss3/Z7shXoOvS859qW5ZuDAAUqn8wV3UUB3PvbsSamHRiNFnzQaimRGRNCaq549gexsWmsl+W0201orAHjmGYoeFRdb0/wWL6bXpFS2554DnniCKhnaRoYiI8lXs5n2yU11GzGCzpVKzEdGOm+laNi6dZTO2KkTVTzs1Imer14NnD4NrFxpjXJFRdH1azTWsVCrfV+PKKVmSjZcbaWxjI11ru6o0dA36hERtK1Qwfl8T8cHkuakpK1g2ZOuXxqPUPNPSXvB8rE8jWEw7kmIE+X9EOC9996TbfD/2Xvz8Eiu8t7/W2vvrdYujWb3eMZjj8EbYJs4BLDNDnESIJd7Q26A3HAdQogJ+UEguZg9BBxzc2MCBEISAjGBsCUG45hgjA3GNt5nPGPPppFG+9J7beec3x+nqrpbakm9lJkZ+/08zzySerpPnzpVLZ1vve/7fd/+9rd3PBmCIIgzhqdKILzrXd2PF+S8Kwrwnvc0T0c0DOCjH5WibqPUjKjHC+b+oQ+tXUdzKucXjPfv/y5F9Ic+1JqpxXqit9kcX/5yKaxsuzEVcH4eOHhQpgyZpqyj+o3fAG6+GXjVq6SYGh4GjhyRJheBhf6WLfL7+XmZyva//pdMEfzXf5W9ukxTxnZUtdG2XNOkwFJVmer2pjdJO/qvf12mOeZyUjRee608d61c+7Ytx/jTP129dg8+KNf0Ix+Rgm698TqtR2z1RgVBEETEtCSu/uqv/qqlwRRFIXFFEMQzg9NdIAQ57xttlNvNoY9qPEAKl9/5ndNzfrGYFD+cAx/+MPAnf7LxazYSvfVzvOsu4MorpRgKokDFomwSPDUFvPSl8vH/+A8ZvVJVGfUBpBAK6qpMU/7sefK9+/uBu++WPycS8vjf+Eb5PM43FkamKQ01rrsO+OM/rgm+Zs6Ka1GtyujZejcKXFf+v6KsH4WN2rCEIAjiKaYlcXX06NGneh4EQRBnJqezQAhSrLrZKD+V48XjcozTdX7Ba/7gD6S4iSoqlkgAL3qRNKe46SYZvQrO8zXXyIjT9LQUSf/jf0jb/1/+ZWBkRDbMveACaWIBSFGmafJ9g/de6/tWqFZr43mejEC1u3aWJSNWrfCe98jrfa33CMxAHnxQCrGrr5afg1/+ZWk4UizK9M2bbgK+/30ZmXs6NiUlCOKMoSVxRRAEQazB6S4QgjEDorib/0wbLx6PVvRalozsvPe9a6fMffCD8v3++Z9lSmC1KoXGvn3A5s01t0DPq4mhbqhWa/NaeXyBu2Ar118QtXLd1sSQ68rvr7tu7XTK3/994F/+Rfa66usDPvtZ2duqXpB+8YvSVfG1r10/EkYQBPEU05G4mpiYwLe//W2Mj4/DcZyG/7vhhhsimRhBEMQZxekuEIjuiEr0BuJjvTTDoGeTogCvfKV8j/37ZZ3Vzp3y/QI7cM6b9/9qB9uuib0XvhC4/vpGMXTnnfI5r3rVxtdi0BB7924ZkdtIDP3qr8rn//Efrz1mIiGjeJ/+NPBnf7a+IP3pT6neiiCIU0rb4ur222/Hq1/9auzYsQMHDx7Evn37cOzYMQghcNFFFz0VcyQIgiCI04NuRW+12nrK3PveJ+ulvvtd4AUvkEYWpllrsAvIiFKQyqfrMpLFWPv1UZ/7nOwztZYY+l//C1hakj9vZEDR1yejUl/4wsZi6K67gN/8zfUFkRByTu9+99rPCQSprsvIFUEQxCmibSv297znPXjnO9+JRx99FPF4HF//+tdx4sQJvOAFL8BrX/vap2KOBEEQBHHmU63KFLhWnAcB+bzPfQ4YHZWOgUGT4MnJWuRqeRn45CelNftZZ8mvn/ykFELV6sbvYVkyivTjH8vmxFu3SmH14IPAsWPy6//5P/Lxf/iHjcfzPOAzn5HCai2jl+DY3v1u4O//Xj5/vTVpt4bLslp7LkEQxFNA2+LqwIED+O3f/m0AgK7rqFarSKfT+MAHPoC/+Iu/iHyCBEEQBPG0IEiZa4dvfAO48EIpqsplKUK2bq3VXO3aJaND9WLoz/5MphD+zd/IdL61CKJWX/1q62Lo//0/oFJZe0whgJ4eOYdWeN/71ncDrK/haoWghqsVYUkQBPEU0La4SqVSsP1f1ps2bcLhw4fD/5ufn49uZgRBEATxdKLTnk3ptBQNk5NSLKmqTJMD1hdD73qXFENrCQ1Nk7bvvb2ti6E//dP1BRvnG0eiVs7zM59Z292vE0H69a/X0iYJgiB+wbT92+fSSy/FXXfdBQB4xStegXe+85348Ic/jDe96U249NJLI58gQRAEQTwt6LRnk2UBjiObBCcSUtxcf31rr18vTU7XpaHE5z4XXWQoajFETYQJgjjDaFtc3XDDDXje854HAHj/+9+Pq666CjfffDO2bduGz3/+85FPkCAIgiCeFgQ9m9rhmmtqUR1NkwItqjQ5zwOe+1yZetgOv0gx1E0TYYIgiFNA226BO3fuDL9PJpO46aabIp0QQRAEQTwtCXo2feADrW3+DQP43/9bOgSqqvzqOJ1FhppZnTMmUw5PFzHUzH2xvolwq1ATYYIgTiFtR6527tyJhYWFVY8vLy83CC+CIAiCIFYQjwMf+Uhrz/3IR4BksiasgGgjQ4lE9JGhTqJz64mhQJC2muZnGNREmCCIU0rb4urYsWNggQVsHbZtY3JyMpJJEQRBEMTTkkQC+IM/AD7xibUFg2HI/3/b26S4CoQVEL0Y8jzg136tvfF+0WKoHUH6sY+t34eLIAjiKabltMBvf/vb4fe33norenp6wp8ZY7j99tuxffv2SCdHEARBEE87YjEpKN70JlkP9fWv1xr2/vqvy/+Lx5uLhCAy1KrYANYXQ6mUFEMf/GDrqYqtiqF3vWvj8VoRQ4EgVRRp0NFsnoYBfPSj8lg6ae5MEAQRES2Lq1/91V8FACiKEva5CjAMA9u3b8cnP/nJSCdHEARBEE9LEgn577rrZD2UYUjRwPn6wiWIDP3lX7b2Pq2IoUTi9BdDrQpSElYEQZxiWhZX3L/rtWPHDtx7770YGBh4yiZFEARBEM8I6kVPq8IgHgf+z/9p7blPJzHUqSAlCIL4BdK2W+DRo0efinkQBEEQBNEKiQTwe78H/Od/SoHRzGb96SyGOhGkBEEQvyDaFlcAcMcdd+ATn/gEDhw4AEVRsHfvXrzrXe/CFVdcEfX8CIIgCIJYSWBy8eSTwGc/S2KIIAjiNKFtt8AvfelLuPLKK5FMJvH2t78db3vb25BIJPDiF78YX/7yl9uewE033YQdO3YgHo/j4osvxp133rnu823bxnvf+15s27YNsVgMZ511Fr7whS+0/b4EQRAEccaTy0kx9JOfSKH1k5/In3t7OxdEiYQUQaoqv1LKHUEQRMu0Hbn68Ic/jI9//OP4oz/6o/CxP/zDP8QNN9yAD37wg3jDG97Q8lg333wz3vGOd+Cmm27C85//fHzmM5/By172Muzfvx9bt25t+prXve51mJmZwec//3ns2rULs7Oz8Dyv3cMgCIIgiKcHFBkiCII4bWg7cnXkyBG86lWvWvX4q1/96rbrsW644Qa8+c1vxlve8hbs3bsXN954I7Zs2YJPf/rTTZ//ve99D3fccQduueUWXHnlldi+fTue+9zn4vLLL2/3MAiCIAiCIAiCICKl7cjVli1bcPvtt2PXrl0Nj99+++3YsmVLy+M4joP7778f7373uxsev/rqq3H33Xc3fc23v/1tXHLJJfj4xz+Of/qnf0IqlcKrX/1qfPCDH0RijbQF27Zh23b4c6FQAAC4rgu3lZ4eTxHBe5/KOZyp0Np1D61h99Aadg6tXffQGnYHrV/n0Np1D61hd0S9flGfh5bF1Zve9CZ86lOfwjvf+U68/e1vx4MPPojLL78ciqLgxz/+Mb74xS/iU5/6VMtvPD8/D8YYhoeHGx4fHh7G9PR009ccOXIEP/7xjxGPx/GNb3wD8/PzuPbaa7G4uLhm3dVHP/pRXH/99ase//73v49kMtnyfJ8qbrvttlM9hTMWWrvuoTXsHlrDzqG16x5aw+6g9escWrvuoTXsjqjWr1KpRDJOgCKEEK08UdM0TE1NYWhoCN/4xjfwyU9+EgcOHACA0C3wNa95TctvfPLkSYyNjeHuu+/GZZddFj7+4Q9/GP/0T/+Exx9/fNVrrr76atx5552Ynp5GT08PAODf/u3f8Bu/8Rsol8tNo1fNIldbtmzB/Pw8stlsy/ONGtd1cdttt+Gqq66CYRinbB5nIrR23UNr2D20hp1Da9c9tIbdQevXObR23UNr2B1Rr1+hUMDAwADy+Xwk2qDlyFW9BrvmmmtwzTXXdPXGAwMD0DRtVZRqdnZ2VTQrYHR0FGNjY6GwAqSwE0JgYmICZ5999qrXxGIxxJoU+BqGcVpc0KfLPM5EaO26h9awe2gNO4fWrntoDbuD1q9zaO26h9awO6Jav6jPQVuGFoqiRPbGpmni4osvXhXSu+2229Y0qHj+85+PkydPolQqhY8dOnQIqqpi8+bNkc2NIAiCIAiCIAiiXdoSV7t370ZfX9+6/9rhuuuuw9/93d/hC1/4Ag4cOIA/+qM/wvj4ON761rcCAN7znvfgjW98Y/j8N7zhDejv78fv/M7vYP/+/fjRj36Ed73rXXjTm960pqEFQRAEQRAEQRDEL4K23AKvv/76hpS8bnn961+PhYUFfOADH8DU1BT27duHW265Bdu2bQMATE1NYXx8PHx+Op3Gbbfdhj/4gz/AJZdcgv7+frzuda/Dhz70ocjmRBAEQRAEQRAE0Qltiavf/M3fxNDQUKQTuPbaa3Httdc2/b8vfvGLqx4755xzyF2FIAiCIAiCIIjTjpbTAqOstyIIgiAIgiAIgni60bK4atGxnSAIgiAIgiAI4hlJy2mBnPOnch4EQRAEQRAEQRBnNG25BRIEQRAEQRAEQRDNIXFFEARBEARBEAQRASSuCIIgCIIgCIIgIoDEFUEQBEEQBEEQRASQuCIIgiAIgiAIgogAElcEQRAEQRAEQRARQOKKIAiCIAiCIAgiAkhcEQRBEARBEARBRACJK4IgCIIgCIIgiAggcUUQBEEQBEEQBBEBJK4IgiAIgiAIgiAigMQVQRAEQRAEQRBEBJC4IgiCIAiCIAiCiAASVwRBEARBEARBEBFA4oogCIIgCIIgCCICSFwRBEEQBEEQBEFEAIkrgiAIgiAIgiCICCBxRRAEQRAEQRAEEQEkrgiCIAiCIAiCICKAxBVBEARBEARBEEQEkLgiCIIgCIIgCIKIABJXBEEQBEEQBEEQEUDiiiAIgiAIgiAIIgJIXBEEQRAEQRAEQUQAiSuCIAiCIAiCIIgIIHFFEARBEARBEAQRASSuCIIgCIIgCIIgIoDEFUEQBEEQBEEQRASQuCIIgiAIgiAIgogAElcEQRAEQRAEQRARQOKKIAiCIAiCIAgiAkhcEQRBEARBEARBRACJK4IgCIIgCIIgiAggcUUQBEEQBEEQBBEBJK4IgiAIgiAIgiAigMQVQRAEQRAEQRBEBJC4IgiCIAiCIAiCiAASVwRBEARBEARBEBFA4oogCIIgCIIgCCICSFwRBEEQBEEQBEFEAIkrgiAIgiAIgiCICCBxRRAEQRAEQRAEEQEkrgiCIAiCIAiCICKAxBVBEARBEARBEEQEkLgiCIIgCIIgCIKIABJXBEEQBEEQBEEQEXDKxdVNN92EHTt2IB6P4+KLL8add97Z0uvuuusu6LqOCy644KmdIEEQBEEQBEEQRAucUnF188034x3veAfe+9734oEHHsAVV1yBl73sZRgfH1/3dfl8Hm984xvx4he/+Bc0U4IgCIIgCIIgiPU5peLqhhtuwJvf/Ga85S1vwd69e3HjjTdiy5Yt+PSnP73u637v934Pb3jDG3DZZZf9gmZKEARBEARBEASxPvqpemPHcXD//ffj3e9+d8PjV199Ne6+++41X/f3f//3OHz4ML70pS/hQx/60IbvY9s2bNsOfy4UCgAA13Xhum6Hs++e4L1P5RzOVGjtuofWsHtoDTuH1q57aA27g9avc2jtuofWsDuiXr+oz8MpE1fz8/NgjGF4eLjh8eHhYUxPTzd9zRNPPIF3v/vduPPOO6HrrU39ox/9KK6//vpVj3//+99HMplsf+IRc9ttt53qKZyx0Np1D61h99Aadg6tXffQGnYHrV/n0Np1D61hd0S1fpVKJZJxAk6ZuApQFKXhZyHEqscAgDGGN7zhDbj++uuxe/fulsd/z3veg+uuuy78uVAoYMuWLbj66quRzWY7n3iXuK6L2267DVdddRUMwzhl8zgTobXrHlrD7qE17Bxau+6hNewOWr/OobXrHlrD7oh6/YKstqg4ZeJqYGAAmqatilLNzs6uimYBQLFYxH333YcHHngAb3vb2wAAnHMIIaDrOr7//e/jRS960arXxWIxxGKxVY8bhnFaXNCnyzzORGjtuofWsHtoDTuH1q57aA27g9avc2jtuofWsDuiWr+oz8EpM7QwTRMXX3zxqpDebbfdhssvv3zV87PZLB555BE8+OCD4b+3vvWt2LNnDx588EE873nP+0VNnSAIgiAIgiAIYhWnNC3wuuuuw2/91m/hkksuwWWXXYbPfvazGB8fx1vf+lYAMqVvcnIS//iP/whVVbFv376G1w8NDSEej696nCAIgiAIgiAI4hfNKRVXr3/967GwsIAPfOADmJqawr59+3DLLbdg27ZtAICpqakNe14RBEEQBEEQBEGcDpxyQ4trr70W1157bdP/++IXv7jua9///vfj/e9/f/STIgiCIAiCIAiCaJNT2kSYIAiCIAiCIAji6QKJK4IgCIIgCIIgiAggcUUQBEEQBEEQBBEBJK4IgiAIgiAIgiAigMQVQRAEQRAEQRBEBJC4IgiCIAiCIAiCiAASVwRBEARBEARBEBFA4oogCIIgCIIgCCICSFwRBEEQBEEQBEFEAIkrgiAIgiAIgiCICCBxRRAEQRAEQRAEEQEkrgiCIAiCIAiCICKAxBVBEARBEARBEEQEkLgiCIIgCIIgCIKIABJXBEEQBEEQBEEQEUDiiiAIgiAIgiAIIgJIXBEEQRAEQRDEaUS+4uLIXOlUT4PoABJXBEEQBEEQBHEaUXY8zBZtWC471VMh2oTEFUEQBEEQBNExFcfDxFLlVE9jTTgXmCvaEEKc6qm0BOMCLuMoVF0ULe9UT4doExJXBEEQBEE846k6DFP56qmexhlJ0fIwuVyNNMrCeHRCqGh7eHK2hKm8FdmYTxUe49g/lcdyxUXFYchXnVM9pZAzRZyeakhcEQRBEATxjOfofBnTZ8DmOwocj+PAVB62F40YchlHoeKhYLmRjMe5wP6TBSyVoxEWLuPIV108OVtCvhLNHD3GYbkMjsdDISiEAOcCyxUHR+dKKNsy6jRbsHB8odzSuJPLVZxYrMJlHAqA+ZITqdDslIrj4ZHJfGQC2mMcVefpmfKon+oJEARBEARBnGoEBGyPw2McunZ63Xu2PQbGBZJmNNu2qsOwVHZRSHsYzGhdj+d4HGXHw1LZwVAm3v38XIbFso24oaI3ZXY9nss4FEXO84nZIs7f3IOY3tpxVxwPqqIgbtSeL4TAgakilioOVAWIGxrOGc1irmijUHWRr7oo2S5ihoZUTMfJ5SrylotM3IACILHGaVyuODg6X4YQgOUypGM6SraHkuWhJ2l0vQ7dULI9zJVs9KVMbO5Ndj3eoZkSHMZxwZZc95M7zTi9fnsQBEEQBEGcAjgXcDwOL6IowVzRxuNThUju9M8WbByZay3y0QqWx5C33MhSziyXQVWAhZIDl/ENn19xvHUjSBWHoeoyzBTttqJrLuM4OF1cNQfHkz8PpGOYK9qYWKylf1ouWzfidmi6iCdnG137ClUPcyULuqpAU1QsV108OVNEvuqibHso2R4MTcV80Ua+4sLjAktlF/unCnhoYhmLlcZ151zg8GwRT8wW4TGBnoQBy+WIGRo8ztuOCJZsD/cdW8RsIbpIrOVwFC0PE0vVls7xRjgegxfBOKcjJK4IgiAIgnjG4zAOzkVkKViLZRvHFioo2d0bEtgew3LVDUVCO1Qcr6FWRqatubBdjvmSA77B8eYrLuZL9gbvwZCJGyjbrCUDhidnSzi8js141WEQAijbHpbXEWFVR6bluf65W664qDpemI5XPz9dUaCpClKmjsWKAyEEhBB4YqaEB8eXwxTExbKD5YqDouXiwfElVJ3Va16w5LnIxA2k4zo8xlFyGKqOPH6PcRiqirLD8OjJPCyPYyAdA4Scc6naOD/LY5hYquLksoWBdAyaoqDqeuBCIKZpWNhg/espWi6m81XMFm0cnitFlsaXtxykTR35ioPFLtM1ORewOriWzxQoLZAgCIIgiGc8jAt4QkQWubJcDo/zSO7yVxwGy2GoOB5MvfU0uaWyTDPbNZxGNi7TyuZLNqYLVSQMDRXHQ8nxkInpWKq4iOkqUrHGreGxhTJKtofUVh0Jc3UqHecCricQ01U4zMVS2UbVZRjKxGDUpVcKIdMuHcZlndI65ggl24Wpq4AAZgoWhrNxzBVtzBUt7B3NQlEUAMDB6QJ0TYXHOFIxHZm4AZfX0jqn8xYycR1V1wsfixmqjJxVXdgex1zJQsnysFC20ZsycWy+DFVVoCrA+GIFSVPHUE+sYX75qtNwbI7H4XgMjifgehwj2QQcxrFQsuFxgZSpoy9lwtRVcCGwtCJiaLscjiewrS8FTVWQjGlIujqycQO2H2WsOF5LaaFH5srwOIeqAPmqh+l8FdsH0hu+bi3mijZSMQ0liyFuaHCZgomlCgbTMaiq0tGYZceD5TCk409PGfL0PCqCIAiCIIgW4VzAYyKSyBXjMiJSdRk8JoVHJ3iMY7pgYbQnActlqLoy3SyXXC2ugvSqxbIDVVVklATA5HIFy1UHQvhmCwKwPWnxvbUvhemCFBYA8OhkHklTw66hdMN7CAHkqy6KlttUXDmMw+EMCV1HwtAxV3LAuC3NCoTAWG8Sc0UbC2VbzgMyaqFBgeXKCFUwbr7iwmEy/czUVMR0DYtlBwXLxdH5Eqouw06PI25oEEKOEwdgeRwud+Tm319vy2U4OldGJqHBcjgMTQqBuKFhqeLi0EwRpqbCZQJ9qRgmlqqI6RocxqEJKWhzCROLFQd6nYjwGEeh6iFRV4PFuHw/BQq29CWhqQriQoWhKTA0FYWqG76/ripwV6Q62h4HFxya/z6qooS1awlDw7Jvyd6KuHIYQ8WRc8nEdYwvVjGYia8Sza1guQyH50rIxg24jCOmq0iaBhbKDhYrTnidtctyxUXRdiOppzsdIXFFEARBEMQzEsYFbFve3Q+iKR7vLtJ0aKYYGmOoClB1O0sLnC85OLFY9aMFAkIoyFdcbO5tfF6+4uKo70RnuQympmIgHYPlMixVXHAOQABTeQtzRWkSkTB0qIoCXVWwULahqQpKtguXcxycKeLZm3OIGxqKlouqw+AyDntFGpcQAscXyqGg6Ymr0DUFS1UHVYdBgUx3szyOmaLlR3c4htJx2J6cZ1AfdeHWXriMY//JAmyPQfdFScLUsFRxMJ23ULEZHMZlPZbDwIXsBaWpfuSIccR1eQxCCBSqHpYtB7puwuUcSUNueVVFQU/CwOSShbFeKWB6EgbmSzaOL1YghIDHFZQsD1t6k7A8KQABmZ45W7BRcRj66oTBcDbmR+tqZh6KooRiqL9OhChQUC+3AyEONI8CKYoCFQqWyg6Gs+ubhcwWLTieQLHqIWZoyMQNTC5XMblUxe6RzLqvbcZSxcFCyUbCkKIzE9OhayoUACeXq+hPmWEUsVWqDsP4YgVP03IrACSuCIIgCIJ4hjK+UMGSLVPuyo5MHes2clV1pAjwuEDc0JrW7LRCoepioWQjaWrwGEc6pmO56koLcN/+O2VqODhTgO1xqIqCouUh69cAzZdslGwPuqJCQKBsy1okhylhSlvS1JGvuDA1FbqqQhEKilUPR+bKGMzEcGS+BNtj0BQFCyUbigIwT4rFistwYqmKnrgBJgQ0VYEGBa7LEdc1VF2GQtVD0vTguLLmSAig6nmwXRm5KvlzWvYNHoq2TNWL6SoG0nKLGtNVLFcc2B6HgMCJxQqWyg5i/oZfUxQ4jIMxAcvz4HEBAek46HgcZZvB4wJ6rCYC0jEdIz1xOB4Pa876UyaOL5aRMHSZWqiqUBQFChSZMso4HpnIo+IwOIw1pAVm4gYy8Rbd/BSE4srxOA7M5DFbsNeNLCVNGcFzGW9433o4Fzg2X0bVYUjFdPT60cfepIHJ5QqGs/G2HQcrtp/qyDhYnYtmLmlgrmQjX3WbRlLX4uhcCQtlB0XLQ0/i1LofPpWQuCIIgiAI4hnJctXBybwLTQVSMd3fRHcnrjzOUXU8uEyEIkMI0fYd/rzlgguByaUqDF1BXzKGpaqDsi1TtTzOsXMwHVp1K5C1OlVPRgYmlqpImXqYemdoKoqWh0xcD1PUEoaG2aK0Do/pGvpSJsYXy1gs21isOFguOxAAUqaOou3hxFIFvXGZDleyGApVB4amNET7RnoSUBQZIepNcpQsD8PZOAxfuBYs6cpoaipsS5o2MCHTMQWAsVwCS3WpeNmEgcWyA4fJyNDkUhXZhIGZggXdPw7bZRjtSWCmaMFQVQgOlCwP6ZiOiiOdDFfa6xuagkKVhUJHURQMpuPIV12kDB3ZYPOvyFTGkm+uoavyeZ2iKkAQCpspWJhcqmIwE1vXGj4V06VYtrw1U+kcxmG5MsK4pTcRXm9JU0e+6uLEUgXZRLat61C6Hioo2x7qS+RiugaPyYhiq+KqaLk4vlhByfKwKZdAoRpNv7HTERJXBEEQBEE8I3GZwFAmFm6kp/LVruyhPcbhMpmS1p+OwdBkVMVhvOW+SsE4tscxmIkjXRfRYFxgtmihUHVR8dMNHY9jx0A6FHCTyxUslG2ZgpeJYcqRAsL2pL25yzlGswkAgKYqqLgMalUJ09xcJoVEOmZgUy4BQ5MGEFN5C/0pE0LIeqGlii1tyCsuMrFaFEKrq08ytMY+VZqqoOJ4su6Ic9guR9KUxhWBE6KhqQ3pdYamwmUcCUNH0tSR7JPrkY7psD0G2+VIp3UYmoq0qYcRrpIt67bKNgPHasFsaCqqLmuIoKRi+qoIkgIZFSo7DJ7gGE533+MpECoFy0Xc0Da8NjRVCS3Z1xJXLpMGKqM98VUCqi9lYjpvYaQn3nKdFOMCFZshlzThMY6hFSmJuYSB6YKFsd5ES1E76ezIsK0/1dL7n8mQuCIIgiAI4hmJyxiS9cLATzHrfDyZQrUpl0Dc0OB4HBU/itWOn4DDZM1WbIWBgabIKILNpCPd5HIFQRZjsKHmHMhXZNqVoiiAAnAhYLkcuYSBvhV1MsPpOKpuLc1tOBuH6/EG0ZE0dewcSMmUOF/ULZUd9CTMto0ShrNxmJqK+bKDXMZE0XbBfdt1fQ33uWZNazVV1jTVB056/A1/4Epo6iq29iXBmzgTqoqCrX3JNd8zQAHAhEzT1JXuOxjJmis5n7LNYGitie6EoWOuaGNrX7Jp9MllMura7HhiugYFLk4sVtCbNBsE8FrIOjaGpKk3TeFLmtJhcrZgtySumBAQa9SVPd2gPlcEQRAEQTwjcZkIU+QAuWFfadzQDrYnHQIDoaJrCjwGuG2O6XqiYZyAWg2X/L+xXBKbc43CYzATg/CfCwAQQtY6uUyaEazYmKfjOgYztWhGOqY3jY4oioL6l1ZdhmQT98CNSJrSFGEkG0c6rkNApt2VHbZmPVGrKIoC4UfBGBPQVRWaqqw5rtFkPVYPKk0npHlG9+JAURAWXblMGnu0QtLUULI8lJ3mfauCyN9ax9OXMn07+9Z6Znmch7V0a5GN65jKV6Uz5AZwAbSZGXvGQuKKIAiCIIhnJFyIhlocVVU6atQbYLkcjDdaanOItntdOaxxnICEoaFguTBUKWoMTZX9oOqIGxpGso2udR6XBhvdigMFSkPtTbt1ZM2R4s9jAmoU4/mROg4RyWZeVRQ5Hl/Lz699giVcKe7XI25osD2GotW8VsllPIyINUPXVJiaivHFckvXOBcyCrreOUnHdJRshrmitfF4fouCZwIkrgiCIAiCeEaycq+nKYpve97ZJrDqeE0Fx0aphhXHw0zBwsnlKiaXq9Igosk4pq5CUYBUrJ2IUa2Hl9al2lD8KE60KGFvsAgCQ4BvjsFFNGJIgRQasjFv9yOqSs0ukK0Q9xuhqyoWS07T/+NCAGL9+eWSJhbLDmYKrYohrHtOFEVBytRwctnaULDJy+aZEboicUUQBEEQxDOTFXs9TVXA/ChPJxT85rcr32K9jafHOA5NF/Hz8SXsP1nA1HIV6739aE+ipWay9TMIxEu32qBOF0SGAmmewBFRJMyPNEFEFVmTwoBxATWitMBmBhutkIzpWKo4sL3VaXgu4xvOT1MVpGMGxhcrsNz1U/lYGP1bf8xswsBy1cF8af10Q4/zZ4i0InFFEARBEMQzlJWbPSmuRMe9rioOWxWJ0FXVbxLbnOmChemCheFMHAr8zTeXlUhRIOCbCYj1U7xaQalr0hSVyBIimF9EkSsAjMtIThTjKYoCJnhkkTCgtnbtjpcwNFQchqK1ujG1y0RLm/psXEfRcjG5VF33ec1MQJqhKgriuobJ5eq6nxvGI0r7PAMgcUUQBEEQxDOSlVtBTVXAhOgochVEh1am3umagsoaBf8e45hYqiJp6mH9FBfRp1DJyFA0katOoy5rD+rPTwgp3roertYzK4rIlQKAsUCsRTNep5mVmqpAAMhXVtddMb5x5AqQa9ITNzGxXFmzfgtAWzVmPQkDS2UHC+W1o1cej6YG7kyAxBVBEARBEM9IVu71VEUB5wDroJEwF75AWDGooapwPd70rn6+6qJoecj6VtaKotQJjWhQAvGygTlBS2OhTpBGFroKhGlUbnJKy1GXFocDRzRplYAv+LqI/iUMDXMl249u1vBY62IoHddRddi60Stpnd7aDHVNhaYomFq2Vs2rNr9oatbOBEhcEQRBEATxjGSVoUUYuWrfMTA0UVixf9Q12TC33jGw6jDMl2wUqq40mvAjDgoAweVGNLJ6IR6deFEUBaJzM8WmqIqscxMRRYYE5HmNTJz640VlJd7tGClTR9nxULQbUwO9FiNXAX3JGE7mq1iurGGQ0Wb0NpeUVu/L1ebRMBaBuD9ToCbCBEEQBEEQPkFaWbvIDfhqgaCrCjwuYHscyxUXHuc4sViF7TEkTA0Jo+b8pyqywawbZfG/Itac22mBAngcvqFFFANGm7YYiNyoxF9D9K8DTF1GQouW29Dc12uzpilhashbDsYXK8jGjVXCrN00TVNXISAwna+ir0mfNI9zSgskCIIgCIJ4piGAjmqueGjK0LiD1FQFjAmUbA/HFso4sVBFyfKgQsFiyUE6XnefW5Eiw2UR1qeE9tzdiw61zi0wKqGmALLRcWSRDV8MRTBSMJrw6+CiSgsM0hY7Hc7UNCzUWbJzLq322zXw6EvGMFOwsVBeHb3yWPs1cLmEiZmChXyT6FW74u9MhsQVQRAEQRDPSJpu9oTSUeRKWlev7gsURD6KlouS5WGuZGEwE0NvysTm3iSM+ibGfh+pyBrqArUdfBRRlwiEweox61L5oulJHCmKH2riiP6cqB2uYiqmIV91Qzv12rXX3nimrkJVgPHFMrwVvdhkX6/25hU3NDiMY3ZFHy3hi+dnhrQicUUQBEEQxDOUZps9VVE2bIjaDMHlv2a1UgICrieNKrb2pcIaq9XzUcIUvsg2oiIYOyKUaMerP+ZIxIsSqKtoVJYCmarJI7CyDwnOSYfDJQwNVcdDwXf740JGrjoZr8+vlZpb0afK7bDuLxs3MZW3UK6rCQvcKqPoE3YmQOKKIAiCIIhnJM32jqoK2B2IK+a7BTbbP6qKCuabZKwlrIL5iHCcaDaiQR1XlGlyQHQNehUl6KkU0QzDNMjookwcgXCOZsgwctXhgIqiQFWV0JKd885rwnRNRcLQcXyh0tCc2GOro7CtkI7pqDge5oq16JVsLxBdH7PTHRJXBEEQBEE8I2lWU6IpSoOzX6sENVfNRIcKYLnqImmu7yMWpMhF5UwnB+28r1IzajVX0YwXDhNxyl2kOihiwRuF/EsYOuaLDjzGwzYAnc4vlzSwXHEwk68JIttb3RC7VdIxA5PLVpi2yIWgJsIEQRAEQRBPd5oJBE1VGu7gtwpfRxEZuorlqot0bH1xpSoKRFDTFOFGXkQYGYo+clWzoY9kPMgoYpSRNbl6ERdzAV2lyaVMDWXHQ8n21qz3a3keioJ0zMD4YgVVh8FjHF5di4B2ycZ1lCwX836qoccFmOh8vDMNElcEQRAEQTwjabYB11QFHhNt9/lZ7+m5hIHt69RaNYwD+M55bb39mtSsv6Pd2EYZaOIiyrRFRTrnRTQeULPZj2w8/2s3AlDXVHhcoGh58JgAY92Jl2xcR8n2MLlcgcdlrzeti7TFhKFjYqkKl3EwFk0T6zMFElcEQRAEQTwjabbXqzUSbm8zzdaJDimK0tLGV0aupDNdVJGXIC0wMmf3YNgo5xfNSOF4PMrIlW9o0UGm6NpEZDIS11XMFi14jEOgu3OiKApyCROTS1UsVRwwLqBrXYi1hIF8xcFi2YHHOUWufpHcdNNN2LFjB+LxOC6++GLceeedaz733/7t33DVVVdhcHAQ2WwWl112GW699dZf4GwJgiAIgni60LQ+SpFW7O3asXMu6swUOp0PgIiL/xUokYqN2rjRjSODQtGlLa5lLNLReBGLUyAQ4uubm7RCKqajaEnXwCjml4rpsFyO6bwFxrqbn6YqMHUNE0sVOIxDeQrSKk9XTqm4uvnmm/GOd7wD733ve/HAAw/giiuuwMte9jKMj483ff6PfvQjXHXVVbjllltw//3344UvfCFe9apX4YEHHvgFz5wgCIIgiDMVsU6KVy1y1V6oolB1oXe5WQ6EARfNzTY6QVXkZj6qDV9QjhaVrbai+Gl8SjQzVCAb4EY3v2jHA+R4ABp6nHVCTFdhewxVh0dmWtKXMrFYcSLp69WTMLBYdrFYdp5B0uoUi6sbbrgBb37zm/GWt7wFe/fuxY033ogtW7bg05/+dNPn33jjjfiTP/kTPOc5z8HZZ5+Nj3zkIzj77LPxne985xc8c4IgCIKIhk56Kq0F5wJVp30zhlZY2WS0W4TvrlcP5wIVx0PVYZgv2aHVdNS4/uZ2LUMLztBS5CqY/2zBwlILboAbofhpgdJ1sKuhGnA93vVGPiAQnTE9OjHkMN61MA3wuIDtsQjnp8Dtov6oGcGV1U3aHeCnmypSYEUl/uKGBsHRds1hM4JrznJZ11HdM4nufgt0geM4uP/++/Hud7+74fGrr74ad999d0tjcM5RLBbR19e35nNs24Zt1xqjFQoFAIDrunDdp+aXdisE730q53CmQmvXPbSG3bPWGjoehxnRH/UAzgUsj3W9cXMZx3LFRTauI2ZoEc2ug3msc/25jENtsT5lI4QQmMpb6EuaiJvRHC/n0d7BLlguxhcq2DWYbmuOa63hyeUqTuar2DuaRWqN64VzgdmiDU1TMJiOtfZ+jOPRyTz6UzHkkgbSMb3rdXhypgQBgbMG07IeQ1EwvljBUsWR0SMuoGsqRnsSSJta0/VxPIaizZCN6+FGrmi7OD5fwe7hzKrPoss4qg7DzHIZABDXAM68VeMy5qJqu0gZCjzGwbgIPzNCCJxYrKAnaeDEYhWZuIGZgoXFso3NuWTT8dqBcw+up0AxFHDW/QZX7neAdFzvem4AACbFuwYeyXiceXBchriuRjKe5bhgXEFPTItkPMYYHMdFyohmPH9Q+ZUzcNb8c3RiqYrxxQou39m3bkpnQgOKZQsaml/LnTCQ1MBFNMfbE1OwWKjKqGzdeIJ54EztaB8S9R4m6r2QItaLjT+FnDx5EmNjY7jrrrtw+eWXh49/5CMfwT/8wz/g4MGDG47xl3/5l/jYxz6GAwcOYGhoqOlz3v/+9+P6669f9fiXv/xlJJPJzg+AIAiCIAiCIJ4C/uIhDScrCv7nboYL+59JSXW/eCqVCt7whjcgn88jm812Pd4pi1wFrFTjazXgW8lXvvIVvP/978e3vvWtNYUVALznPe/BddddF/5cKBSwZcsWXH311ZEsYKe4rovbbrsNV111FQzDOGXzOBOhteseWsPuabaGBcvFA+NLMDUVW/tSGOtNdP0+tsvw4IllKIqC52zv7bgofXKpiocmlmHoKi7c0ouBtNn1vB44sQxApgdduLW35dc2W7vlioMHTywDAtjan8LOwVRX85vKW5jOV5GvyFSt5+zofO0CTixW8MhkHruHMtg1nO5qLCEEZosO5ksWZgs2LtyaQy65/jkJ0nTmSg4gGO6/64cNa3hwpoDjC1UAwGDahMsEEqaG+aKN0VwcvUkT03kLJcvFsuUhpqsYzsQwV7JxwZZe9KUa3398oQzbE5jKVzCQjmOqUEVMU5GvetiUi6M/ZaI/E8PDE3lUHA8uExjNxqWFs6rggi2N10TZ8fDoRB6LFQe5hIGligdNBQxNQcrUsViRNUuM+w1RVQVJQ0XRZrhgc67p5+nxmQImF6vgQjZC7U+ZmC86WKjYSOgaLMbRE5dF+gNpE+NLVQgOmLqAd/xBbD3/Uqja6q3QXNFC2WFIxzTYTCCuKTh3LIdD0wUsVVwkDTm2ripwPA5VVbC1N5obtuNLFTAmsGOgu89AQNVhKFguhrPxSMarWDZmH793zbVrl+WKg6WKi9GeOOIRRNSZbyMe009ddH4jCmULi0/ct+YaVhwPJ39yHwDghwsZ/OqLzl/391fVYTB19Yxy41ss2cilTOwb62n7tVHvYYKstqg4ZeJqYGAAmqZhenq64fHZ2VkMDw+v+9qbb74Zb37zm/Gv//qvuPLKK9d9biwWQyy2Ou3BMIzTYlN5uszjTITWrntoDbunfg1ZlcHhKioux05D73ptORc4MV/BYpVhMB2Hrhsdp2ItVIvoScZhMw5N17qe20KFoWBzOJ7A1n6zo/Hq185iLhyuwuUcyXhn49UTNxnKbgW2UJDStK7WDpA1A7MlDxwahNr9+pVtD4cXKihaHjRVXXNMy2WYK9roT5uYWLJgeQxVlyHuZ7vVr6HHNSRjJmK6CocLLFZcJD0AqoaJZQeTeekoVnUFBjJJWdvEFHBFg6o1Xq8u45gqeVgs2WAc6Ekp0DUDA9k4knEPJ/MWSq7AXIWh4giM9WaQr7qYLjlwPYFt/clVx1Msuig6AtsGspgpWBjJJZEwtHDTmEnKzX/VYRBCmjDMl2xA1aDpqz9PnAuUHSCdiMPUVCxVHFSZA8GBdDwOJji29KRguQymAUwVbeSSceSSJooVC4sAVE1vurkdzknxXLRcZDUVC2UbM0UXFlOwfTALVZEOfELItWJcRCI0ACBumkgYWmTjpRI6UonV+yDpqNf+Z8I/TavWjnXYdLY3rcE0TSRXNFi2PQZTU9u+KaJqQLNPp6zDik5wVRwPmqp0NGY2FV91/bmMY2KpApcJHJkrh889tlDB/ScKeO6O/jXHSyVWXysly4OAQCYezd94xgVmChY25bq/aQgARxfzSFU8XLh9oOMxotrDRL0POmXiyjRNXHzxxbjttttwzTXXhI/fdttteM1rXrPm677yla/gTW96E77yla/gFa94xS9iqgRBEC1hufJOtqZokTg35asuJpcsZOMGummxybmA4woYmgqHsUgcj13GoWsK0jEDWgQuX/mqg7ihQudKJGvncYGyw+B6cuW6HXK+ZGO56iKb0MFF98YOLuNwPYHNuSRmihY8JmC5DA7jyMYNlG0PJdvD1HIVJ/MWMnEdqqKg6jB4XGBbrjHKJISsyzM0FXFDw/hSBQOpGFzGMZCMhXbSjsexya9dYlxgqeLI3korVkg2JeUY7UmgbHuYLlgY8SMfSVPHWYNplCwPjsfR79dt9SQM9CQMLJTsppvsiuPB0FSoioLRntUbtGCjn6rbZPckDJxcrja9Jo4tlFGseuhNGYjpGhJmAlP5KjzOsaW3FvUJxtM1JdysZxMGFleM95WfjePHT87jw7+6L4wiBhvT3qSJiaUqMjE9nKeqKIACaGrzzfWRuRI+fMsBXHPhGF75rE1Nn9OMkRURJi4Erv/OfswULHzs187fMMLZCj88OItP3f4E3njZNlxz4eaux/vrHzyBO5+Yx7tfeg4u2tZ6FBuQGUzpFcLqkck8/vxbj+LSnf3446v3dB2R+dr9E/innx7Day4Yw/+8fHvXLngTSxVc99WHICBw6c5+XH7WAAxVQdlhKNseyo6His3k1/Axhor/NWGo+J3twHZ/PCEEPnzLAdx/fKnhfVRFNqf+6n0TeM729Wuv6ilZHq798v3wmMBf/sazI8mi+PyPj+A7D0/hfzxvK17/nK1djeUyjr/78VFM5S3EDQ2vuWCs6/mdTpzStMDrrrsOv/Vbv4VLLrkEl112GT772c9ifHwcb33rWwHIlL7JyUn84z/+IwAprN74xjfiU5/6FC699NIw6pVIJNDT035YkSAIIkrKjgdNUeAhGlc1h3FwwRHTTfAu5JXLOTzBYWoqEFG3EdtjUBVVFilHcLwVR96lZpx1JSQDGBcwNAX9qRhY6ErX+YYqX3FhaAo0RYmkmajLBJifPgchxcyxhTIKVRcD6RhOLFVgqCpmizZGsnF4XKBkecjGDSyUbWhqo6D1uGx6q6kKDE3Fjv7U6g2kAiTqTCFySQO6qqDsuKvUp8s5XC6gqwp6UyZSMX3VHfp0vPkWQvGjOisp++KqbZqcNplWacPQGiMHK4VJPetFGE4uV/Hln8k2MD89soiX7htp+P+kqWNrX3tbpvd84xFUHIbP/OhIW+JqJT86NIefj8tN9+fvOop3XrWn47EAGRn8/F1H4XGBL9x1DJm4gSv3rp8xtB4Hp4v4/v4ZAMBHvnsAH3rNPpwz2nnZBRcCf/fjI/C4wI+fnIeuKfijK3d3LIjmija+/LPj4AL4xgOTmC1Y+KOrdiOma+BC3tQo2wwVR97QCMRQ0fJQtFwUbQ8Xbsk1RI7+8SfHUXWlKcUPD87hhwfn2p7XoV4FF/vfP3BiGfcfX4KqAAPpGDRVQcLQ8NpLtuCvbjuEgzNFPDSRxwVbci2N/bWfn8CS77T5oVv24xO/8eyGmxbtMrFUwX88MgUA+Od7xnHWUBqXbFvbTG4jvvPQSZzMW+hJGPiV3WuX9pypnFJx9frXvx4LCwv4wAc+gKmpKezbtw+33HILtm3bBgCYmppq6Hn1mc98Bp7n4fd///fx+7//++Hjv/3bv40vfvGLv+jpEwRBNGC7crPsedHkvTsehxDy7nhgz9yJQJBRCAHNkMIqishQ1WGhdXKb7YBW4TIOx7eKrroskvm5jEOFFH8Q3ck1xgUKVQ9xXYPn1wN1i8c5Aq9tVVX8XjUMs0UbBcuDIgAXDNv7U+Fd+56EjKKUHG+VAGVcRppivkNgKxtR1Y/glB131fq4Hgf3xZqiKG3Vwsg+uKvnZzkcRgfW083Gsz0Ou4mDZrspZEIIHJsv4zM/Ohw+Nl+213nFxixXHPzg8VlU6izxXda+FTrjAgdnivj7u4+Fj/3w4BxefM5wy5vslcwULNx87wks+zcLXCbw1z94AglDw66hNIRAmO7IIcLfO7zua8b0P/dC4OhcCZ++40kAQNxQYbkc1//7fvzRlWcjFdPl64HwMxj0Cpa/h+RjmqJgz0gGcUPDbMHCLY9O4chcGXFDhcsEfnhwDqqi4MItOXkTwb8x4fqNnj3Gw8c9LmDqKl75rFHkEgZmCjY+e+dhWQ/YE8dc0cZdhxfw8MS94JBtC1pxHL/j4By+/Lv9KFkefnJkHj85sgBVAa67ag8enyrg4ck8TE1FMqYhZepImhpSMR0pU0My+GrqSMd0/Ov9J/DQRB4ul+0NxhdK+NydRwAAr372Jrz5l3Y2vPf+k3l85+EpfPW+Exue94rj4dHJPL790EkAQNLUMLFUxSe+fxDve8W5bUcAGZfOmJ+78wi4ABKGhqrL8MnvH8Jfvf6CdW9mNMNyGZ6YKeJr908AAN542Tb0JJ9+pQmn3NDi2muvxbXXXtv0/1YKph/+8IdP/YQIgiA6xPIYdE2FzaJp6Oh40pY8+HPY6ZBBVENX1aYb1U6wPB7+oe52NMfj8JhAwlChoHnUo11sj0NVpX7pVlBaLoPtMaTjOpjDWup/tBGuJ8KFM1QFC2UHHhfIJUwYmrKh7f7K43EZhyc6q3lpJtg9LrfCnZqArBTcLuOyns5of9shN/iNj1muTPnsiXeeksoF8Kff2o/9U8WGx6eWqx2Peetj07jph0+u2rAfX6hg11DrJij5qovrvvogZotS6PWlTFyyrRff3z+Dm374JP76v10IxgXmSw7mijbmijbmS/JrwXJRdWVtXtDz7Hev2ImHTizjW/6mGwD+6Mrd+NmxRfzw4Bw+9r3H2zrOt52r4P9+7VEcnpe1Qaam4q9edwH+7+1P4MB0ER/8jwNtjXfZzn7sG+sJRQYAvO7iLRjOxvGJ7x/EDx6fxQ8en215PAXA+GIFPzmyED523VW74TKBj9xyAEW70WJcV5U6QaQjGdOQiRuI6Sp+8PgsiraHnx5ZwEe/eyA8ty/eO4wX7B7EC3YPtnWswXFUPOBtNz+MqbwFAEjFNLz24i2rnv9rF23Gdx+dxiOTeeyfKuDcNaKCR+ZKeNfXHobjh9bPH+vBm56/A//f1x/GfceX8KWfHsdvX7695XkKIfC+bz6CR09KswdNVfCRa87Hp+94EodmSvjYdw/gL379WS3XnC2WHfzBV36OgiXXfjgbw6+0uXZnCqdcXBEEQTwdCHrhROnWVHU9P3IAgIuOBYLHuOwjpEaTEsi4gOvxmrNbl2LD8ThcJmRDTQWRiCvHqzX9lHfPOx+TCSGFiy90oxBXtsfCa6U3ZWK2aIFxgZFsYsNrSEGteW1AEJ3spBFrM/HpMj9q2glNXub60YVOPh+yXmx15IoL3tXnbbqKUFidtymLrX1JfPfRaZz0N7ud8J8HZsCF3Ij+2oVj2D9VwGMnCzg8V2pLXD0wvhQKq+ds78UbL92OoWwM9x9fwlTewn//u3tgt9F8+ocHZ3HvMZlaOJiJ4bUXb8Yv7RrApTtlqtvdhxegQEYzFUWuuQr5fe0xRdbZMY575pRQWD1rcw/+23O2YnNvEn/+yvPw1//1BI4vVML39kvTgLobRYr/uOVyTBcs2Z/NF7V7hjO4cu8wrj5vOOx5973HZBmIpirQg3+adMczVAWapkJXFTwxW8KBqQKOLZRxz1FZVXf2UBqvvWQLzhmRouTv3ngJJpaqYZQpFdPWNM6oOiwUQ996cBJcSKF7xa4B/I9Lt7W8/vUEvdd+vqBipmrB1FSctymL/3n5dmQTq6M4A+kYXnzOEG7dP4Ov3ncC73/VeU3H/daDJ+Ewjp6Egeds78XvXL4D2YSBt7/4bHzi+wfxtZ9PYPtAqmUx+MhkHo+eLEBTFZwzksF/e85W7BpK4/976Tn4o5sfxOG5Mj5zxxG8/cVntzTeNx+cRMHykIppePbmHH7twjHoETW2Pt0gcUUQBBEBnm//m9B1P+2l+w141ZWmEUB30SGPi7r9buciLSDYKMd0VaYLdTccPC4gIMIoXRRRP8uV4kWBNGvoZkzBAQi5uZT1RK29ruJ4DW549VTdmrhSFQUj2dYLzmWdWyNyDdtPiwvGa5bG1ylyvEY4l+vYSd2M0qROkHEB0UUNHQBMVeTr9wxn8LFfexaOL5Tx3UenMbVcbbktzMo5HfUFx1//5oXY0pfE3991NBRX7fDErHz+K88fxe+94Kzw8be+4Cx8+JYDobBKxTQMpmMYzMQwmIljMB1DT0JHwtSRMDQ8NLGMbzwwiYMzRVRdhoSh4XO/dUl47RmagndetQfvvKq1ed1w20H818E57F+Sr790Zx/e+/Jzw/9Px3W852V7Wz7Ox6cKeNfXZfTGYRwKgD9/5bkNIuP5uwbw/F2tOcr9288ncGCqEAqr3cNpfPK1FzQ8JxXTsWck09J49U2ogwjOh391HzZ3YbsfjDlTlWv4qxeO4bc2EGq/fvFm3HZgBvcfX8KTs6uFuhACdx2eBwC87+V7G2reXrB7EEfny/j6zyfwf29/AmO5REtC/6d+1O/F5wzhD15UE1BDmTj+5CXn4M+//ShuOzCDPSMZvOS8kbWGCbnPN+v4gxeejefvGsBCqbv029MZElcEQRAR4PkRHF1TQme2buBcwPNqkYhuoi/BxlvSffSKC1l3pKmyZqPbYw1qL+Tsuo9ccS7Aee2OO5qklbU1nl+DoiryH4R8j/Ws3W2P4dB0EZt6ExhMx1Zt1HmHQgOArMFb8ZAQouMz2+xVLuMdz09RlFXRzPo17ISV1wQX3av6k764CvpJjfYkoAAoOwwFywtr3Foeb7kK2+OI6WpoV71zUG5i6621W+HgtIyorRQBl+7sx01vuAgCwEDa3DB9tGBJU4OZgh2O1020L0gBK/t1ped30KOoYTy/li9IZdsxkGoavWl3vIBu5ycNYuTvOUDWPXYjrADZF7CePS30zBvtSeCXzx7EDw/N4av3ncCfvrxRwFouDwX39ib90X7r0m04vlDGfceX8OFb9uOG112A3g1cJ4P0vS1NjvfZW3L4H8/bhn/86XH87R2HsWMghd3D6wvWon8tjvZE02/tdObpGY8jCIL4BSPTAv0NfQR1Q1wIcL/mpdvoC+d1ZuRidYpV+3MLNvN+mk+XY3JRl0nmWw93Nz+5doH4kUffzfykmAzOBcfGphaWy1G0Pczkbdx/fCmsfQnwOEen2gpYLRZlBLHTAVdfW4yL7ua34uf667ltmroFdjStBqb9zLXt/XLzaOoqBjLSVv5kB3VX44tywG39yVDAnOU3wz66UF43GsiFwH8emMF1X30Qb/3S/WGka1v/6o3ylr4ktvYlNxRWABBfsZHf3GWPorjROF63jYlXjreykXXb46043nYFcjPqa4pWWsZ3Nl7jHFt18XvtJbIe6ydHFnB8oVGslx0phHRVWTU+IEXiH1+9B2O5BOZLDj763cfhbmB7Wvbr0lKx5jVVv37xZjxvRx88LvCx7z2OfNVdcywhpNspEM0anu6QuCIIgoiAwEVOq4s0dUMgYFQFXW1ya3PxB1GiiTRxIKzN6DrtDvWRKyUy8af69SLdR67kLIFa/c9Gw9kuQ9HyULI85C0X7gqHB8Y7a+AKwJe0K9L4hFj1WDsjNku766YX0Cqx1sUJUIBVkbAo6t6Krjy+wUytwe4m/656J+Kq5G9Gc4maQNiUSyBuqHA8jsk1xlyqOLj+O4/hU7c/gSdmS5hcrvqGIkBmDbv7VlkZyenGjrvZeK0IvPWI60/t/LodD2gUQ1EIA3OluGpxDbf2JXGZXyMXuO0FBMIlFdPXvIGRiun4s1eci5Sp4cBUAX97x+F1f9cG1/Nax6wq0iI/cGH85PcPrvm5tD0eXtNrtXB4OkHiiiAIIgJ4/YZb6b7mivu2x2EJeBcCgXFeV0jeveEGF7X6maAeppujrf97rERgaFG/dqH462I8IQuuwvkJbDzHisPgeBwLZXuV250I59cZzQweOBdApwYUaGKQwUXHKXyhu2XdmEJ0npDarIbL43zdtMxWqPqGcfUb8CCdrxNTi2Z3+lVFwQ4/+tSs7ur+40t4+1cewM/Hl/0+dI0kzdYt8Jux0kJ/rShEy+Ot7HXW5XixFZGrro+3Q+GyHvXiqtv1AwCzC0H5Oj969aMn5jCVr4n1IHKV2mD9xnoTeNdLzoGqAN/fPxP2rmrGRuIqmPufvmwvTF3FAyeW8ZWfjTd9XvDZUBVp5/50h8QVQRBEBIi6zXIUpgxBfxmlpq06htUV5zeztW5/bjJSpSgI63+6SgusM9zwjRG7nB/8ND7/5y7n13hulbB+qBmMCzwxU8T4YgV9SRP96RhWqs9aZK3TyNXqNeqqR3KTY5FtuKLLC+RdNnFeebyMi643MBU/U7M++jLaReSq7Kd+rtzQnxXWXdXE1VLFwUe/ewDv/85jWK662N6fxA2vezaevblWIxTFRnSl2Og20rQy5az78VaKtWjnF0XkymwQV09FWmDr53jXUBoXb+sFF8DX66JXNWG/8fwu3taL375sOwDgc3cewcMTy02fF4qrDSJN2wdS+IMX7gIA3HzfCfzs6MKq59QLta5+r5whkLgiCIKIAMYboyPdRl+CVLsg9a4bB0KvfiMawd817ouXKHpwAasFX/cplSIUL0HUo7vIWl3aotJcoHIuYHsMxxfK0ulNSIv14E58/bnjdWmVUcFFF955TVJFu6kJa5Yq2pWrZBODGI933oMrwAojV7XNbRC5qo8KtMpaG9ydft1VYGrx0MQy/vBfHgjtz19x/ig+8dpnY1t/qkGsJM3uN6KrI1ddpvEZ0YqXwDAiqvFWpQV2GQkDGgVg1JGwTgR0EL26/fFZzPl2/a1Emeq55sIx/MqeQXABfOx7j2O6sDpSG17PLRzzr+wZwivPHwUA3HDboVU3J4r+hy0Tf/o1DG4GiSuCIIgIqBdTzdKY2h8P0pQhIkMLpS6ME0XKYn0NEtaJ5LQ+HvzxlEjEVa0mTOk6WsdrWYFhDddK8Xx8oYz7ji3hiZki+pImev3C/CCK2Sg0RENUshOai6Fuarga6b4mrPEz0GCq0tF4K9IWWedpi4DfuNpPo6zfkG7q8dMCl622o51BatbK1LYgcnV4roRvPDCBP//Wo1iquNjSl8SnfvNCvPUFZ4Ub+Hqh122KHNAkShJxmmEUKV71qYbdHvNTEbmqT12MJi2wbrwOBPS5o1mcP9YDjwt84wEZvSrZftS0xeNVFAVve+Eu7BpKo2h5+PB/7G8w3bE9Fjoktloj9aZf2oFzRjIoOwwf/e4BWG5tvHbF35kOiSuCIIgIqE8da3anvV1qdUPoOjWwvn5GUVabA3Qyt3plILfNnY9Zv5GXPZxab47afH4reip1GbridWEXRUHoFsi5wGLZwXTewkzRRr7qYjibWLXBWVnzJYRv5d6F1fnqpr+dp8k1rQnjXQQ5m6SKdp8WuMLQQnRuFQ/UhJCCRsEw0hOHqsg+ZMvruJ81HXONyNWWviRURaYNfuGuY+ACeNE5Q7jhtc8ObeAD6iNXUQiDqCNXsRVCKIqm6fXRpm4331EfL7Ci5iqCyFV9bV2nYi2IXt362AyWKk5baYEBMV3D+16+F71JA8cWKvir/zwUfs4Cg4x2ImuGpuLdLz0HuYQc76YfPhn+Dih1ML8zGRJXBEEQEdAYuere8a6+cS3QXd1Qff1Ms4asbc9tRQ1St5EhVp+Cpsj5dgPnK1Iq0Z34qz++oN5JAFiuunj4xDIeOLGEfMXFcCa+arPZTAgFNVvdRK5WClDWReRqpeapj5p2ysrVljVSnYrJJu6DvLv1K/t3+pOm1nCchqZiIN2ZHXvFaR49MDQVOwdqvYx+94odeMeLz14lBIDGyFIUKW2rxEa37n51UZwoImsrx+x+fivdDCNOC4y6hqvD43325h7sHk7DYRzfevBkx5Gh/nQMf/ryvdBVBT85soCb7z0BoLF+sJ3fK/3pGP7kJXugKsB/HZzDdx+dBkCRK4IgCKIDGBcN6VXdpwXWmq52m2borRQvEbjxBQT1Nd3A6oRGNCmVoqEmrPu0wMa0RfiRsZLlwfIYRjJxZBPGKovl2otWRnG6Ey/NDFNkj7WOhluVKtpt2qICOcH6KXbTN2vlNSGEgMe6q7la705/WHe13J5jYK1GZfWG/k2/tAMvOW8EH//1Z+HVzx5bc+7JWLSRK01VGgR/slt3v4jrj+SYdYKt6/k1fgaNJg6M3YwZTSSsXqx1dryKouD1fvTqlkemMOPXTHUiyM8ZyeL3f0UaUnz5Z+O4+/B82LOqE9v08zfnGgwzHp8uYN6vDetNPjNqrp4ZEpIgCOIppn7zGFXqXdC4Nmjy2umIK9PuoujB1RCEiCByFc5PUSJYuzqxpihdW7E3rJ8fRZkqVFG0XMR1DbqmIr3eJk6sNjvpxoq9WdppN2lyKyND4fy6MLQAGsd0WXRNk+v7mHVKeGe+yeZ2tCeOB08AJ9s0tSivEbkCgPPHenD+WM+GY9RvjqOKDNUL+ygjV1FE1uSY0UWG6m9wRJGyCDSmLUZRc1Uv1rppcvyc7X3Y3p/EsYUK7jm6CKCxZ1s7XHnuMI4ulPHth07ir/7zEF64ZwgAMNZh0+lrLhzDwZki7j68gI999/EwGjzW210T6zMFilwRBEFEgFcvrhCNoUXNNELpWMA066nUdeSKC5m2GLwHuq25WqXVuqJZ+mQ3aZr1aYuqIq3Yj89XsFxxW9scrUgNXJny2S7Nrq9u0+RW9qTqxioeaNaXKrqmxIFhSRQ1V80EQtjraoO0QCEE8lUXj08XcMehudC5rRsBE3XNFdBoY79mdLVFGuqjImoGG9T3AEBv0lznmRtTf03kuhAu9dQ3xg16lnVD/Tk4a7Dz8RRFCWuvauOl13j2xrzp+TtwwZYcLJeH6Xzb+pMdz+0PX3w2xnIJLJQdHJwpAgA2dyjWzjQockUQBBEBHpORg/1TBdxzZAGXbO/FszbnOh4vaFy7VHZw55PzKFouLtza/njBRllA4J6jC3hkIo+XnT+CPSPZzufm7zUmlir48ZPziOsanrujr+PxmK/UHppYxs+PL+G8TVk8b0dfx+IjqImaK9q4+/A8lqsuzt+8cdRg7flJ4XJopoifjy9BUxW8cM9QeDe2FVZZsQuBku3i3mNLWCw7eOl5I8i2sRmsj+4FaXICwM/Hl3BopoidA+lV50QIAYdxWC6HxzhcLuAxjrmi3WCsEKSkWh7DT48s4MRSFaM9ccR0NewhFtjxi7rvuahZ0g+kYw3vz32Dkf1TBTw2mUfB8sIoSHAfIRD9tSitnEfVZbh0Zz8u8K//4H2ZELj78DyenC2h6jI/vRHhmCsFY+29BO49Lu/0NxPHgWPgwxN5fPDf98PjHB4TcOvWrOIwLJYdeE2irLkuUp/qozjBPE4n6vtmPWus898h9RxfrITfR1mTs3c0mvkdna/1J+tv4zO/FvXi6uyhzsUQAFx+1gDGcuOYXK7C1NXwxkAnaKqCP3nJHrzzXx/ClN9Ee2tf5+Ivaer405fvxTv/9UFYrvwdP9bbmVg70yBxRRAEEQFcALcfmMGX7pEd6n/0xBze8LxtHY8nBLBUdvDHtxwIe4RcflY/Xn3BWJvzknf5P3fnUdxxaA6A3My8dN9ox3PjQuDx6QL++gdPhpvLX7toDOe1kPbUdDwOfPPBSXzzwZMAZP+W33n+jo4jMVwInFyu4C9vPRSaDDx3ex9e95wtG7yyOYxz3PnEPL549zEAMnJ01d7hll8va5Aa57dQdvCefzuIhbIDALBchjf6dQob4TAOVVsdafq7O4/gR0/Mh48P+SlCtsdhewy2y9eMCl597jA++8ZL/PkBJdvFx753EBNL7fd7CnjJvhHsHs4AAFzO8Y0HJsJz3C53H17Ab1++Xc6PA47H8IlbD+HAdLHj+SkQeNX5qz8H2/uTUAAUbQ8/O7a44Tj9KTM8j684f7SriNNwtrZ5v7KNa2w9dg6mcGSujN+9YkfXY9VH1i7f2d/1eID8vXb34QVcuXcokvFURV7D7XxG1+OSbX04NFPC9g6jOCupT/fcOdDdmJqq4HWXbMZf/ecT2DOc6ToVMhM38N6X78W7vvYwqi7rWvxt7Uvi7S86Gx+/9SB6kwbVXBEEQRCtU7AcfPX+ifDnYl2qSydwIfCtB082jJNv0xpajgM8OVsMhRUAFDoYpx7GBf71/omGu/ZLXYy5UHbwrYdqm+6S5XXd9Pc7D02FwgoAlqtOx+N5TOCr950IfxaQ5zfXRgpTY80V8F+Pz4YbcgA4Ol9e/RohMJW3cHCmiIPTRRycKWJquYqyw7BzIIm3yxp0MCFwMm+FwsrUVTgex6yfptYMXVWg+81bLZc3vD/jAvccXcLEUhWmpuLSnX1YKDtQAKiqAlVRpNGK/1X+rEDxv7/32CJsj2OhZAPDGQghUHUYvvPQFADgkm292NybhO3J8xM2o1aC1gO1+kDL47j1senQLCI43gNTxVBYveTc4dq5qEvNDT1c6lR6+K3gyBSPY+9oZtXaDGXj+OBr9mFiuQpdVWBoKgxNCb/XNRVxQw37mRmaisWyg3uOLuDF53S3od/cm8SfvWIvRnsSSERU0/Tul56DY/NlXBqBGDJ1FR+/5jxMPfEQ+tPdpfAF/O8XnIVLtvXiBbujEVefev2FmCpYuGhbbyTjXXPhGIazcVwc0XgxXcNHXnMuZg8/3CBWO+WFe4aQiumRpCwCwLb+FD752mdjtmhjS1/3gvKKswfRkzCQjRtdN8U+UyBxRRAEEQEnFqtwvFohEovAlGFiWabLBDU29eO3Po7ACT/tRlcVeFymN3WDy1iYNhKMadc1jGwHIQQml6oQoiYKmJCpV5ra2eaSc2DSr5dJxTSUbdbR2gXMlixUHAYFMuVrqeLKNLQ2WFkzFNTzvGD3IO44NIfxxQpKlodDM1JEHZwp4tB0EUW7uUg/Ml+Bs1N+z7jA8QUpjnYOpnDj6y7AE7MlWC5DTNcQN1TEdA0xQ0VMl98Hd7gfmljG+775aMM1IYTAxJK8Zl75rFH8zvPbi3j83pfuw8llK2xCyrjA+GIFTAikYzr+/JXntrzJWq44uPWxaXg8cDBUwLjAsQU5v8vP6sfbXnR2W/MDAM48HHvw2Jr//+wtOTx7S67l8fpSJl7WRTS4nufuiCYiFDDak8BohCmGe0YyiE1HNhxySRNXnTsS2XjbB1LYPhCN0ABkquaLzolG+AWctymL1Gw0YymKgudFfM1s6UtGIqwCukmRPxMhcUUQBNElQgjMFWUUYrQnjqm81bAZ7ISgQS0gC+wnl6twWPuCTQhgviTHGVYDpwAAUUlJREFU2dybwLGFCtwuhd9swQHjApqqYFMugfHFCuwOxQsXCG2Ed/SnwsJn2+MNxfPtYHssPOYd/Sk8erIAqwtxNb4ghdBoj+xjtVRxYbUhrlYafjAuMO0f8/PP6scdh+YwW7Tx3/7up6tea2gKzhpMY89wBntGMtjal8TbvvIAACA4JMZrYm1rXxKKooTpeBuh+yKrPgrpcSl4AXkXu110VdaUBILNqxN/OwZSbX0mgrHkeAKmLt0kx/3xuingJwiCeCogcUUQBNElUsDIFKzhbDyM6gSbwU6oOixsdLopF8fkchUuaz86xIUIe4xsyvniqsvIVWBRPZA2Q1OCTiNDXIhQXG3tSzaIq06ZWKqCcQFDk+Lv0ZMFOG5n43mMh1Gwsd4Elisy/dFqc7z6yFXF9rDgi7+9o1kMZWJhCt9oTzwUUruHM9gxkFrVqyewTg+0NhMinOOWNgvGVwohwD/mfCCu2r97HQg2xx+TCxm5AtB23UqQugjIfm0mVDAhwlqwnRFGKAiCIKKAxBVBEESXMCFCcRX0yAFqm8FOCARMwtBCRzPHaz/i5HER1vYEPUu8DiJg9Uz4G/nhbDxMf+xUXHmsFsXZlEuEKZCW5wHozJkr2MiPZONhTxm7BWFadRgWKw4Y49jqR2y8uqjQWC4B2xdV7USuVhqTH10oQ0CmLPYkZAH54bkSLtza25IDoa4qcJlAcDkwJjBbsMM5tkMgXuqviaLt1YR9B+lkK8f0uMCSL0qHsvH2xqor0Hc9AZgyqhvUIrbj2EgQBPGLgMQVQRBElzBeE1cjdZvHYDPYCUHNy2Am1jS60Coe4+Hcgo1yN5ErzgVm/MjccCaOOX9sp4OoGiBd5IIUvpGeOAxNhcN4KGI6IYiEDWbiMHWZWrjReLNFCweni2Bc1gUF4opxERqJ9KVMnFyWY7dTc1V1Gl36Fvw1yyVMKIqCnYNp7GwjvU1XVbiMITiNHheh4UO7TUmbpQUuV5zw/+qbxrYzP6B2nXEuUPHn167Vdr37WRAJcxlHxV27Ye/TEZdxMC4arNqf7lQcr6E+8EzH8TgMTWk5LdZyGcq2h96U2VVPN+IXDzURJgiC6BKH8bA+arhOXDldiJgpfxM/kDZh+JGATkQR4wKFqufPLdbxOAEu56HYyCWNcG6dpvG5Hg+FQTauw/DTKDtOM+QCxWptI2+uMz8hBGaLFhbLDk4sVmA5PIzYBHhcoGLXNvLB5raVyNWx+TI++O/78Y6bH8TNPxsPH89XOxMaAcFmMwg2cSFCsdeu2AiEkFd3TSyV3XCsTmoGg8hVcP0zLlB2Opufoijh8QZpsRWHhRHTVOzpKzaqDgvPy3zJRt5ysVCyu2qIHeAy3tBMXPi917o14tmIVudetj0Uqh5mCtaar1n5OPeNcJqxVHYwW7Ra+r2Sr7oNjY2jwGUcU/kqFsrOuk3cHf/3Yb7qYr5kw9RVTBeqT/l5IaLlmXHLhyAI4ilECgS58cvG9dBBz+OdC4SCFWzADeh+zU0nYq3isvB1gV21xzo322B1UZJUTIfpz61TceVxadMNyB46sr6ItV3TVD9eyQnEgQYjSAv0bb9tj8H2ODRFwVS+ionFKgQELI9jJBNHyW60gfcYR9nxj9fUw0jOegYZ03kL/3zPcdxxaC4cq74fUyBOkx1abQeCNhBXHheh7Xy7YiNM4WsSuep0fkE0zPVq4io4x+kOxtRV6RAYuA8WLLl+qiLTZruBCwHFFxULZQcCAiPZzp31gkhnJi63Vy7jiBtaR5GH2ZIFzkVYR7djIIW5go2pQhVD6Th0TQXjUhQVLQ+mpiId132XSBXLFTkPLmqNa4NoiOV/HkZ7ElAVBUfmyxAC0FRge39Kpp36N1KEkBH0ku0hYWgwlJoL5NHFEoYzcQgIJAwt/F3VjKLlIm+5UABkYgYqroeEIX9fJk0NiqKAC3kzo2C72NGfwmLZwXzJwWCmdmNopmBB11Q4HoOpa/I6U2R0WteAbNwM+ykVLQ+qqsDhHL1JA4tlJ7yeBAR6kyaCX9OKIgVtxfXgeBzpeBoe41iuukiZeoM1vhAC82VbZicAgCL7nRUtDw5jGEzHUai60FQFuqYiX3Uw0hPHdN6C7TGYSp2BDONwGIfLBCyPIa5Lu39DU7G5N4nFso3pQhWD6XhDA+JmMP/vjhBAyfbgMI7+lImY3tnnpGR7qDoMA77tftlhSJqdXc/PJEhcEQRBdInHBSpuTXBovrjqNPrico6iVRMIKzer7ZCv1HopZf2UMeHP2dDa/wPpsrooRCiGOo80uYzXRV20OrHWWZqhFH81sWbWzW+x7ODwbAlF24WhqSjbDIamIJcw0avKCElg9V0/Xn1UKIxcOavnV7Y9fOmnx/Hdx6bDMUaycUwXanfMWV29UKcpbWEqnz/Niu2F4qjdaFjTtMBqLXLV2fyCtEB/Ey4aPx/tEkSuAlOSQPylzM4ia/WczFvwhAJTU6WAsDxYLus4/U6KEREalnAhYOqs7dowx+NI+ZvYuZKN/nQMW/uSGMnG8eRsCeOLZfTETVRcDwoU9CQNLJZtMCGwVLGhqSoMVcXiUgUxXfbkShgaFso2+lImNvclsVC2MZWvoiduIpPQwRlgGgrGlyqI6xoqjocdAykULQ/HFyoYyJjIWy7A5Lks2R4G0iZmihb6/EbKTEhvTMZl/7J0TJeNzLmAwzj2DGdguQyHZkvIJQwsVWxkYkYoQhfKNmK6irMGUtg5mMZSxcEjk3kUqi5ihoq5ko3hbBweF4jpMZRtD6lMDFwILFUcJAwdRcuF5WqougyKAiwUbWwbSGHfph4slGwcX6xAgbwuF0oOmJApl6YuayATMRP5iofxxQq44BjOxpGvulgo23CZQF/KRNn20JMwMDaUgKLI3oHHFytIx3T0JORnXgpGwHYZhrNxjPUm0Js0IKDg8MxyeH1MFqowVNmGYt9YFmO9SQhIx86RnjiGe2IwdRXjixX0JWNr9j/LV12UbBeOx6EoQNzQMZKNY65oQ1Fc9KdibadYLpYd9CVNTOarUKFA1xXkqy6ycR2ZeHspyMxvA+JxgYIlHVcD0fx0g8QVQRBElzger0VfYvJOrI3OxBAgN6WluhqVUMB0YEQRpCsmDC00dwjmvNKFrhVYXf1MKqZ1La6qDgujXvVibb1ImOUyqIqCguWCcYH+lBneMfd4XaQppoV3eku2h0cn8yjZHgbTMTAuMJI1wma4AQqkE18Q2XMbImtaGCmpTwvkQuDHT8zj8z8+ikV/43/R1l781qXbcGS+hL/+wZNhKqbLammQqU4jQ/6xBoHMIBKmAG2LgtpYcgMsx+subVFfkcZqOSxcw07ElRRrDK4fYgjMMaKot0rqKpLJGExNxd7RLA5OF7FQcjoWV5bHsKknjk25BKouw1LZxeRypaVIcVCLl4rpcDyOuK5jj9/kOBPX/WbGKs4eTkNTFEwsV9CfNjGSTSAT13FgSm7ye1MxLJVt9KdNbI0nsFiWG+7pgoXepInzx3JImBo2uwkcnS/hxGIVmbiBRFJFKqYjNaSjbHtYqjjYMZjGYsmGoijYMZCCyzgen1wCAFRcD5vSccQNDbuGZM2gwzgcj6NQdcE4MLksxV1c17GtP4ntAyksV1wsVlykY3p4jZUsDwtlBzsH0hjJxZE2daiqgv50DLuG0nhssoCSLX9HnD2cRtpPWfUYh66pcBnH5FIVMUPF4bkymBCwPA9belPIJQ3sGEhBUxUMZePoTZkQQtZNzhVteaxlB5mEjmdtzsHxOA5MFZBLmvJ3ucexVHEhINCXlo9lEwZ2j2TQl5IRHdYjkE0YSJk6sgkDvb5pTX8qBo9z9PvieigTR9FycWxOXgvzRRu5ZAxxXYXlMvSlY+HvrPo6zD0jWZi6iqPzZXi8ubCpOB7GckkZsfIYUjEd+8Z6sFRxcHyhjOmChZQpBWQrNyU8xhHTVWwbSGLUi+HJ2TLGehKIGyrGF6uYXK6gPxVr+bOyXHFQcRk4F9g1lEYqpofr93SDxBVBEESXFC03vEufNnV/w8o6rrlyPB5Gh5KmHvZI6qRWKhBXqTqRFrxHqoObho5XF2ky9Vp9TYfiKrCtB6R4CaJpJduDy2oCUNbteJjJW5gvOdBU+Z66pmIqb2Hfpix0TYXt8VqNVF3kqlB1wbnAcGb91BpVUSCEgBAyTWi57ITHm66PXHkMQgjccWgO/3LvidAKfVNPHNf+yq6wAe0J35gkEIsVh3UduarVXMmvgYFHMtZ+uk6DGx+XG+NaZKjLtED/MzFXssPvU2YH4qruGmNcYK4YiJDu661ScR0Xbe2FqihQVQWDmRim89XOe9QJgZGeRLiZ7k8xLFUclB22rli1PQZPCMR0FTMFC0lTx2DWbLr5TJpSdDmMYzQXDxsEnzuaxYHpAnRVwXA2jmzcwJ7RLO49tohSmSOXNDCSrUU+4oaGc0ay6E3GwDj3DWDkZ4NzgaLtIR3TkTI1bMoloGsqyrYXnl8VCsZyCWTixurPVK88X9mEDlWRkbWsLwhySQP7NmWRjRtwGMfxhTKWym7DvOsZyyVguQwu4+hPxRqERXBzwNBUbB9IQQiBY/MVGTn20xlXRkeC3ymmrqInYYBzgcNzJQz7hjqGpuKCLblw7OCzrakqNucS2NKXhBCiIQVSUxVsrmuDsGMdgxpNVaD515YAkEvo2DGQBhdizWiQpsp+dzFdwxOzRbhlseraEBDIJQ1sysVRcRh6UyY0VcFAOoZcwsBM0cax+TJO5qvoTZpIbvBZtD2OuKFiIB2Docn0xt6kiVRMx0AmjonFCibzVeSrLvpS5oY36zwusKlHXmPbB1JPa3MWElcEQRBdwHmtxxAAJMyau1UnkSZAppfV19AETndum+PVN9NN+fNSFdm4t1NTi+DuIyA382HaXZPxSrYX1g8AMtpTdRjSZm2zPF+UwiBuyOcFm7QTixXce3QRw1n5xziojVosO1JAKIChqlAUDs9PNdE1f351kabgXAR3wTfEXx8uBDxP1uEE9V8yciXnN1u08eFbDuCeo4sA5Hl6zbPH8OsXbW7YaAbrE6x3oeqg4kfWkh2KKyMwoRCBG2QtTa5d6tOEPD9iWvJTUjudn153zI7HQzEEYM2UpnXHq+ubVbRcLJZqNwy6JbjuAnJJA3FDppRttPlcicc4tLprGJDHO5KN4+hCuam4Ytxfc9vF5t4ksnEDB+wCPM6RXuf9DU3F+Zt7Gja0PUkDPXEDpqFiLJcIhbapqbA9hmTMXOVKqSgKRnpW2+OrqhI6TyqKEgpcXVOg+d8nTA3ZhLHmptrU1aZNqBVFCes/46oWzi8V0xr6mtU/f9dQa02xFUWBoSko2dJpsJW6QVVVcPaKptsNwkmRjasNTQ0Fi4wTd4am1kxackkDZw1mWvpcKIqCLX1JxHQVB2eKmClYGMrE6m4CKIgZKvrTMfSveK2uyWuiP2ViYqmCiUUpivpTsTVvNsnfqWrocFgvHtMxHXtGMhjOxjG+WMFMwYKpqcglzTVTDxkX6E/HsKWv/d55ZxokrgiCILqg5Hjh5jFhyM18uBnsoG6Icykg7LpoCedys9uu3flyxW2IXAEyxcphvKOaJttjmC87YUpcfTRsueLi4HQBIz2yBmGuaGO+ZENTFGTiOpgQWCzLepS9w/KPa8XxwhSvYCMbiJGZggWPCTwxWwIgENe18A98/R/vk8tVeFxGmlzGMVuww2NLx/SwlshtsUeYqvgpckKK3GAjHxxvzL/b+vBE3l9PBa9/zha8+tmbmm7GjbqoixAC8yUnjGJ1Yu4A1CI5jMsIWr7audio3xi7jGOxbn6diDWgPnLF/fSymoFHJ7ba9ZGwpbITpsx2Or96EkbjGElTR2/KxFzRbl9ccQFdVVbVMg5kYhhflM27bZdjoWJjMB1DTNdwMi/rbQbSMZwzkkHZYdA0RZo1bHBnv5moOcdPI6yPuhma4jc0V9c1nGgFQ1WhKXKM9IpoeKfommwMralqU3HVLqauyps46dZT1tZD1mKi6bntBF1Vw/PTkzDavuEw5N9weny6iKm8heFsHIoiI4nBjZe1kCmcGQym4zi+WJbmIKqMSK38bLqMI+u3i2iGoijoTZnoSRgY6Yn7qYdVpGMGsvHV9ZCK0vyafTpC4oogCKIL5ot2aHUeCpgmjVlb5WS+iumCFQqYpKmHkZhWBULAbNEKRVqQQqVrChy2cd+n4P1VRQnvbM6XHBQtp875TQ83G/mqi8NzMq8fAqj64+uqgqWKdAhLmTqWLRfLvtX3VN5aZdEd/PHNJUz0pkxkfXG01qZ8IB1DwZL2xvmqh5Lt1SJNMT08jlYjdQoUyIwiP6LgR5lMP12o3p1ue38S1121GzsG1k4BCp0e/VTPkuWF4qXjyFCdocX0sh06S3aSxqcqCBs3l/w6myDimu4w7a52/XOUbK/OnKW7SJjlMswU7I7NO5rR7K79UCaOqQ5SA1l4p79xzFzCQC5p4PhCBYoqr9mi5WHes2V9TtLE5l6ZdmdqUqB5ihLeaGiHZvMNjjG2gdNcK6iqErZLyETUY0zXZCTH8E04usXUpYtiMhZNjyxdVaApKjRNiWS8+shVpy5+uaSJ88d6cGimiOmCTPPTNITuqBvRkzSwL96DkWwcxxcrTUWRx0TLkb/hbBx9KRPTeQvHFyurUg+DVOuN3A6fLpC4IgiC6IKZoh0miASb0cAtrZOaq+WKtAqud9DLVwNHt9bHqzgy6hLou+Auf2B1Xm8Y4TFpuayrKo4vltGfjmFiqQJVATwPGMzKovLZggVwKT4AmRYYbCQVAJtzCZQdBtW/Q8m4CNN/AspOzdlusVxbu0AYBH98vQ1EVYCqABzS+SuoFapZp2uhSUOr50JR/J4/XPYWCl6f9M/t+WM9uHBLDmcPZ/Cbz9my4Z3Y+rTA5YoDy2MNNWudEJpQCGCmUK2tYZubXctlMDQ1dLfMV1xUXRYK8nYiN1wIKPDTssLrX0Zhg5sCrYq/oH9RsMkL9ELRkjb5wc2GwO58rfm0Un/W7Pz1JAwkDHlTIxXTUXUYLI8hlzDARe2atFwGz286DQRpVEpDHRtQ23zaHoepK+hNmgAUQMg0qVyyZjAQvL4+RbZbTE261nVrWx8QtCNIRCSuArFh6LLurVtMTYWiyLYYUaBpClQN0JVoxB8AmL5AbVUMNSMV07F3NAtDU3F8oYxM3Fh17a2HWmfwMbVcxfhiBSfzlnSWNDVwtNe02tBUbOlLYiAdw+SyTD1crrro92vDTF0hcUUQBEFsjO2wUAgEm9FaWmB74opzgaLFENO10E482Ny1O17J9mB5PExNTMV0eWfdn9uhmSISpoZlP2Vrsewgm9BxMm+hYHmYL9mI+QJJUWVRecFywX1zDV1VwmgOICMfim+9vB6qooSub7bHw4hS0tSxULJr9WotHquiKBAcYEym3MV1Ndx8m5oaNuxsfTx5LEXbRb7ihq9PmTpmChY0VcH1rz6v5YhGvfvhxFIVSd8qGpCRhKIle+G0I2SCcyjTAms91jJxHYtlBzFdRdLU/Cak0h3Mcpm8Ex3TIIQ0YbF9g4hAXBWqHpiflgqgoWDeZdIRM2lqcJnActWBAgUO4xhIm5gtyIanfSkz7KFUtj0slu2wxmwgHYPjcXhcpscpiqzb4VyK38Cyu+oy6eyWkRbYQfF/2faQNDUsVWrzW6o4MPx0skCUlCwPCxUbuYR0drNchqrH/J5WMlQnuJxjszS0hKlhIGPi2HwZs0ULqqogYWoYX6wgpmtQVSBp6MhbDnRNxWLZARccQijY1p9sem2M9kijhoSprbvB1FUFmqoipkcTaQKkONA1JTIDAdVPC0ya0cxPV1VoiqwXigJNVZAwtI4jwyvRfQOKqMQfgDC1sts0Q2lKkgkjTp1cM4amYmt/CgOZGCYWq5hYriBvydrWTq6ZhOmnHmbiOLFY8Xt7cQxnYx2b5JxpkLgiCILoAgbREGVaLDvw9+Ntm0ZYHoPtMSQMLdyQJgwtFCNrGVoEm05FUbBQspGK6ShWPShAneughpliNdyYn1iq+Js8aXKRiRtYqrjYkkui6jJs75PWxUXL9UWfC9vlYapj0tQwma+2nXanKrV0SQGEznmGpiBuamFUrJ3xuBB+s0sPXMj0LAVA1WNhE99WxJXtMTw8kYfLGDb3JmD7ET0A6E0aYfpS0fLCnmEbEdyhdhlHxfGQiRmhAQUXPKwf0lSlIUVIOiEqUBUFjsfDDbmoi8h4AoAi0z8BoC9pQkD2E5pbtJGJ66g40nXRZRyqomC+bIdNVLf1p1Cw3LB1wHxJvmbGryGMGyqmCxYY59BVKdhmixYsj2NbXxJzRQejPXHkqw6ySR2CS1EaOJ4FNvtBzVVfysRsyYIQAj0JE67HMedHB3N+HyZTU9Hnn7vpgoV0vNa8tWh5GMrEMV+q1TgqCsAhne2CWjkhgK19ScwWbZiaikxCx5ARk429fdOOjGlgHGunFp49lEHS0LBQdpA0pGNnKqYjYWh4crYEy/NwzkgGcUOH5XrIVz0cWyiHUZ2V6JqKnuTGG9/AkCFhGpGJIc4FMnG946bQK9ncl8BhyAbnUaBrCjJxacYRBR4X6E+bfoSwe3RVRTqmYzi72vijU4LobDKCc6z74qhbkqaO3SMZDPo1glDk75RO6UkYyG7KYqQnjvGFCoZ74l33pTtTIHFFEATRBSqU8E56kI4S1CS4vLkYWouqI+2Gg02iqgBl28VQRv5Rd5lshDu+WJabP1PDXMnGkzMlGTFwGYq2h219KSxWZK+ewOrc0BVkY2a4Se+Jm9ja1/gHOXAHq7+zrioKPC5FABc1Z8SBdEzamhuNbngbrpc/HgDoUEKr8sFMDNv6k+hJ6G2NpyhKWC/k+IYHcn4mckkjjL40Swt0PI5jC2XsP1nAAyeW8OhkAQ7jUABs609BVRScXJbr15+OYSAt77wemi22LK5qznkiNGRgfgPnwCUsaHxcdRgqLoOCIAVU3jF3GYeALPgPLOIBmRYYU1XMFKTYyCYMDKZj2D6QwlS+ipguxdBS2cW5m7LgfhPPouXBZhxnDcljDFoHFCzXb0Yr17AnYWAoE0NfykTGFzl53yRlNJdALulgpCeOouWh4nihwclPj0gHRZvJtMPA8CUd0zGUiSFt6tjan8LkUgUl24OuKdg5mPbFUi3lrmR7Db3PSo6HuKFivijnl05oOGswjcFMzE9nlG6CMUPDcCaGwYy80ZCJNRbXz5dsJHVg/KG1C+yltXca2/pX110Ffah66yJ7BcuFxzlGsomWrov12DWUjtSmOhXTZQ1jRGIjCiORejIxHfvGspHU0AEyyj6wjgteu5i6inNGs5FGXdK+kIydhnbkgUkFF6LrSJ2iSCv4/qdpP6u1IHFFEATRBTFNxeG5EgCZ+rO5NxHWNrTbRLjqMjAuML7k90zKJTDSk4Cm1gr6Hz6xjILlAlBkZMBlqDhyI2poKvKWFGMV20PS1HFsvgwA2Nqbwq7hdK2PDVoTfpqqwGYCyxUXhqbKO5oARnNxDGak4ABat4lXVSUUTnFTw4lFeaxjvQkkDT3cuLVrY+8yDghgwl+7Ib/AOu5HgxyP42dHF3By2cL4YgVPzpUwvuj3w1mBgDTb2NGfCsXkYFqKDLnPbn3DUW9VL4QIhdBAOoaepI69oz2YWKrgsZMFwK9xiOsydczzxZChGfC4QG/CgKYqYW2Vx2XNxrTf56ovZWIgE0MqpofW1dmEgULVwVguEYoEIWR0K4iUBalJlsdQ8CN1pqZiKBPDeX7/sIChrIYh/w5+IMalEKjZ3AfHbLscCUPeAABk9G9TLhH2ZTrLbzzb7G523NBCgRHMr2oz6FrtZsZQJt7QXBdxNPQ0Ct5nJQPpGFzXbfp/K2k2t1RMX9UjLhs3cOGW3kjSxlbWKXZLX6p5v6zTBUVR1uzv1An1105URCX8Arb3J3Eg0hGjRVUVqF3Yza/kmRKxCiBxRRAE0QGBQNB1FU/OSgGzYzCN/nQsvBverqFFyfKgqyqOzEuxtrk3gVzSCFPHqi5DwtSgaypOLJaRS0g3pvr+Ta5vs257HLrKsOBHIXYOppBN6HUGC61ak8uaJtuTm/HjC1JcbepJIGlq4R3J1t34AOE/NaarmPAjV9v6kogZtSL+9cYTQoTNeAuWjKT0JQ3EdDUUQ0OZGPpTsbBmyuMCH/yP1duZbFzH2cMZXLAlhwu35PDXP3gSB2eKKFRdmLqKk3k53khPHKmY3raFfXAteH5aXiCEBtImsnFpf9yfjiEb12HoKnriBvrSJrJx2T/I8TgmlipwPI7zxnoA1AwFuABUFVjwxcvWvkQoeAJ6Esaqx2RtRm3zGaSKWi4Po1b9aRO5pNmRdXdoP+8LuCBtcTAba9iktlu3VvUYSpZM9dRVBUPpeNt26U8lUdXjEE9/nmli45nG6fNbiSAI4gwi2GQvVZywBuTs4TSSpla3od5YwFQcD2Wb+VbiLmK6ikcmZQ+lzb1J2VvJ3wgLUTPNaNZHBJANLxkXEAAePVkAIDfy/WkTMV0L3am8NmqaGAQcxqArKh6flmNu608iYWphAXWrUTpVVcJ0yfGlquzroyjY0iubYwZpMg+dWMbf/NeTqDgMFcdD1a2JqaLlrYo4vf2Fu/DcHX14aGIZgEwNSvlW8XtHMzg2X8FoLo7RngQ25xI4azCFs4bSGEzHGtYxcAUs2fK9xn0xub0/iYQhU/gg0LJNdyA0gjTP+48vAZBRzqCAPx3Tcc5oFglDW+X4J4vD02EdH1CLDHkCeGSiAC6kE99YLtnRHXu9TgD+5MgCACmeO40m1ASywJH5EmYKst/Z9v5UR4514c0Kj+GHh2YByJqqbFKPxBqbIAgiSkhcEQRBdIDt20t/5+FpANKieyBt+ilKNRODZuQrLgxdwULJwfGFMkq2J3PwhcD4YgUPT+ShKsBFW3r9FLHAir22w15rY6/5ZgUQAl+7fwIA8JztfcgGOf56m5ErVQFngAeBnx6dx1LFRV/KxHljPTA0FXGzJkYemlhGyfJQtGRvo6LtyZ9t139MPn72UApvGAH+7YGTcn47etHj21EHUZYj82Uc8VMa1yI4FtvjOLZYQTZh4MhcGTFdxfN29EHXFBi6ive+fC80RQnrHNYjEK9lm+F7j07D4wJ7hjMY603C8A0tNFXa0bdi9FWwaulnJ5ct3HN0EQqA55812GCbPJCONXm1RFEU1J/uUCBzBf/24BQA4AW7B8Nz0S7BPAqWh/88MAMA+JVzBjtu6Gpqch4e4/jmA5MAgMvO6kdfqrNIWDAPy+G4bb8UVy86Zygya3GCIIgoIXFFEATRAa7HUXCA2x+fAwC84vwRJIzGRriBQ53jcUzlq3CZdE4rWbJ+qeIwJE0dQ5k4FisOdEXBvz8sN8tXnD2I0Zwsyg6iEa1Em1RVge1xHJ4r44nZEkxNxYvOGaqrX1mddse4CJu9SjHkiyP/e8YFXrRnCN96UG6UX7ZvBElDRugCgXMyb+F933y0pbX72bFlXJ4GfuIbH7zkvJHQyeyV54/g0HQRcUNF0pQmCklTQ8LQkInLJpeZuIFMXEfc0PDP9xzHv9x7AgXLxbcekmLtRecMIZcypbufIh33Wq3gCuYxW7Rw15MyivPy80cRMxQoiuJbZSO0MK9HCAGPCyyUHMQMmdJn1D3nm/76PW9HH8b6Eh0JDaAWuXqioOBosQRDU/Are4YQ77CAP5jHbftn4DIpJs8eSm/Yw2stAkOXqbwVRnVfct5wx3UwwfH+9OgC8lUXQ5kYLtra23EDVoIgiKcSElcEQRAd4HgMd05L04FzRjKh2xlQEzCzBRuPnczDYwInlirSYlnXkTR1cA70p/Ra01zGMVNycM9RuaF/5bNGofuF+sEmspVokwqZsvi9R2VE7cV7h9CTqL1P8PVf7h3Hv95/AiXLC+3a12MqX8XJvIV0TMcVuwbCjfL5Yz3Y1pdE3pIW3JmYjkxcRzpWE0H1P3/suwdQdhi+fVzarl+yrRebcvHwGPvSMfzaRWNrmhGsJGgk++hkHvMlB5qq4KXnjYQNP1VV9qZpJUUTqFkj/+cBGSHZ1pfEeZsyoTGG5o/HuAjF7nTBgqmpcDiHrqjoT5uouAy5pIHhbFymagqBn48vAwBefcEm6KrScY+b4BweLcrXv/icYfQkjY4bkgYCMDAruebCMWiK2vX8Zn2XwEu29WLEr9HraH7+5ymwsH/NBZuga8+chqQEQZxZkLgiCILogOWqix9Py83nNReOQUCEm9tg0zdXsjCdtwABjGTj695pdxnHbQdmwAVw0dZejPYkoPkb8FiYBsZxcrmKhZKNuZKDhZKN+bL/tWRjoewgX3WxazCNJ2ZLUBXgNc/eBEAJ7/6P+E5vwUa1npSpIR1EhnyRdHCmiJmCHUZxXnH+KDRNDTfKmbiBD/zqeUjotX5E65FLmig7VRzxhcFvXLwZgBJuoLU6R7tWapqCuqDgeF6wexC9SbOh4aeuKnDc1mrCVgqAX794M7hAKCY1v8mrbC4rBe9oTxxF28PugTRySWl57XIOzbc51zUFzE8jfdZYD3YOpOH5vaM6wayLKCmQ158C0XGkqT4Ct6knjou39aJku11H1gJ+7cIxcME7jjTVpyemYhquPGcYeb8/F0EQxOkGiSuCIIgNEEKgUPWQMDXYnjRW+NmxJVSYgv6Uieft6MdM0Qrv9AdiKBXTwx5VG+F6Ag/4kY1XnD8Kj3GkY6bv7Fark/q9L92/4VhPzEq3wQu39mIwE0fBckLh97tX7PT7F8WRjeuhmErHmpsD/M1/PYnvPTYd/vyyfSOwGWsUG4oSuvJtRC5phI5+W3sTOHc0i6mCFW6gVVWm8bVa0xRErurn53HR0MzV0FRw4bU0v3r3uXRMxy/tGsBcyQqFi67K1MCepIGEoSGXMDCQicFyOYazNXOMmFoTEoamwvZTRF/qz09TO48MxeoiNs/a3INNuQSm8tWOxUa9KL76vBEIAWiq2vF49eJqU08c+8Z6MFWwOhZ/9bVVL9g9BFOXEclOI3UEQRBPJSSuCIIg6nAZh64qqDgM+aqLsu0hX3WRt1wkdA0u46i6PKwXes62HBRFNhM21MbI1VolUi6TEagTS1WcWKzgxFIFj07mka+6iBsqLtiSw1LFQcKU4/SlTIz2xDGVtxDTVQykY74DYKz2fcpENmHgXV97OHyfy3b2w/YYTL3m6peJ67h4Ww6jPcmW1qM/XeuPc85IBv3pGE7mK+ExqkFNU4tFTbk6W/DLz+qDx0VDipdMuwO4ENBa6LOSrTOpGEjHsGc4g6mCFda/AdKxr1k/Z+E7NMYNDaqioOx40OoEz2Vn9fuCoBZZUxQFY7kEEqaGdExvqY4osNIHpLlI2faQjDV3e2yF+nS4XzqrHy7j0LTOxUZ9uukVuwbgMA5DU1dFoDqZ3xVnD0qnRHSexlcvyn757AG/LYDaIDIJgiBOF0hcEcQGWK6sR4mqKaHHODRViazPhce4f6c+uuLuqsNaSvFqlWbF/91wYrGC/rQZSY8bxgVOLlfBOEfR9lCoelAVBQ5jqDoMqt8TKBsz4HgccUNDXyqGI/OyPuWirTlUHIa4qYZrFmwGS5aLQzNFTCxVML5YxcRSBScWK5guWE03+wDwrDEp1hjn6ElIYaNrKv7ff7sIMwULm3sT61476ZgebuZlepeHHQOpBnHQqhAC0NB89KKtvXA8DrMuLVBrs6YpWyeuLticQ8nykInpSPvnUlXgR67WHo8LAcU/lnrDiAu29MiokKIgl6y9j64qKNueNJwQHKqignEOLuR8lioOmBDSza5uvGeN9cDx5Oe1PhK2pa81YboSwxeRC2WGXZl0R2MAaHAOPH8si0LVRTZuhGvYLkETbEA2X55crmLPcLrjvk31IurcTVlYLkPCVJGKdfY7JTDFAICzhzJYrjgY7lk/zZYgCOJUQeLqNGShZIMLoD9lRtKU0HIZ5oo2BtKxrjfMjscxW7Qwllt/g9cOh6YLGMzE0RtBB3nH43h8uoDdw5nIxMbjUwVoqorzN/d0PRbnAo+dLGCkJ47hbGvpYhtxcKYIx+O4cGtvJOOVbA9PzhSxYyCNnmRnfW7qmS1YOJm38Kyxnsiu54nFKkq2h72j2Yb/41yg6kpBxIRA1WFwGIfrcWzKJZreOc9XXRycLsLjAqamhr2MYpqGvlyjPXZwTRUtFxNLMrVt70gGhaqLbf3JVY58t+6fwa37Z5oeR9LUsKU3ic29CbiM40dPzAMA9oxkMFOwMNabwGCm9v6GriBhaht+7uqjJClTR9FxG2y+pcht/TzUi6s9wxksVx2kYjpSdRt5XVXgeBxcCKiKgorjQfHfQ95IkNE6IYBKnXnG1r4ECo6HHYO1a0P1Hfmm8xZ0TQXnPDzm4DnSIILDY4BSd0p3DKSwVHHQl5J1T+E6+I150zEdSVPDYtnBcDYORfFrwPw1G8rEcGS2Zv++ayiNuZKF0Z7VzXk7YcdACktlB7mk2XBu2+WoL+wBoDepY9liODuX6fjzVbRq10zVYYjrKvq7mF/9Od7en8J82cbWvmTHYujgdDH83vE4BNa3ricIgjiVkLg6zWBc4MnZUmg3O9ab7FpkzRVtPDKZRzZhYFtfEsPZeMfpGeOLZcyXHAykY5GIF8tlWKy44EAk4mqp4qBsMRlJiGB+HuO+XXbXQwEASo60ts65G7uztQLnAmXbWzMK0glFy8Vy1YXHWzMA2IiTeQv5qgPb45FEw4LmrroOHJkrwfY4VAWwXB424g0+LQ4TYIJDEQpSMb3phrZQdcAEx1hORiMYFyhYLmaLNpZmXCxXXCxXHCxVXCxVHCyWHcwULADAUFzA9hjS8RjGemvudntGalGJXNLA1t4kNvclsaU3EQqqvpQZioaTy9VQXG3uTSCbMLBnJNMQ7dPV1uqaEoaGqn99LVYc7BxINXy2VEUKnorjwWUCSVMDFwJCAFWXhc2AkzEdtsvA6iJSQxlpDb9zMNXwOylmqJjOW7BdDpdzJA0NlsfD/lyMyefIqFRtrnnLxVhfGqM9tRsNMV3FrqEMFst2GB3zOMA5RyZhQFNkil7J9jBbtBrE30A6BijA5r5Ew/zGcgkMZ2INzXLrzRrqhVOu4YaCwFAmgV1D6UhuJl24pRcMAtv7U11FXXYN1q6vxYqL7YMZjHZxs+aynf34yZEFXLV3GItlG1v7kw3plu2yY6AW2as6MnK6c6DzSN1/f95WvP87+3H5Wf0o2A7OGcliOEviiiCI0xMSV6cZyxUH8yUHuYSBhZKDuZLji6wE+pLtiyzupzw5LgPiBh47mcdUvopt/SkMpmNtjce5wELZxtG5MvZtygIRiJdC1cXBqSIu2pbreiwAWCzZuO/4Irb0Jxo2XZ1StDw8Pl1Eb9LABRFEhpbLDn50aBZX7h3Gtv5U9/OzPb9Wx8Nztvd1nXonhMCx+TK++cAk+lKypqcbLJfhscll3HN0EXuGszB1FYwLMC7AhQijHUwIVGyGsiNTt1RVwaaeBHJNVO3J5Sq+et8JPHtzDueMZqD5PYxUv9Fq0pT1MwCQ8dfjxGIFJctdJa48xvGzY4v455+OI1+VQqpguS2L1Wf1C5i6ir2j2dC1DgBeum8UEAJD2URDBGUtRnviss6q7GCrL8JWbr41VUHZZigZnowCQaaHeUxA+GvIhcDvXrED//TT4/idy3dgMGNi+0Djdab7KX1VhyFmaGF/LSgyMjeUicHjAtMFabu+eySNXUNpjOUSME0Vu4czq0w6zhpMI5cwETc0OEzWw1iuvMFhaPKcJwwNmqrA1DQcmy/jl3rl52r3cKZB6CiKgpGeOEZ61hcLvSkTm3sT4AL4jYvGMFu0sWMghb0jWQw2uW7r32M9F7xf3j2IF+8dwtbeJPrTMZy7Kdv1jZr/+5sX4JZHpvHLuweweyiz4bFtxBuetxUTiyXs9I6jJ2FgW3+qqxtwH/rVffinnxzHxdtz2NqfxM7BzoUQAOwd7cGfv/JcAMBAJoazBtNdreFvXLwZAkA2rmMkm4g0c4IgCCJqSFydZhyYKuDdX38YDuO4aGsvnrujD2cNpjBXtDGYia26470Ry1UXN9x2CPccXcS2viR+6ewBXLA5h+WKi+FsHFv6kuhNGi2NV7Bc/L8fHMadT8wjZmj4tYs2d3WsQgh8f/80/s93HsOzNvfg22/7pa7Gqzgebrz9Cdz62Azmyzauf/W+rsYDgAfGl/CBf9+PpKnh5c8a7epus8c4PnvnEXzpp+O49+gSvvH7z+96fodni/iL7x2E7XFcuXcI52/OdTVevurig/++H/uniihaHj7/P5+z4WsYl/UvzTZ3s0UL7/3mYwBkVOGqc0fAOAfjAgJSGHAhv+dciipdVVC0POiKukpcVRwPn/vREdz++Cxuf3wWb3r+dpRthrLtoeT/Kzu1n8u2F7q0/fZl2/D+V5/XcK0vVVx89kdH8eRsqeF9FMhoRi5pIJc0kfO/70uZ6EvF0JcykTIAMf4Adg6mVwl5VQEGMvEwxdBlPBR/LuNSEAGwXQZPyPm97YW74Hgce0czTWt6EoaG/rQJDoFkTJM24J5AT0KT7mkKENM1bMolsHMojcG03NSujFKnYzqetSUXjlmyPOianFtMlwJICIGhbAzZuAHb4/jzV54r5zaSbZrOmjR1JPta+3OyZzSDP33ZblQO34dt/d1tuhVFgaYAb3jeNkwXLJw9JKNg3Wy8E4aGNz9/ByoOw/aBVCQR8Eu290HXFIz1JrsWVoB0oXzZvmEsHTyOPcOZrmsP+9MmfunsAQxmzFVit1P2jWXhMYG9o92LU12T0VJT1bBrKB3J/AiCIJ4qSFydRtgew9/88DCKfv7/T44s4CdHFqCpCvZtymLfWA8u3JLD7pEMxnKtiazbHpvGPUelq9nxxQqO3zOOf75nHLuH07h4ay+es7MPe0cy2NybbLjz3oyfHlnAnX7q0vcene5aXC1XXXz8ewcBAA9P5Fvua7MWh6aLuPUxWd/ypZ+Mdy2uqg7D3/7oCABZQ3BioYJdw5mOx5vKW/jST8cBAA+cWO5qboAUa//39idD8fDIZL5rcfXQ+DL2T8n6htsfn0XZ9uAxAY9zOIyHUSfHkyYajsdRtj3EDQ3njWUbxKcQAl++Zzz8+XuPTcNjArbHYXsMVZfBdjmqLoPlyp+rjv/VZbj8rAH8zRsuahAHR+bLuO1ArYbpC3cda/nYvvngJK67ak9DHdl3H53Ck7Ml6KqCd7/sHAxlYsglTCT86JeArCGqj7Qp/s8ly4anyFS5lah+f6PFsgNVUWAawRgy7U33C4VGc3GkYwYUBZhcroJxgZGe5nflt/anMNabhBBi3c3lfMnGUsXB9oFU08gfIAVWQLO6OkVRwuhU3NBCM4LRCIRB3FCRNHRUAAyko8m31TUFfSkTm/uSXUc0VFWaTiRMrWkErBM8JtCbjGFnnbFIN2hqzXkvG0EtmBBAJqFjtCcRmXDRVGkEk4p1v81QFQUpU6b1RjEeQRDEU8kp/y1100034S//8i8xNTWF8847DzfeeCOuuOKKNZ9/xx134LrrrsNjjz2GTZs24U/+5E/w1re+9Rc446eO7z4yjZ8cXoAC4H9evh3LFRf3HV/EiaUqHprI46GJPL58zzh2DqZw4ZZeXHnuEJ67o3/NyNNS2cZf/ecTAIDn7ejDvrEe3HN0AY9NFnBopoRDMyX8y30nsHckg8t3DeA1z96Es9cwgrBcho/fejD8OdjQd8MX7zqKQl0h9VzRxlCHdQOcC3zse4+HPw9FkI//7w+fxM98YQoAh+fLHYsrIQT+6rZDDY8tlZ2u6sx+/OQ8fnhoLvz5iZlS+F5CAAIySsKF3NRzIcD8SJHrre75Y7sMH7u1toaKAvy/HzyBqsNRdjwphjyGqiPFkeVyWL4w4gL481ftxUvOGw1ff2SujH+4+3j488llC//40+Noldv2z+COQ3O46txhAPIc/+X3DsLym8FetDWHlKkj5ZsUJE0N6ZiBpCkjOamYjmxc9m563zcfxXLVxb8/fBL//dJtAID5oo2/vv1JALLx7FguAVUBqh6DKzhUSJHBhXSfC/pNcQ4YpoKYZmLGf85KYrqKswZTsgmwKjfqDuMQHIibamjZXh/tS5rahq6PrZhR9CQMbOlNRiYMAGDHQBqGqkaSihXTNWzuS2A+gnkFbB9IwfV4JMIFkMYTrZiHtMpAxoSuKRvewGoVTVWwuTeF5lYp7ZOO6xjLJSI1idjen4rMcdTUVZw9nEE2fsq3LARBEBtySn9T3XzzzXjHO96Bm266Cc9//vPxmc98Bi972cuwf/9+bN26ddXzjx49ipe//OX43d/9XXzpS1/CXXfdhWuvvRaDg4P49V//9VNwBNHx5GwRH/6PAwCAK/cO4xXPGoXlMrzqglFMLFbwwIk8HjqxjCPzZRyek/++9vMJjOUSuOJsKYyet7MPqr9pcz2G933zUUwXLPQkDPzhlWfD0FS8YPcgZgsWfnZsEfceXcLRhTL2TxWxf6qIL951DBdty+HVzx7DNRdsQsrfCAgh8OH/2I8jczUXrROLldUH0Qb3HVvEZ390tOGx44uVjsXV5358BD89UhNCMwULLut8s3V4toSPfffxhseOL5TXePbGfOfhk/jmg5MNjz06mcc5oxnYLoflcTgeg8MEbNd3uKv7vidh4JfPHgjP71zRxvu/LdPtkqaGisNw6/5pTBcsOJ6MMgVfXY/DZRwOk+lp0rVN4Dk5BS9hHIYhz/Envn8QB6aKMDVVCgEBfPqOIy0f47u//gjOH8thUy6Biu3hj7/2EKouw7a+JJ69pQdPzpaRNDXEdA0xQ0XCUBEzNMQNFXHd/2roiBsqfvD4LH56ZBE3fP8grtw7BEVR8A8/OYY7Ds1BAfCRa/aFURxAChxVAZiQzVlNv6+RxwXiuoqrzxvGV++bwL/cewL//dJtcD2O93zjEcyVbPQmDfz+C8/CplxSpsRBChzNT+OTzWyDtDkVQkjh6TguvvdY87VQFAWjPYmGxzZKjeq2vi3A0NSua2ZWErUz26ZcAg9GOF435gvNiOpcBCRNPZK2AfVEaehgaCo293ZmL78WUa9hFG6NBEEQvwhOqbi64YYb8OY3vxlvectbAAA33ngjbr31Vnz605/GRz/60VXP/9u//Vts3boVN954IwBg7969uO+++/CJT3zijBRXy7ZMr3t4soiv3HsCJdvDYDqG977yHGzvT8Px06fOH8vhhecMo2x7OLZQxk8OL+BnxxZxcLqIyeUq/uXeE/iXe09gKBPDi/cOYcdACt968CQeO1kAALz9RbvwXN/swPZktOH5Zw+gbHs4MFXADw/O4a7DC5jOW/jZ0SX87OgSPnzLAbxwzyAu2JLDbftncO+xJQDAb1w8hq/dP4mT+Sr+/eGTEH5EBJBfOZcRE+k+Jvz/BwRk9IQxjsNzZXz1vhOwPY49wxmYuopHJvP4xgOTODZfhqiLtACojSH+//buPSyqOv8D+PvMMAyDMKNIMNw0QiRNjbykKInmKpa1uvbzWhZtN3JTk1ztpmj7s2gfq2e7+KvWy1qrprteWy01L7krSGkQqIjJCigXUVQYU2Bkvr8/Ro6MXGUOM8K8X88zD8zhe858zxs+PHw4lxGwQKD6WjWyiiWUHswHJAkHTpZi9/ESAMCEfsHYnF4Ac7VA0jfH5TuhWSzX53fz58L6B7mHmwp+eg/4eGqQXXwZ6w+fhqniGvz1Wgy40wf/yijCquQ87D9xHtcsN06Pq3lcu+l5UCcdhobfAYOnBqn/LcXWnwthEdYjJBd/rUJGQRmmrfjhln5ewv28MC2qK86bKrH2h3ycu1wFb60bEkZ1x6Kvj6HwUgUKLxU3e3vbTGqcX3UYo3sF4NsjN04fffaBUOjc1fjn4TNwV6usp4Vp1NC5W08P89S4QedubYY83d3gqVHji4N5KCqrQPyXhzHqHn+sO3Qapy9chbubCgse7Yk+wR1x/nIlJMl61zt3tRqSBLlRsT4kqK83SfeH+mDiZweRVWzC/247hrzSK/guy/o9Ht83CL/rGyyvW/Ox5r2R1Nev2wKszZWbSkLnDu745+EzyCwow3s7s7Hr2FkcLzZBkoC5oyMQGdKp2TcEqDmYocRt5YmIiKh9cVpzVVVVhcOHD+PVV1+1WT5q1CgkJyfXu05KSgpGjRplsyw2NhbLly+H2WyGRlP3P1uVlZWorLzxBoTl5daGw2w2w2w227sbLWY2m3HovISvf8qQl3W7owM+nNwHQXotzGbr7aQ91ICHWgV4qABvDcJ8dXggrBMqrllw7nIl9mefx57sc/gpvwwlpkqs/eG0vD2tmwpvPhyBif2CISzVuGYB1AA6aCR00LjB19MNXTt54MHunXG1qhqZBSZ8c7QYu4+fQ+mvVdieWYztmdY/1tWShBdjQvH8A6HY+FMBKswWvLQmza4M7g3W4+Mp92LJzpPILLCe8lj7Gp3GqYFTtkeWJvcPwpsPd8ePuReQW3oFy/9zqoF1m+fOzp5YOvVeHCkw4V8ZRSi4dBUFl642a928C1eQnFNqs2xExB1Y8j+9sObH08goKLPdG5X1zVDd1BLcVCq4yZ9br90pKqvALyWXsWDLjUMlft5afDChNwbc2QnnyytQUHYV7moVNG4qeLip4K5WQetmfbjXeni4qZFTYsL/ff9fpJ66iNRT1sZZJQHxQ0MxY1goBIBJ/QIBQL5ZxfUbylmP4kCSmwxJkjCgqx5PrDyMjIIyed+8Pdzw9rieeCCsEyRJQkcP2yM5jemk88LjA4KxMiUfy/+TKy9/7L5ALHzkbqhhuXF2XM1HYf35hsV66+4a1yxAcEctort1xv5fSvHRHuupgFo3FV5/KALj7w1AdfU1VN/i3fFrfn848/dIW8Xs7McM7cP8Wo7Z2Y8Z2kfp/JT+Pkii5rwaByssLERQUBAOHDiAwYMHy8vffvttrFq1CtnZ2XXW6d69O+Li4vD666/Ly5KTkzFkyBAUFhYiICCgzjoLFy7EokWL6ixfs2YNPD2VPQ3iVh2/JGFbvgoBngLd9AJ9fQVa+PZTqKoGsi5JOHJRQkU1EOgpMNBPwKcFZ2ZYBHDKBPx0XoVLVUCgJzDgDgv8rv9tvLtAwtGLqut/XFvvFFfzh7fN5zctAwAVAA83oGdHgd4+AioJKLoCbMtX4fqlNPJ6dT6vtR35yhMJMLgDA3wtCLl+JtTJMuCHc9evaak1F1V9c7v+0WwBLpuBK9es2ws3CNzX2fr9qLYAaaUSrlYD6uvv06O6vu2ah7rW5wBQ+CuQY5IgBNBJC9zXWSDccKPUKq//Ia++vm5Tl3ZcNgP7ilTIuwx4uQFheoEBdwho7bik4fRlYGeB9TQ3Px0w0M8C/+b3P3VkXZSwt0iCpxvQxUtgkJ+Apx3/vqmsBtb9V4WKasBXC/S/w4IudpztVnIV2JSrgpsKCO5gnZ9BofcvIyIiorbpypUrmDp1KsrKyqDX6+3entOvDr35guGm7hhX3/j6ltd47bXXkJCQID8vLy9HSEgIRo0apUiALWU2m4FduzBjwoP1HnFriXGKbKVpD7fCNp+5hbFmsxm7du3CyJEjFcuuKY865FUaN1HBbdVk+NVLIxTL8GEAryiypRt+p/D24hTcljN+DtsLZmc/Zmgf5tdyzM5+zNA+SudXc1abUpzWXPn6+kKtVqO42PYakZKSEvj7+9e7jtForHe8m5sbOnfuXO86Wq0WWm3dwzcajea2+IG+XebRFjE7+zFD+zHDlmN29mOG9mF+Lcfs7McM7aNUfkp/D5z2Tnzu7u7o168fdu3aZbN8165dNqcJ1hYVFVVn/M6dO9G/f3/+cBIRERERkVM59W3OExISsGzZMqxYsQJZWVmYPXs28vPz5feteu211/Dkk0/K4+Pj45GXl4eEhARkZWVhxYoVWL58OebMmeOsXSAiIiIiIgLg5GuuJk2ahNLSUrz11lsoKipCr169sH37dnTtan2Tz6KiIuTn37h7XGhoKLZv347Zs2fjk08+QWBgID788MM2eRt2IiIiIiJqX5x+Q4vp06dj+vTp9X7tb3/7W51lMTEx+Omnn1p5VkRERERERLfGqacFEhERERERtRdsroiIiIiIiBTA5oqIiIiIiEgBbK6IiIiIiIgUwOaKiIiIiIhIAWyuiIiIiIiIFMDmioiIiIiISAFsroiIiIiIiBTA5oqIiIiIiEgBbK6IiIiIiIgUwOaKiIiIiIhIAWyuiIiIiIiIFMDmioiIiIiISAFuzp6AowkhAADl5eVOnYfZbMaVK1dQXl4OjUbj1Lm0NczOfszQfsyw5Zid/ZihfZhfyzE7+zFD+yidX01PUNMj2MvlmiuTyQQACAkJcfJMiIiIiIjodmAymWAwGOzejiSUatPaCIvFgsLCQnh7e0OSJKfNo7y8HCEhITh9+jT0er3T5tEWMTv7MUP7McOWY3b2Y4b2YX4tx+zsxwzto3R+QgiYTCYEBgZCpbL/iimXO3KlUqkQHBzs7GnI9Ho9C6uFmJ39mKH9mGHLMTv7MUP7ML+WY3b2Y4b2UTI/JY5Y1eANLYiIiIiIiBTA5oqIiIiIiEgBbK6cRKvVIjExEVqt1tlTaXOYnf2Yof2YYcsxO/sxQ/swv5ZjdvZjhva53fNzuRtaEBERERERtQYeuSIiIiIiIlIAmysiIiIiIiIFsLkiIiIiIiJSAJsrIiIiIiIiBbC5quWdd97BgAED4O3tDT8/P4wbNw7Z2dk2Y4QQWLhwIQIDA6HT6TBs2DAcPXpU/vqFCxcwY8YMREREwNPTE126dMHMmTNRVlZms52LFy9i2rRpMBgMMBgMmDZtGi5dutTkHDMzMxETEwOdToegoCC89dZbqH1PkqKiIkydOhURERFQqVR4+eWX7cqkudpDdvv27YMkSXUex48fty+cZmoPGQLAJ598gh49ekCn0yEiIgJffPFFy0O5RY7McPHixRg8eDA8PT3RsWPHZs+RNdx62blSDbdWhoDzathR+eXm5uKZZ55BaGgodDodwsLCkJiYiKqqqibn6Or125rZuUr9tmaGQPuvXwD47W9/iy5dusDDwwMBAQGYNm0aCgsLm5yjw+pXkCw2NlasXLlSHDlyRKSnp4sxY8aILl26iMuXL8tjkpKShLe3t9iwYYPIzMwUkyZNEgEBAaK8vFwIIURmZqYYP3682Lp1qzh58qTYvXu3CA8PF4899pjNa40ePVr06tVLJCcni+TkZNGrVy/xyCOPNDq/srIy4e/vLyZPniwyMzPFhg0bhLe3t1iyZIk85tSpU2LmzJli1apVIjIyUsyaNUu5gBrRHrLbu3evACCys7NFUVGR/Lh27ZqCSTWsPWS4dOlS4e3tLb766iuRk5Mj1q5dK7y8vMTWrVsVTKphjsxwwYIF4v333xcJCQnCYDA0a36sYavWys6Vari1MnRmDTsqv2+++UbExcWJHTt2iJycHLFlyxbh5+cnXnnllUbnx/pt3excpX5bM0NXqF8hhHj//fdFSkqKyM3NFQcOHBBRUVEiKiqq0fk5sn7ZXDWipKREABDff/+9EEIIi8UijEajSEpKksdUVFQIg8EgPv300wa3s379euHu7i7MZrMQQohjx44JAOLgwYPymJSUFAFAHD9+vMHtLF26VBgMBlFRUSEve+edd0RgYKCwWCx1xsfExDjsF/vN2mJ2Nb/YL1682KJ9VlpbzDAqKkrMmTPHZr1Zs2aJIUOG3MKeK6e1Mqxt5cqVzf7jljVsS+nsXKWGa1M6w9uphh2RX40///nPIjQ0tNH5sH7rp1R2rli/NZTK0FXrd8uWLUKSJFFVVdXgGEfWL08LbETNYUgfHx8AwKlTp1BcXIxRo0bJY7RaLWJiYpCcnNzodvR6Pdzc3AAAKSkpMBgMGDhwoDxm0KBBMBgMjW4nJSUFMTExNm+aFhsbi8LCQuTm5rZoH1tLW87uvvvuQ0BAAEaMGIG9e/c2f6cV1hYzrKyshIeHh816Op0OP/zwA8xmczP3XDmtlWFLsYZbjjXsmAxvpxp2ZH5lZWXy6zSE9dvwGCWzc8X6VSpDV6zfCxcuYPXq1Rg8eDA0Gk2D23Fk/bK5aoAQAgkJCYiOjkavXr0AAMXFxQAAf39/m7H+/v7y125WWlqKP/3pT3jhhRfkZcXFxfDz86sz1s/Pr8Ht1KxX32vXntvtoK1mFxAQgM8//xwbNmzAxo0bERERgREjRmD//v1N7bLi2mqGsbGxWLZsGQ4fPgwhBA4dOoQVK1bAbDbj/PnzTe22olozw5ZiDbcca9gxGd4uNezI/HJycvDRRx8hPj6+0TmxfutSMjtXrV8lM3Sl+p03bx46dOiAzp07Iz8/H1u2bGl0To6sXzZXDXjppZeQkZGBtWvX1vmaJEk2z4UQdZYBQHl5OcaMGYOePXsiMTGx0W3cvJ177rkHXl5e8PLywkMPPdToaze0PWdpq9lFRETgueeeQ9++fREVFYWlS5dizJgxWLJkSXN2W1FtNcP58+fjoYcewqBBg6DRaDB27FjExcUBANRqdVO7rajWzrAprGHHZ+dKNdyUtl7DjsqvsLAQo0ePxoQJE/Dss8/Ky1m/js/OFetX6QxdqX7/+Mc/Ii0tDTt37oRarcaTTz4p5+Hs+rXvHIN2asaMGdi6dSv279+P4OBgebnRaARg7XADAgLk5SUlJXW6YZPJhNGjR8PLywubNm2yOVRpNBpx9uzZOq977tw5eTvbt2+XD+HqdDp5vZu765KSEgB1/xPgLO0tu0GDBuHvf/970zuuoLacoU6nw4oVK/DZZ5/h7Nmz8n8ivb294evr27JAWqC1M2wO1vDtkV17rOHmaMs17Kj8CgsLMXz4cERFReHzzz+3+Rrr9/bIrj3Xb2tk6Er16+vrC19fX3Tv3h09evRASEgIDh48iKioKOfXb4uu1GqnLBaL+MMf/iACAwPFiRMn6v260WgU7777rryssrKyzsV4ZWVlYtCgQSImJkb8+uuvdbZTc0OB1NRUednBgwebdUOBjh07isrKSnlZUlLSbXExbXvLrsZjjz0mhg8f3vCOK6i9Zjh06FAxZcqUhndcQY7KsLZbvaGAq9dwba2ZXY32WMO1OSJDR9WwI/M7c+aMCA8PF5MnT2723ehYv1aOyK5Ge61fR2bYHuv3Zvn5+QKA2Lt3b4NjHFm/bK5qefHFF4XBYBD79u2zuQ3olStX5DFJSUnCYDCIjRs3iszMTDFlyhSb20iWl5eLgQMHit69e4uTJ082eDvR0aNHiz59+oiUlBSRkpIievfu3eStsC9duiT8/f3FlClTRGZmpti4caPQ6/U2t5EUQoi0tDSRlpYm+vXrJ6ZOnSrS0tLE0aNHFUyqrvaQ3QcffCA2bdokTpw4IY4cOSJeffVVAUBs2LBB4bTq1x4yzM7OFl9++aU4ceKESE1NFZMmTRI+Pj7i1KlTyobVAEdmmJeXJ9LS0sSiRYuEl5eXXHcmk6nB+bGGrVorO1eq4dbK0Jk17Kj8CgoKRLdu3cSDDz4ozpw5YzOmMazf1s3OVeq3NTN0hfpNTU0VH330kUhLSxO5ubliz549Ijo6WoSFhdncCfBmjqxfNle1AKj3sXLlSnmMxWIRiYmJwmg0Cq1WK4YOHSoyMzPlr9fcSrS+R+0f7tLSUvH4448Lb29v4e3tLR5//PFm3X40IyNDPPDAA0Kr1Qqj0SgWLlxYp+Ou77W7du1qZzqNaw/ZvfvuuyIsLEx4eHiITp06iejoaLFt2zYl4mmW9pDhsWPHRGRkpNDpdEKv14uxY8c2ejRMaY7M8Kmnnqp3TGP/OROCNSxE62XnSjXcWhk6s4Ydld/KlSsbHNMUV6/f1szOVeq3NTN0hfrNyMgQw4cPFz4+PkKr1Yo777xTxMfHizNnzjQ5R0fVr3R9Q0RERERERGQH3i2QiIiIiIhIAWyuiIiIiIiIFMDmioiIiIiISAFsroiIiIiIiBTA5oqIiIiIiEgBbK6IiIiIiIgUwOaKiIiIiIhIAWyuiIiIiIiIFMDmioiIqJXExcVh3Lhxzp4GERE5CJsrIiK6rUiS1OgjLi7O2VMkIiKql5uzJ0BERFRbUVGR/Pm6deuwYMECZGdny8t0Op0zpkVERNQkHrkiIqLbitFolB8GgwGSJMnPNRoN4uPjERwcDE9PT/Tu3Rtr1661WX/YsGGYOXMm5s6dCx8fHxiNRixcuNBmzPHjxxEdHQ0PDw/07NkT3333HSRJwubNm+UxycnJiIyMhIeHB/r374/NmzdDkiSkp6cDAKqrq/HMM88gNDQUOp0OERER+Mtf/tLK6RAR0e2MR66IiKjNqKioQL9+/TBv3jzo9Xps27YN06ZNw1133YWBAwfK41atWoWEhASkpqYiJSUFcXFxGDJkCEaOHAmLxYJx48ahS5cuSE1NhclkwiuvvGLzOiaTCY8++igefvhhrFmzBnl5eXj55ZdtxlgsFgQHB2P9+vXw9fVFcnIynn/+eQQEBGDixImOiIOIiG4zbK6IiKjNCAoKwpw5c+TnM2bMwLfffot//OMfNs1Vnz59kJiYCAAIDw/Hxx9/jN27d2PkyJHYuXMncnJysG/fPhiNRgDA4sWLMXLkSHn91atXQ5Ik/PWvf5WPbhUUFOC5556Tx2g0GixatEh+HhoaiuTkZKxfv57NFRGRi2JzRUREbUZ1dTWSkpKwbt06FBQUoLKyEpWVlejQoYPNuD59+tg8DwgIQElJCQAgOzsbISEhcmMFAPfff7/N+OzsbPTp0wceHh4NjgGATz/9FMuWLUNeXh6uXr2KqqoqREZG2rubRETURvGaKyIiajPee+89fPDBB5g7dy727NmD9PR0xMbGoqqqymacRqOxeS5JEiwWCwBACAFJkhp9nfrGCCFsnq9fvx6zZ8/G73//e+zcuRPp6el4+umn68yFiIhcB49cERFRm/Hvf/8bY8eOxRNPPAHAet3TL7/8gh49ejR7G3fffTfy8/Nx9uxZ+Pv7AwB+/PHHOmNWr16NyspKaLVaAMChQ4fqzGXw4MGYPn26vCwnJ6dF+0VERO0Dj1wREVGb0a1bN+zatQvJycnIysrCCy+8gOLi4lvaxsiRIxEWFoannnoKGRkZOHDgAN544w0AkI9WTZ06FRaLBc8//zyysrKwY8cOLFmyxGZMt27dcOjQIezYsQMnTpzA/Pnz6zRpRETkWthcERFRmzF//nz07dsXsbGxGDZsGIxGI8aNG3dL21Cr1di8eTMuX76MAQMG4Nlnn8Wbb74JAPI1Vnq9Hl9//TXS09MRGRmJN954AwsWLLAZEx8fj/Hjx2PSpEkYOHAgSktLbY5iERGR65HEzSeRExERuZgDBw4gOjoaJ0+eRFhYWL1jVq9ejaeffhplZWV8I2MiIqoXr7kiIiKXs2nTJnh5eSE8PBwnT57ErFmzMGTIEJvG6osvvsBdd92FoKAg/Pzzz5g3bx4mTpzIxoqIiBrE5oqIiFyOyWTC3Llzcfr0afj6+uI3v/kN3nvvPZsxxcXFWLBgAYqLixEQEIAJEyZg8eLFTpoxERG1BTwtkIiIiIiISAG8oQUREREREZEC2FwREREREREpgM0VERERERGRAthcERERERERKYDNFRERERERkQLYXBERERERESmAzRUREREREZEC2FwREREREREp4P8Bwj8kRuuKONAAAAAASUVORK5CYII=", | |
"text/plain": [ | |
"<Figure size 1000x600 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Plot menggunakan Seaborn\n", | |
"plt.figure(figsize=(10, 6))\n", | |
"sns.lineplot(data=df_cleaned, x='Tanggal', y='Total Kasus', label='Total Kasus')\n", | |
"sns.scatterplot(data=df_cleaned[df_cleaned['Outlier']], x='Tanggal', y='Total Kasus', color='red', s=100, label='Outliers')\n", | |
"plt.title('Total Kasus dengan Outliers')\n", | |
"plt.xlabel('Tanggal')\n", | |
"plt.ylabel('Total Kasus')\n", | |
"plt.legend()\n", | |
"plt.grid(True)\n", | |
"plt.show()\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "e4bf2cdf", | |
"metadata": { | |
"id": "e4bf2cdf" | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"\n", | |
"# Contoh DataFrame\n", | |
"data = {\n", | |
" 'Tanggal': pd.date_range(start='1/1/2020', periods=100, freq='D'),\n", | |
" 'Total Kasus': np.random.randint(1, 1000, size=100),\n", | |
" 'Total Kasus per Juta': np.random.random(size=100) * 1000\n", | |
"}\n", | |
"\n", | |
"df_cleaned = pd.DataFrame(data)\n", | |
"\n", | |
"# Memastikan kolom 'Tanggal' bertipe datetime\n", | |
"df_cleaned['Tanggal'] = pd.to_datetime(df_cleaned['Tanggal'])\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "2d441aea", | |
"metadata": { | |
"id": "2d441aea", | |
"outputId": "35a986ee-f069-4932-b9d1-531779585359" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" Tanggal Total Kasus Total Kasus per Juta Outlier\n", | |
"0 2020-01-01 162 650.980058 False\n", | |
"1 2020-01-02 395 224.413701 False\n", | |
"2 2020-01-03 670 593.504566 False\n", | |
"3 2020-01-04 609 665.091274 False\n", | |
"4 2020-01-05 561 685.130952 False\n", | |
"5 2020-01-06 828 938.244901 False\n", | |
"6 2020-01-07 815 113.734228 False\n", | |
"7 2020-01-08 948 293.605160 False\n", | |
"8 2020-01-09 341 957.711964 False\n", | |
"9 2020-01-10 975 169.945605 False\n", | |
"10 2020-01-11 873 949.516616 False\n" | |
] | |
} | |
], | |
"source": [ | |
"# Fungsi untuk mendeteksi outliers menggunakan Z-Score\n", | |
"def detect_outliers_zscore(series, threshold=3):\n", | |
" z_scores = np.abs((series - series.mean()) / series.std())\n", | |
" return z_scores > threshold\n", | |
"\n", | |
"# Deteksi outliers di kolom 'Total Kasus per Juta'\n", | |
"df_cleaned['Outlier'] = detect_outliers_zscore(df_cleaned['Total Kasus'])\n", | |
"\n", | |
"# Menampilkan beberapa baris awal dari DataFrame\n", | |
"print(df_cleaned.head(11))\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "de673804", | |
"metadata": { | |
"id": "de673804", | |
"outputId": "e7874d21-9009-46bf-c6da-5f411a19da70" | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAIhCAYAAADkVCF3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxcVZn//7m1V+/pbJ2EkASBsIRVBEEhIJsE3B1Ufu7o4OCoLOqoKOAyYcSNERxxvi4wIm7jwIwagbCD7EsISYAQspCts/S+1F7398etc+6pW/fWPXetqu7n/XrNa6RT3X27lnPPcz6f5/MoqqqqIAiCIAiCIAiCIAiiJYk0+gIIgiAIgiAIgiAIgnAPFfYEQRAEQRAEQRAE0cJQYU8QBEEQBEEQBEEQLQwV9gRBEARBEARBEATRwlBhTxAEQRAEQRAEQRAtDBX2BEEQBEEQBEEQBNHCUGFPEARBEARBEARBEC0MFfYEQRAEQRAEQRAE0cJQYU8QBEEQBEEQBEEQLQwV9gRBEERdFEWR+r8HH3zQ9metXLkSd955p+frufbaa6Ue98///M81X7/mmmugKAr+6Z/+CeVy2dO1NILFixfjggsuMP23Z555Boqi4JZbbvH1dz744IPSr3FYfPzjH8fixYsbfRkNoVAo4Kc//SlOPvlkdHd3I51O4/DDD8dXvvIVDAwMuP65GzZswLXXXoutW7fW/JvZ87148WJ8/OMfd/37CIIgCP+INfoCCIIgiObm8ccfr/rvb3/723jggQdw//33V339iCOOsP1ZK1euxPvf/368+93v9vMSpVBVFV/4whdw44034itf+Qquu+660K+hVTn++OPx+OOPS73GRLBMTk5ixYoVePTRR/GP//iP+MY3voF0Oo3HH38c3//+93H77bdj9erVWLp0qeOfvWHDBnzzm9/E6aefLnVocscdd6Crq8vFX0EQBEH4DRX2BEEQRF3e/OY3V/337NmzEYlEar7ezBSLRXzyk5/Er3/9a3zve9/DF7/4xUZfUktQKBSgKAq6urpa6vWeylx++eV46KGH8Lvf/Q4f+MAH+NfPOOMMvP/978eJJ56I973vfXjhhRcQjUYDvZbjjjvOt5+lqiqy2SzS6bRvP5MgCGI6QVZ8giAIwjODg4O49NJLsWDBAiQSCRx00EG46qqrkMvl+GMURcHExARuvfVWbt8//fTTAQD79u3DpZdeiiOOOAIdHR2YM2cO3va2t+GRRx7xfG3ZbBbve9/7cPvtt+PnP/95TVG/adMmfOITn8AhhxyCtrY2LFiwAO94xzvw4osvVj2uXC7jO9/5DpYuXYp0Oo2enh4cffTR+Pd//3f+GCt7+LXXXgtFUaq+9sc//hEnnXQSuru70dbWhoMOOgif/OQnPf+9RmT/Pma3//Wvf40rr7wSCxYsQDKZxKZNm0yt+M888ww++MEPYvHixUin01i8eDE+9KEPYdu2bVU/95ZbboGiKHjggQfwT//0T5g1axZmzpyJ9773vdi1a5fU33DLLbdg6dKlSCaTOPzww/Ff//Vfpo/L5/P4zne+g8MOOwzJZBKzZ8/GJz7xCezbt6/qcayd4a677sLxxx+PdDqNww47DL/85S9rfuajjz6Kk08+GalUCgsWLMA3vvEN/PznP4eiKFWW9d///vc455xzMG/evCpr/MTERNXP+/jHP46Ojg5s2rQJK1asQEdHBxYuXIgrr7yy6vNiRn9/P375y1/i3HPPrSrqGYceeij+5V/+BevXr69qebFqXxGt9Lfccgv+4R/+AYB2SMA+o/XaOsys+KOjo/jiF7+IJUuWIJFIYMGCBbjssstqngfWKnPzzTfj8MMPRzKZxK233goA+OlPf4pjjjkGHR0d6OzsxGGHHYavfe1rdZ8bgiCI6Q4p9gRBEIQnstkszjjjDLz22mv45je/iaOPPhqPPPIIrrvuOqxZswZ//etfAWiW/re97W0444wz8I1vfAMAuI13cHAQgNb/3tfXh/Hxcdxxxx04/fTTcd999/EDAKeMjY3hvPPOw2OPPYbf//73eN/73lfzmF27dmHmzJn4t3/7N8yePRuDg4O49dZbcdJJJ+H555/nlubrr78e1157Lb7+9a/jtNNOQ6FQwMsvv4zh4WHH1/X444/jAx/4AD7wgQ/g2muvRSqVwrZt22raG6xQVRXFYrHm66VSyfXfx/jqV7+Kk08+GTfffDMikQjmzJmD/v7+mp+7detWLF26FB/84AfR29uL3bt346c//Sne9KY3YcOGDZg1a1bV4z/1qU/h/PPPx+23347t27fjS1/6Ej784Q/b/s233HILPvGJT+Bd73oXfvCDH2BkZATXXnstcrkcIhFdnyiXy3jXu96FRx55BF/+8pdxyimnYNu2bbjmmmtw+umn45lnnqlSg1944QVceeWV+MpXvoK5c+fi5z//OS6++GIcfPDBOO200wAAa9euxdlnn41DDz0Ut956K9ra2nDzzTfjtttuq7nOV199FStWrMBll12G9vZ2vPzyy/jud7+Lp556quZvLBQKeOc734mLL74YV155JR5++GF8+9vfRnd3N66++mrL5+KBBx5AsVis28ry7ne/G1/72tewevVq0/e7Feeffz5WrlyJr33ta/jJT36C448/HgDwhje8QfpnTE5OYvny5dixYwe+9rWv4eijj8b69etx9dVX48UXX8S9995bdcB155134pFHHsHVV1+Nvr4+zJkzB7/73e9w6aWX4nOf+xy+//3vIxKJYNOmTdiwYYP0dRAEQUxLVIIgCIJwwMc+9jG1vb2d//fNN9+sAlD/8Ic/VD3uu9/9rgpAveeee/jX2tvb1Y997GO2v6NYLKqFQkE988wz1fe85z1V/wZAveaaa2x/BgD+f//5n/9p+3jxd+fzefWQQw5RL7/8cv71Cy64QD322GPrfu/HPvYxddGiRTVfv+aaa1Txlvv9739fBaAODw9LXxdj0aJFVX+b2f/96le/cvz3PfDAAyoA9bTTTqv5HvZvDzzwQN2fOz4+rra3t6v//u//zr/+q1/9SgWgXnrppVWPv/7661UA6u7duy1/ZqlUUufPn68ef/zxarlc5l/funWrGo/Hq57r3/72tyoA9U9/+lPVz3j66adVAOp//Md/8K8tWrRITaVS6rZt2/jXMpmM2tvbq15yySX8a//wD/+gtre3q/v27au6piOOOEIFoG7ZssX0usvlslooFNSHHnpIBaC+8MIL/N8+9rGPmX5eVqxYoS5dutTyuVBVVf23f/s3FYB61113WT4mk8moANTzzjuPf83qM7No0aKqz+Mf//hHy9fZ7L1t/P7rrrtOjUQi6tNPP131uP/+7/9WAairVq2quqbu7m51cHCw6rH//M//rPb09Fj+fQRBEIQ5ZMUnCIIgPHH//fejvb0d73//+6u+ziy69913n9TPufnmm3H88ccjlUohFoshHo/jvvvuw0svveT62k499VT09PTgm9/8JjZt2mT6mGKxiJUrV+KII45AIpFALBZDIpHAq6++WvW7TzzxRLzwwgu49NJLcffdd2N0dNT1db3pTW8CAFx44YX4wx/+gJ07dzr6/re+9a14+umna/7PzKIu+/cxZFXe8fFx/Mu//AsOPvhgxGIxxGIxdHR0YGJiwvTnvvOd76z676OPPhoAaqz7Iq+88gp27dqFiy66qErpXbRoEU455ZSqx/7lL39BT08P3vGOd6BYLPL/O/bYY9HX11eT6H/sscfiwAMP5P+dSqVw6KGHVl3PQw89hLe97W1V7oNIJIILL7yw5lo3b96Miy66CH19fYhGo4jH41i+fDkA1DwfiqLgHe94R83zUe+5cIqx9SMM/vKXv2DZsmU49thjq16Dc88913Sqwtve9jbMmDGj6msnnngihoeH8aEPfQj/+7//i/3794f4FxAEQbQuVNgTBEEQnhgYGEBfX19NITFnzhzEYjGp8Vs//OEP8U//9E846aST8Kc//QlPPPEEnn76abz97W9HJpNxfW1HH3007r33Xm4R3rhxY81jrrjiCnzjG9/Au9/9bvz5z3/Gk08+iaeffhrHHHNM1e/+6le/iu9///t44okncN5552HmzJk488wz8cwzzzi+rtNOOw133nknisUiPvrRj+KAAw7AsmXL8Nvf/lbq+7u7u3HCCSfU/N/hhx/u+u9jzJs3T+oaLrroItx000341Kc+hbvvvhtPPfUUnn76acyePdv0586cObPqv5PJJADUfX3Ze6evr6/m34xf27NnD4aHh5FIJBCPx6v+r7+/v6ZANF4PuybxegYGBjB37tyaxxm/Nj4+jlNPPRVPPvkkvvOd7+DBBx/E008/jf/5n/8x/Rvb2tqQSqVqfnc2m635XSLsIGLLli2Wj2H/tnDhwro/Kwj27NmDtWvX1jz/nZ2dUFW15jUwe6995CMfwS9/+Uts27YN73vf+zBnzhycdNJJWL16dVh/BkEQREtCPfYEQRCEJ2bOnIknn3wSqqpWFfd79+5FsVis6bU247bbbsPpp5+On/70p1VfHxsb83x9b3zjG3Hvvffi7LPPxhlnnIH777+/qq/8tttuw0c/+lGsXLmy6vv279+Pnp4e/t+xWAxXXHEFrrjiCgwPD+Pee+/F1772NZx77rnYvn07L9bMAtDMVMd3vetdeNe73oVcLocnnngC1113HS666CIsXrwYJ598sue/2+nfx5BRekdGRvCXv/wF11xzDb7yla/wr+dyOZ6X4Aes+Dbr8Td+jYXy3XXXXaY/q7Oz09Xv37Nnj+3vvv/++7Fr1y48+OCDXKUH4Cp/oR5nnHEGYrEY7rzzTnzmM58xfQwLzTv77LP515LJpOn70svMezNmzZqFdDptGkLI/l3E6r32iU98Ap/4xCcwMTGBhx9+GNdccw0uuOACbNy4EYsWLfL1mgmCIKYKpNgTBEEQnjjzzDMxPj5elcINgNvCzzzzTP41oyLKUBSFK7iMtWvX4vHHH/flGo8//njcd999yOVyOOOMM/Dyyy/X/d1//etf69rje3p68P73vx+f/exnMTg4yNPRFy9ejL1791YVg/l8Hnfffbflz0omk1i+fDm++93vAgCef/55N3+iJW7+Ppmfqapqzc/9+c9/bhrg55alS5di3rx5+O1vfwtVVfnXt23bhscee6zqsRdccAEGBgZQKpVM3Qxu5rovX74c999/f9XBTLlcxh//+Meqx7EC1fh8/OxnP3P8O+vR19eHT37yk7j77rvx+9//vubfN27ciO9+97s48sgjqwL2Fi9ejLVr11Y99v7778f4+HjV12RcFPW44IIL8Nprr2HmzJmmr4HZxIh6tLe347zzzsNVV12FfD6P9evXu7ougiCI6QAp9gRBEIQnPvrRj+InP/kJPvaxj2Hr1q046qij8Oijj2LlypVYsWIFzjrrLP7Yo446Cg8++CD+/Oc/Y968eejs7MTSpUtxwQUX4Nvf/jauueYaLF++HK+88gq+9a1vYcmSJabp72449thjcd999+HMM8/kyv3hhx+OCy64ALfccgsOO+wwHH300Xj22Wfxve99DwcccEDV97/jHe/AsmXLcMIJJ2D27NnYtm0bbrjhBixatAiHHHIIAOADH/gArr76anzwgx/El770JWSzWfz4xz+uKXavvvpq7NixA2eeeSYOOOAADA8P49///d+r+rL9Qvbvc0JXVxdOO+00fO9738OsWbOwePFiPPTQQ/jFL35h6gJwSyQSwbe//W186lOfwnve8x58+tOfxvDwMK699toaK/4HP/hB/OY3v8GKFSvwhS98ASeeeCLi8Th27NiBBx54AO9617vwnve8x9Hvv+qqq/DnP/8ZZ555Jq666iqk02ncfPPNfHQbS+U/5ZRTMGPGDHzmM5/BNddcg3g8jt/85jd44YUX/HkiBH74wx/ilVdewYc//GE8/PDDeMc73oFkMoknnngC3//+99HZ2Yk//elPVTPsP/KRj+Ab3/gGrr76aixfvhwbNmzATTfdhO7u7qqfvWzZMgDAf/7nf6KzsxOpVApLliwxbVsw47LLLsOf/vQnnHbaabj88stx9NFHo1wu4/XXX8c999yDK6+8EieddFLdn/HpT38a6XQab3nLWzBv3jz09/fjuuuuQ3d3N8+mIAiCIExobHYfQRAE0WoYU/FVVVUHBgbUz3zmM+q8efPUWCymLlq0SP3qV7+qZrPZqsetWbNGfctb3qK2tbWpANTly5erqqqquVxO/eIXv6guWLBATaVS6vHHH6/eeeedpknccJCK/9nPfrbm6y+88II6a9Ysde7cuer69evVoaEh9eKLL1bnzJmjtrW1qW9961vVRx55RF2+fDm/PlVV1R/84AfqKaecos6aNUtNJBLqgQceqF588cXq1q1bq37+qlWr1GOPPVZNp9PqQQcdpN500001qfh/+ctf1PPOO09dsGCBmkgk1Dlz5qgrVqxQH3nkEdu/a9GiRer5559v+m8sAV5MxZf9+1jy/R//+Mean2uWir9jxw71fe97nzpjxgy1s7NTffvb366uW7euJimdpeIbk9JlkvYZP//5z9VDDjlETSQS6qGHHqr+8pe/NH1vFAoF9fvf/756zDHHqKlUSu3o6FAPO+ww9ZJLLlFfffVV2+fQ+Jyoqqo+8sgj6kknnaQmk0m1r69P/dKXvsQnPohTDR577DH15JNPVtva2tTZs2ern/rUp9Tnnnuu5vUw+/yoau3khHrk83n1Jz/5iXrSSSepHR0dajKZVJcuXap++ctfVvfv31/z+Fwup375y19WFy5cqKbTaXX58uXqmjVral4rVVXVG264QV2yZIkajUarrl0mFV9VVXV8fFz9+te/ri5dulRNJBJqd3e3etRRR6mXX3652t/fzx9n9fm89dZb1TPOOEOdO3eumkgk1Pnz56sXXnihunbtWqnnhiAIYrqiqKrgbSMIgiAIgiDqcs4552Dr1q2mYYwEQRAE0QjIik8QBEEQBGHBFVdcgeOOOw4LFy7E4OAgfvOb32D16tX4xS9+0ehLIwiCIAgOFfYEQRAEQRAWlEolXH311ejv74eiKDjiiCPw61//Gh/+8IcbfWkEQRAEwSErPkEQBEEQBEEQBEG0MDTujiAIgiAIgiAIgiBaGCrsCYIgCIIgCIIgCKKFocKeIAiCIAiCIAiCIFoYCs+TpFwuY9euXejs7ISiKI2+HIIgCIIgCIIgCGKKo6oqxsbGMH/+fEQi1ro8FfaS7Nq1CwsXLmz0ZRAEQRAEQRAEQRDTjO3bt+OAAw6w/Hcq7CXp7OwEoD2hXV1dDb4aawqFAu655x6cc845iMfjjb4cwmfo9SW8Qu+hqQu9ttMbev2nNvT6El6h91DrMjo6ioULF/J61Aoq7CVh9vuurq6mL+zb2trQ1dVFH9opCL2+hFfoPTR1odd2ekOv/9SGXl/CK/Qean3s2sEpPI8gCIIgCIIgCIIgWhgq7AmCIAiCIAiCIAiihaHCniAIgiAIgiAIgiBaGCrsCYIgCIIgCIIgCKKFocKeIAiCIAiCIAiCIFoYKuwJgiAIgiAIgiAIooWhwp4gCIIgCIIgCIIgWhgq7AmCIAiCIAiCIAiihaHCniAIgiAIgiAIgiBaGCrsCYIgCIIgCIIgCKKFocKeIAiCIAiCIAiCIFoYKuwJgiAIgiAIgiAIooWhwp4gCIIgCIIgCIIgWpiGFvYPP/ww3vGOd2D+/PlQFAV33nln1b+rqoprr70W8+fPRzqdxumnn47169dXPSaXy+Fzn/scZs2ahfb2drzzne/Ejh07qh4zNDSEj3zkI+ju7kZ3dzc+8pGPYHh4OOC/jiAIgiAIgiAIgiCCp6GF/cTEBI455hjcdNNNpv9+/fXX44c//CFuuukmPP300+jr68PZZ5+NsbEx/pjLLrsMd9xxB373u9/h0Ucfxfj4OC644AKUSiX+mIsuughr1qzBXXfdhbvuugtr1qzBRz7ykcD/PoIgCIIgCIIgCIIImlgjf/l5552H8847z/TfVFXFDTfcgKuuugrvfe97AQC33nor5s6di9tvvx2XXHIJRkZG8Itf/AK//vWvcdZZZwEAbrvtNixcuBD33nsvzj33XLz00ku466678MQTT+Ckk04CAPy///f/cPLJJ+OVV17B0qVLw/ljCYIgCIIgCIIgCCIAGlrY12PLli3o7+/HOeecw7+WTCaxfPlyPPbYY7jkkkvw7LPPolAoVD1m/vz5WLZsGR577DGce+65ePzxx9Hd3c2LegB485vfjO7ubjz22GOWhX0ul0Mul+P/PTo6CgAoFAooFAp+/7m+wa6tma+RcA+9voRX6D00dQnrtd02OIl4RMH8nnSgv4dwBn22pzb0+hJeofdQ6yL7mjVtYd/f3w8AmDt3btXX586di23btvHHJBIJzJgxo+Yx7Pv7+/sxZ86cmp8/Z84c/hgzrrvuOnzzm9+s+fo999yDtrY2Z39MA1i9enWjL4EIEHp9Ca/Qe2jqEuRrmy8B33g2ikQE+NYbS1CUwH5VS1FWgUiTPBf02Z7a0OtLeKXee6iZ1jJCZ3JyUupxTVvYMxTDrkFV1ZqvGTE+xuzxdj/nq1/9Kq644gr+36Ojo1i4cCHOOeccdHV1yV5+6BQKBaxevRpnn3024vF4oy+H8Bl6fQmv0Hto6hLGa7t7JIvsUw8jWwLOPvftSMRouM4N923Cr594HX/6zElYPLO9YddBn+2pDb2+hFfs3kM7hjJ4781P4KITF+KyMw9uwBUSVjDnuB1NW9j39fUB0BT3efPm8a/v3buXq/h9fX3I5/MYGhqqUu337t2LU045hT9mz549NT9/3759NW4AkWQyiWQyWfP1eDzeEgtqq1wn4Q56fQmv0Hto6hLka1tCnv9vJRpFPN6024jQuO/lfRjNFvHElmEc0tfT6Muhz/YUh15fwitW76EN/fsxNFnAY5sH8aW303usmZD9zDftUfuSJUvQ19dXZRfJ5/N46KGHeNH+xje+EfF4vOoxu3fvxrp16/hjTj75ZIyMjOCpp57ij3nyyScxMjLCH0MQBEEQhD2ZvD5xplBUG3glzcPukSwAYPP+iQZfCREE/7tmJ9buGG70ZRAu+L8XdmHN9uFGX0bLkK9MFCuUyg2+EsItDT1qHx8fx6ZNm/h/b9myBWvWrEFvby8OPPBAXHbZZVi5ciUOOeQQHHLIIVi5ciXa2tpw0UUXAQC6u7tx8cUX48orr8TMmTPR29uLL37xizjqqKN4Sv7hhx+Ot7/97fj0pz+Nn/3sZwCAf/zHf8QFF1xAifgEQRAE4YBMQSjsy7T5m8wXMZLRQo0276PCfqqxed84vvC7NXjD7Hbcd+Xpjb4cwgHbByfx+d8+j8Uz2/Dgl85o9OW0BOywtliiQ9tWpaGF/TPPPIMzztA/bKyn/WMf+xhuueUWfPnLX0Ymk8Gll16KoaEhnHTSSbjnnnvQ2dnJv+dHP/oRYrEYLrzwQmQyGZx55pm45ZZbEI1G+WN+85vf4POf/zxPz3/nO9+Jm266KaS/kiAIgiCmBjmhsKfNH9BfUesBYAsp9lOO4cqhzb6xnM0jiWZjeFJ77QbG8zaPJBj5ilKfJ8W+ZWloYX/66adDVa03Boqi4Nprr8W1115r+ZhUKoUbb7wRN954o+Vjent7cdttt3m5VIIgCIKY9lQp9rT5qyrsdwxNIlcsIRmL1vkOopUoFLX3uPi+J1oDVpxmi/TayZKvvN9pbW9dmrbHniAIgiCI5oIK+2p2CYV9WQVeH5AbSUS0BoWKK6VQUnnRQ7QGxRIrUlX+v4n6sDWd8lNaFyrsCYIgCIKQQgzPK5Zp89c/kqn6bwrQm1qIh1eT+WIDr4RwSkFoFcrSoYwUpNi3PlTYE9Oe3zy5Dfe9VDsSkSAIgqhG3CCTgqkn4jOoz35qka8q7MnS3UqI4Z5ZaqWQokA99i0PFfbEtKZ/JIur7liHf779eTqhJAiCsCFLin0VrMe+rysFANhCyfhTCjEgkhT71kJ87TJ0KCNFnree0H64VaHCnpjWjGa11NRMoYRNe8cbfDUEQRDNTaYqFZ82f6zH/pSDZwIANu+n+8hUQixwJnJUHLYS4muXowA9KXQrPh3atipU2BPTGtGe9eLOkQZeCUEQRPMjrplk19R77E95wywAZMWfaojv8QlS7FsKsbDPFmitkoE9Z6WyijI5sloSKuyJaU1O6BFdNwUK+90jGazZPtzoyyAIYoqSoTn2nGyhhKHKrOyT36Ap9vvH8xipzD4nWh+xOCQ7d2tRFZ5HPfZSiLkpYkYB0TpQYU9Ma3KFqVXYf/q/nsF7/uPv2DWcsX8wQRCEQ8QNcnGab/xYf306HsX87hTmdiUBkGo/lSgURcWeisNWQmwVylBhL4V4kEV2/NaECntiWiP2XW3YPdryPaO7hrNQVWDvWK7Rl0IQxBREVC3z03zW8a6KDX9eTwqKomDJrHYAwBbqs58yiMXNZI6s+K0EWfGdI7aeFGjqSUtChT0xrRGt+NlCGa+1eKJxrnIqTYmmBEEEgbhBJsVeU+zndWuJ+EtmdQCgZPyphGhHJsW+tSArvnOqrPi0j2xJqLAnpjXGpNRWt+Ozgwo6aSUIIgiox15nNx91lwYAvGG2pti/Rlb8KUOhKI5MI8W+lahW7Kmwl0F8zigctTWhwp6Y1uQM9qxWTsYvlVU+VzpHCzJBEAGQoVR8Tq1iX7Hik2I/Zagad0eKfUtRLJNi75Q89di3PFTYE9MatthHIwqAxir263aO4PHXBlx/f5WFihR7giACIEeKPWe30GMPCIX9/gmo6vR+bqYKYmFPPfatRb5IPfZOER0qZMVvTaiwJ1qakUzBU+Ads64fMa8LgBagV2rA7E5VVfHRXz6Fj/ziSYxMuhuVJLYV0EkrQRBBkKFUfM5ug2K/sLcNsYiCTKGEPaMUYDoVEBXMSVLsWwpxfSLFXo5ciXrsWx0q7ImWZc9oFm9eeR/+8dfPuv4ZYmGfjkcxmS81JNF4/3gegxN5FMsqhjN5Vz8jR6EnBEEETJUVf5o7g/oNPfbxaAQH9rYBADbvo2T8qYDoSqHCvrWoCs8r0msnQ6FIVvxWhwp7omV5/vUhZAolbNg16vpnMJU7nYjiiPmaat+IPvudwtz5nMvNsrjJnu4bboIggiGTF1Pxp+/GL1soYWBCO4Rlij2g2/E3U4DelKC6x56s+K2E+NqJ6xZhTYEU+5aHCnuiZWGj6bycxLLwvGQ8gqMWdAMA1u10f1Dgll1iYe+yF0y04k/3UCuCIIKhusd++q4ze0Y1tT4Vj6CnLc6/LvbZE61PlRU/R6pvK1Ekxd4xNMe+9Yk1+gIIwi2bK4W920IY0NXxZCyKg2drM4gbotgPiYq9uxuQGA5DJ60EQQRBdSr+9FXs9f76NBRF4V9fUhl5R1b8qYFoR54skGLfStC4O+eIxTwJRK0JKfZEy7K50gufLZZcJxCzxT4Zi+CoAzTFfsOuUZRDtpj6YcWnHnuCIIKkUCpX2e+ns2Kv99enqr5+0CztgJgU+6mBWOiQYt9aiIcyXgSg6QSNu2t9qLAnWhJVVblir6ruFyBWDKfimmKfjEUwniti60C4mzKxsHfbH0899gRBBIlR9ZrOPfZcse8xFPYVxX77UIbW4SmAmKxOPfatRVWPPSn2UuRJIGp5qLAnWpLBiTxGMvpYOLf9U8z2noxFEItGcPi8xgTo+WHFr+6xn74bboIggsG4OZ7OhSufYd9dXdjP6UyiPRFFqazi9cHJRlwa4SN5SsVvWWjcnXNEkYwK+9aECnuiJTEmDrtdtPUee+2joAfohVvY7xohKz5BEM1N1pAsPZ3n2DPFvq87XfV1RVF4nz3Z8VufKit+3n3bHxE++aIQnkeFvRRkxW99qLAnWhJjMJHrJHmeih8FgIYk40/kihie1N0H7lPxKc2UIIjgMCr2xWm88WM99vMMPfYAsIT32VOAXqsjHpKXyqrrg3cifMSDxwz12NtSKqsolUmxb3WosCdaEqNi79W+zhT7IxdoVvx1u0ZCO5kXR92J1+SUPKWZEgQRIEbVazorOlY99gCNvJtKGIsbsuO3DuJrlyPF3hbje50K+9aECnuiJWHBeYysR5WbFfaHzu1EIhbBWLaIbQPh9EfuqCnsvc+xpwWZIAi/MSr203WdyRVL2D+eA6CNuzNyUKWwf20fFfatjjGvZpIC9FoG8eCRrPj2GAWh6Zyh0spQYU+0JDVWfNez37XvS1Ws+PFoBIf3dQLQVPswqFXsvbUVANW9ZQRBEH5QY8Wfpj32e0e1oj4Ri2BGW7zm3w+iHvspg3GkIyn2rUPVHHsqUm0xtnBOZ0dWK0OFPdFyFEtlnjbcmYwB8N6XzhR7ADiy0mcfVjK+mIgPuLeMUXgeQRBBYlybpuvGj9vwu1NQFKXm3xdXFPt9YzmMZQs1/060DsZ76USOFPtWQcwAydCBjC1GxZ72ka0JFfZEy7F9KINCSUUqHsGiWW0AvIy7Y4V9lH8t7GR8NsM+GlGqrskpZMUnCCJIyIqvYTXqjtGVimNWRxIAqfatjvHwigrE1qFasaeJBnYUDE7P6bq+tzpU2BMtB7PhL5nVgXTFQu8+Fb8SnhfXPwpiMn4YNwJmxT+wVzukcFvYV4Xnke2MIAifyRjH3U17xb62v55xEAXoTQmYipmq7BEmqLBvGcTCVFUpVNiOfKlk+G96vloRKuyJloMF5x00q50r7d4Ve/2jcOjcTsSjCkYyBeww2OSDgFnxWZKy+4R/SsUnCCI4mGLP3EXTVdHp5zPszRV7QO+zNwa9Eq0Fe493p7UsBQrPax2K5eqDR7chy9MFYzbTdD24bXWosCdajs2V2cAHzW7np+huFHtVVU2t+IlYBEsrAXpB99kXS2X0j2qbRKbwuM8LICs+QRDBwcJGO1Natsl0XWfsrPiAflBrHM1KtBasuGGF/USOFPtWwRgGR8n49aEe+6kBFfZEy8EV+9mCYu9iwRYXMdGKD4TXZ98/mkVZBRLRCBbM0GydOZeLqXggMF1DrQiCCA5jYW9UxKYL/RJWfH2W/bjlY4jmh+0TetIJAKTYtxKFGsWeCvt60Bz7qQEV9kTLwRSQg2Z18ILcTV+6aMtKCYo9ACwLKRmf2fDn9aQ85wWIBxXUY08QhN+w4LDOpKZeTtcDxF1CKr4VfOTdvgkK7WpRVFXVrfhtzIpPxWGrYCxMyYpfH6PDgcYmtyZU2BMtxVi2gH1j2gzhasXe+YLNrOuKAsSj1SOLls3XFfsgN2W7KpbO+d1p4ZDCZY99lWJPNzCCIPyFZZlMZyt+vljG/nHtHlSvx/7A3nZEFC1sjd2ziNaiVFbBbv/cik+Kfctg7BEnxb4+RrfodFzfpwJU2BMtBbPhz+5MojMV13vsXRTDrBBOxiI1s4iX9nUiFlEwNFng6kwQMMV+wYw0P6TwY9wdhecRBOE3LBW/M6UVOcVpuM7sHctCrbRP9bYlLB+XiEWwsDLp5DUK0GtJREcKD8+jHvuWge2DmBvSOK6z2Wi0s8eo2FNh35pQYU+0FDw4r9K/6E2xrw3OY6TiURw6txKgtyM4O/7OYe3QYEFPmifzuy/sSbEnCCI4mOLVlWaK/fSzaoqJ+JGIUvexS2jkXUtTKOv30Z40WfFbDXbw2FFxGDWzYv/k5gEc/+3V+N81Oxt2DRSeNzWgwp5oKfTgvA4A8KbYV75HHHUnsmxBF4BgA/R2VmbYa4U967F3d/OhOfYEQQQJL+xTrMd++q0zuyRG3TEOmqXdpyhArzURFUy9x56s+K1AqayCZed18sK+ederJzYPYmiygIc37m/YNRjX8/w0PLidClBhT7QU4gx7QFPWAY+Kfdz8Y8CT8XcFV9jvGhas+JXrcFuUVyv2tCATBOEvzMrakWyOVPwXd4zgrnX9of7OfolRd4wlNMu+pWH30VhEQXtCe89PkGLfEohFKmsdcptfFAb5knZt2QZeY6Fmjn3zHoQQ1lBhT7QUr+3TZ9gDEOzrzhdDpj4ZE/EZyxYEG6CnqirvsZ/fk0Yi6tWKL8yxJ8WeIAifydRY8Ru7znz29ufwmdue5c6nMNjtSLEnK34rw97f8WgE7clKnzYp9i2BeOjYVVHsM018KMMEnWwDr5GF57HIqUav74Q7qLAnWoZyWcXWAaMVPzjF/vB5XYhGFOwfz6N/1P8AvaHJAt8oz+tOeU/FF634tCATBOEzfNxdk1jx945p6/LQRD6038l67OfXmWHPYD32rw9ONvy5IpzD7qOxqII2pthTeF5LIIobzGHUzD32zB3SyIA/9py1VfbVZMVvTaiwJ1qG3aNZZAtlxKMKFs7QNlVeFHs9Fd9csU/FozhkjnaAsG7nqJtLrguz4c/qSCIVjwo99i7n2BsK+0YnrBIEMbVgh4fcit/AjV+5rPIDXS8WW1VVHX2/kx77vq4U0vEoimUV2wcnXV8j0RjYYUwiGkFbQrs/U499a8CCDxUF/FAm28RORra2NvLwgR1ktVfWd3J+tiZU2BMtw+aKDf/A3jbEKrZ1pti7KYbtwvMA3Y7/YgABejuEUXfidfiRiq+qWngMQRCEXzDFvquSEF4sqw07QBSVLbeHoQDwxT+uxQnfvhc7huQKbyc99pGIgsVkx29Z2MFVPBrRFfsmtnMTOkwBj0ciSCe0vVUrWPEzDQz4Y4U8L+zJZdSSUGFPtAzGRHzAo2LPx91ZfwyOEvrs/YYp9gf0VBf2+VIZZRdFuTFNnwL0CILwE1ZMs5RpoHHrjDh2zO1hKAA89/oQxnJFqRC+QqmMvWM5AHKKPUB99q0MUzDjMUXosW/e4pDQKfJ8BIXnKDUymM4O9l5rpGLPCnnmTqHCvjWhwp5oGTYbgvMAn3rsLaz4QLAj71jg0/webYOYjOvX4aZH3ri5pT57giD8RB93pxf2xXJj1plMVWHvfjPMDkQf2rjP9rH7xnJQVa1YmNWelPr5rM9+MxX2LQdTMOPRCNKVYmciX6Q2txagwPMRIp6cnWHB3muNPDhi4XlsAgSJQ60JFfZEy8A2RkwBAbz22Fes+BbheQBwxLxuRBRg71gOe30O0NslzLAHqp0DThWoUlmtGT1Fs+wJgvCLclnl6xILzwMaqNgX9F5nL4o9+94ntwzabqp3V2z4c7tSiEQUqZ9/EB95R7PsWw323k5EI7zYUdXmnodOaBSENopUZY/XzOF5XLFvgnF3bUkWnkfv81aECnuiZTCz4vuh2FuNuwOAdCKKgysBen732euKvVbYxyIK2F7R6UGFWRFPNiqCIPxC3HCy8DygcetMlRXfQ6HF7gP5YhlPbBmo+1g26k6mv56xhKz4LUtBSMVPC446CtBrfgqiFb/y2jUycd6OfBMo9vmS9rvbeTgq7SFbESrsiZYgky/xQjhMxR4Ajpyv9dm/3D/m+HfUY6chPE9RFNfJ+OLfz06nqbAnCMIvxA1nOh5FrHIK2ahkfN+s+ML3PvRKfTt+P0/Etx91xzholnYwvGc0h4kcFYSthDjHPhJRhGT85i0QCY1qxZ4JQM37ujF1PFd0l7HkB0yxb+c99mTFb0WosCdaAja/vjsdR297gn/dnx77+h+DGW3a7xv3cVOWLZQwUJm9zKz4AIRZ9k4Le+3xEQVcWaDCniAIv2CjohIxrciJRxt7gOhHeF6prFZtXh+26bPfzWfYyyv23W1xzKzcs0i1by3E4hDQQ8UmSLFvekS3hZd9YliIrksvrUWersEw7o6s+K0JFfZES6Db8NuhKHpvo6jYOw20kQnPAxDIqBTmPmhPRNGd1vtV3ToQ8sLfwjYhjbo5EAQx9WDrHzs4jEW1dbhxhb33HntxM60oWo5LvXnzrMdeNhGfQQF6rYk4xx7Q56FP5JpX+SU0ikI+QroVFHthLWpUy0C+JjyvTEGRLQgV9kRLwBPxZ3VUfZ0lyZdV57YhmTn2AAK5KfDgvBlpw0FFxYrvWLHX2wp0JY0WZIIg/IGtf2w9ZOuMMbQzLKqs+C7XZvEA9fgDZwCon47vpsceEPrs91Fh30rkhT5tQFfsaeRd81Ot2LdOeB7QuMKeJfOz8DxV1VxNRGtBhT3REvBEfGHUHWBMkne2GLI+drse+yCCV1h//fye6l5Nrtg7tIwxi1kyFuE/g6z4BEH4BdsUs01yvOGKvXcrfq6oF25vO2wOgPqFvZseewBYwpLx91MyfishjkwDyIrfSoj5CK1gxRfX0UYdQBgVe4AEolaECnuiJdAVe+vC3umizVPx43ZWfP9P6XcaRt0xEi6t+Dmh/5Ur9mTFJwjCJzK8sK9Y8SONdQaJB61uC3u2gU7Golh+6GwAwGOb9ptOGSmWytg7lgPgrMce0J1mm0mxbylEOzeg9x5TKn7zw5xE8Ygw7q6Bo+TsqLLiN8gRwg4X2AEWQH32rQgV9kTTo6qq6ag7gCXJuyuG9U2dnBXfV8V+2Eaxd7hRreqxj2lKWo4WZIIgfIL32CeYFZ+l4rduj70YoHrEvC7MbE9gIl/Cs9uGah67bzyHUllFLKJgZkfS0e85oDL5ZO9Y1tV1Eo2hYGHFpx775sc8PK95XzexsG+YYl+sDs8DyPnZilBhTzQ9+8ZzGMsVoSjAopltNf/u1mYlHZ4XwE2BWfHZho/hucc+JMX+gVf28sMJgiCmPlyxj7HwvMYq9pM+jLvLCS1MkYiC0yqqvZkdn/XXz+1KIRpRav69Hp0pbaM8liWlt5XIC3ZuQLcoU49982M27q6ZX7dm6LHPCw4V/eCWrPitBhX2RNPD1PoDZqRNbfNM5XZaeMuG56US/iv2u0bMrfh83J3jv0XfoCYC3nA/9/oQPvGrp/GlP74QyM8nCKL5YEWwrtg3Nssj40uPPQsd1f4mZsc3G3vX7zI4DwC6Utrkk8l8iRSwFoLN9Y5X9gjpadBjv37XCN688j785sltjb4UT4huCy7+NHF7YrVi35jrZGJQXBSIaL1qOaiwJ5oeNvvXmIjPYIu229nvduF5aZ+DV0plFbuHK/OQLaz4TvuaxB77RMDheRt2jQLQN7oEQUx9MjWp+BVFp9wE4Xku12bxQBQATj1kFhQF2LB7FHtHq9e33Tw4z3lh35HSra3jpNq3DMZxd3qPffMqv1559NX96B/N4tePt3ZhXxTD89i+qlhGuQlT3lVVbRLFXn+/s8KeeuxbDyrsiaaHB+cZEvEZepK8y1R8SSu+XzaufWM5FMsqohEFc7uqN4nciu9wo2o2x94sAMoPtg1oBy1TWbUgCKKa2vA8lorfwlZ8g2trZkcSRy3oBgA8/Or+qsfurrQeuVHs48Is7dFswdW1EuHD+7Qj1T32Uzk8b3AyDwB4uX8MA+O5Bl+Ne5itPBaNcKcF0JwBeqWyCnFcfLbB4XmJmEKKfQtDhT3R9FgF5zHcK/aS4XkJf3vsdw5PAgD6THo13YbnVffYaz8zqJPWrQPa9U82QYDQWLbQ1IE4BDFVqB1312ArfsGH8DyTw93lFn32u0fdjbpjdKWpz77V4H3aseoe+2a49wXF0ESe/+8nNg828Eq8URSt+MLnuxlH3hn3ao06fGBiUCIaRYKNMy02n8OBqA8V9kTTw2fYz6qv2Dst8NgCbzvuzudU/B2V4LwFM2o3iLzH3um4O7ZBjUeRqNzEgtpwM8V+slCCqjZu0R/PFXHa9Q/gPf/xWMOugSCmC7VWfG2talS4kp9z7MV2LBag98ir+1ASbLus9cjpqDtGZ6XPnhT71qFgCM+bDj32gxP6+/Pvr+2v88jmhr92ES0Yk7VTNKMQYHRXNnrcXTym8HBUsuK3HlTYE01NvljG64OaQmxlxQ9asU8Jhb0fheyuSn+9MThPuxZveQFimmkQhX25rGJbRbEvlVXXG2o/WLdzBEOTBby0e7Qp++YIYiqRNYy7iwW4zshQFZ7ncrNudg84bmEPOlMxDE8W8OLOEf71fg899gDQVemzH81M3aJwqqH32Gvv9fYks+I3X3HoF0OTumL/+GsDDbwSb+huC+21Y4d3LVHYN+gaw9pHEsFChT3R1Lw+OIlSWUVbIoq+LvMNlftUfLkee2Y9VVX3ypAIs+KbF/YsL8Blj3082FT8vWO5quegkeNjXt49ql9HE96sCWIqYeyx54p9gw7VxOLKbZ6I2T0gFo3grQfPAgA89Ipmxy+VVfSPslR8d1Z8ptiPkWLfMhjH3bUlpn54nmjF37J/ArtadKytno9QcVv47Lz0kxorfqNS8YX3e6NbrQj3UGFPNDUsOG/JrHYoivns4KBT8UWrvh+nvVyxN7Pic8Xe/eg+tiAHoaZvrdjwGY20JL6yZ6wproMgpgPG1qVGKzq+WPGFOfYiep/9XgDA/vEcSpXA09mdSVe/i82yH6Ue+5ahIASwAXp43kRu6r6GLDyvO60dRD3Woqo9O3BkU4JSPk838hPjwWSjXAXs/S5OV6I59q0HFfZEU8P76y2C8wB3in2xVOb9k3ZW/LhgS/LjtHdnpcfeOOoOEHvsXR5SxKKBjrvbZijsG6lcvNyvF/ZTOcyIIJoBY489U8IalYqfyYvheR6t+IbDXdZnv2b7MIYn83zU3dzOZE3gqSxdaVLsW42iwYo/1RX7YqmMkYz2/jz3yLkAgMdatM/eONGAOS/dtu0EiVGxb4QTslRW+Z6Yxt21NlTYE03Nln31g/MALTAOcFYMi4+1s+IDQp+9Dwsus7aZWfETLtV2tkFNCIp9IRDFfrLqvxu1wSmXVbwiFvZTdKNFEM0COzhNJ6pT8YsN2PipqopJYYPufY599T1gfk8ah8zpQFkFHt20H/0j2prttr8e0BV7SsVvHYzheVO9x34kU+Bj1847ah4Arc++kSG5bjG+dlyxb8Jxd8bk+Ua0C4hCUDxGPfatDBX2RENQVRX3vbQHW/dP1H3c5v31Z9gD7hT76sLe/mPgV3/WSKaAsYqNb35P7SYx6fJUWZ9jH9HHlISh2DfIkrhjKFO1uZrKc4UJohng4+5ijbfi54rlqrnPnlPxTe4BzI7/8MZ9vH3KbX89AHSxVPwMKfatApuFzgt7rthPzfsNC87rSsXw5iUzkYhGsHskW3Og3woU+WvHFHsmzjRfoZovVe/3GmHFF9fQBPXYtzRU2BMN4dltQ7j41mdwzo8exo/ve9Uy/IjPsJ9lbcV302PPFs5EVBuFYodfs+yZDb+3PcFtfSJeU/HFHvsgLFRb91ff4CcapFy83D9a9d+Nug6CmC7w8LyaVPzw1TyjYpovlV2piuwA1bSwX6rPs9/tg2LfRYp9y8Fcb2yOPdsHTOZLU3ISCxt119ueQDoRxfGLegAAf9/UenZ8tv+JGRX7JrTiG/d7DVfso/p4QJpj33pQYU80BDbCLl8q44erN+KdNz2KNduHqx4zMlnAQCWhdUlAir2MWg8Iir3H015mwzdT68Xr8TLHnm1C8j4vyKqqcsV+bpcWINUo5ULsrwca5xwgiOkCa0OqmWNfDl/RMVt33Kj2eoBqbTvWmxb3IhWPYM9oDg9t1NLx53my4ld67HOk2LcKNePuhMP4ZkxX98pgZb81oz0BADjlDdp0iFYce1c0uC1SbJ/YhFb8ZgjP01sXFCiKwg9uqce+9aDCnmgI7Abyhtnt6G1P4OX+Mbz3P/6Ob/9lA9+0vVax4c/tSqIjWatuM9wo9lahSXa/w+vNfGed/npAL+ydjm/if09UHHfn74K8fzyPiXwJigIs7esC0Lhew1cMhT0p9gQRLLWp+I0Lz2OHDO0JvSD3VNibHPCm4lGcfNBMAMDGPdq9yJMVP01z7FuNQkWVZ0GRqXgEbDjPVOyzZ1b83jZW2Gvv/8c3D7ScQ0EsVAHRddl8hapxDW3ENbI9J9s/khW/daHCnmgIw5OaavHWg2fh3iuW4z3HLUBZBX7x6Bace8PDeOTVfVI2fMClYs/HHNkH5wH+9djrwXltpv/uJggQ0E9Vk/EIV+z9XpCZWj+/O42eSsJzozY3zIrPAqmmas8jQTQL2ZpU/Mb12LN1pzsd54WWm2R8cUyoGazPnuEtPI9S8VsNoxVfURS0xZkdf+rdc1hhzxT7ow/oQVsiisGJfI1Lrtkp1Cj2zWvFNwo5jbTis/d6UAIRETxU2BMNgd1AetoS6G1P4EcfOBa/+sSbsKAnje2DGXzkF0/hh/e8AqB+cB7gVrF3aMVnp70eC9kd0lZ8h4q9MI+Z2Qadqv52bKsE6Cye1aanAzfAAp8tlLClErp47MIeAMAEjbsjiEAxjrvTU/Eb12OfTkT1NdOFymV3wHuaobD3ZsWnOfathlH1BYC2intwKt5zhipOyt5KYZ+IRXDikl4ArTf2zmrcXVMW9pXwPLZGNGLcXc5SsQ9mff/7pv343G+fx/7xXCA/fzpDhT3REPjJcFucf+2MpXNw9+Wn4eOnLIaiALsqs4PrzbAH3C3Y4ng4GfxS7Fl43gEz6lvxHffYC2ObggrPY4r9opntPPivERb4TXvHUVaBnrY4llTGIE5F9YQgmgVVVYXwPLbxa5xinylon/e2RMx14Kj4PVYtWUtmtWNhr7ZWRxRgTmfSzeUC0FPxx7KFwMaHDUzk8dgeBeOUOeILeo+9/v5oT0xdxZ6F582oWPEBwY7fYn32LPuD7fGaOTyPBdSxNcKN+8jzNRgcDvFYsOv7zx/ZjD+/sAv3v7Q3kJ8/naHCnmgIQ+wG0p6o+npHMoZr33kk/vszp+CQOR2IKMBJlRNjK9xs7HKGflE7/Lop6OF5VoV9tOr6ZBEPKhIBWfHZyJvFM9vQlmBhguFvbpgl8LC+TrRPYfWEIJoFLXVe+99sLYw1sMfeVLEPwIqvKAq348/pTPG/2Q1MjSuUVNfj+ez4f49swe83R/Hfz+0M5OdPN4zFDgB+qD2le+zbdcGFBeg9uWUQxRayZbNiWc9HaN4e+1zlee2qtDg2QrFn+0W2FgbdYz9cGfs5FQ/IGg0V9kRD0BX7hOm/v3HRDNx12Wl49utnY9mC7ro/K+Vi9nvWZkNnJF1Rqbwo9rliCXvHNNuRZXhe3J0VP28y7s7vDXezKPYv79b66w/r65rS6glBNAtZYRpIc6Tia+tOWyLqes0Uv6de1so5R/QBAA7t63T880XaEzGwyapBzbLfP67dV1k4LeENfWSaYMWfwvccnoov7MuOmNeF7nQc47ki1u4cadSlOaZQrm6j8CsAOQjY/q27ErCZKZQCc/XYXQNb1xMBH9yOVNbAoA45pzNU2BMNwa6wB4BoRKlR9M3wotibjTkyww8rfn+ltSAVj/AeNiN+WPHZgux3j72u2LcLin34N8lX9miK/dK+zoYeMBDEdIGte7GIols1G2nFFwt7ly4n8XvqHfCeduhs/NcnT8S/vfcoF1eqE4kofLpLUH327HXye+2frhRNrPhTusd+srrHHtDet2w6RCvZ8WvG3TVzj33l88qs+GU1/DFzeR6ep63r8YD2kQw2HYQKe/9p6sK+WCzi61//OpYsWYJ0Oo2DDjoI3/rWt1AWFAJVVXHttddi/vz5SKfTOP3007F+/fqqn5PL5fC5z30Os2bNQnt7O975zndix44dYf85RAVVVTE0yaz4cZtH2+Oux97dHHsv4Xmsv35+TxqKopg+RjykcHJiK/aKBmGhGp7M8xPWA3t1K/5Ew634jWsJIIjpAu+vFw5CmcW1oVb8eMwfK77N2NPTDp1t2T7lBJaMPxpQMj67B9Jm2R/MrPjcJdaEBaJXjHPsGaccrBX2rRSgpwcfNr8Vn11rd1rfD4d9ncZxd7GAD27ZGtiMBy2tTlMX9t/97ndx880346abbsJLL72E66+/Ht/73vdw44038sdcf/31+OEPf4ibbroJTz/9NPr6+nD22WdjbEwfzXHZZZfhjjvuwO9+9zs8+uijGB8fxwUXXIBSid5QjWAyX+KLSD3FXhZXir1DK34q4V2xt5thD+hBL6rqbMPM2hASUb3H3s8TX6bWz+1KIp2I8t72yZBVi4HxHPZV2hkOnSso9lNQPSGIZiFrUtgzxb4RfbfsIK+tqsc+GCu+n7Ae2rHAFHvt76HC3h/yhhFggD4hpxETYYKkUCrz92WvYV/GAvSe2TrUMoVYwdBGkW7i8Dy2H25PxhCt9OuEfZ3Gg5Age+yzBb0GoLXKf2KNvoB6PP7443jXu96F888/HwCwePFi/Pa3v8UzzzwDQFN+b7jhBlx11VV473vfCwC49dZbMXfuXNx+++245JJLMDIygl/84hf49a9/jbPOOgsAcNttt2HhwoW49957ce6555r+7lwuh1xOH8MwOqr19RYKBRQKzTuHll1bM1/jvlGtwI1HFcSVsudrjSrawpAtlKR/1mSuwK9B5nuYoDORK7q+3u2VHvV5XUnLnxFV9cV8PJPjgUsMq9eXbUAiKENRdTumX++D1/Zo7/8De9tQKBSQiGiHDhP5cD8P63cOAQAWzkgjEVFREewxkWvuz2Uz0QprBOGOoF7bsYx2L0zFI/xnK9DWgFxRft31i/GK2pOMKXy852Q27/g62OY5Av/Wynp0VBas4fFsIL+PHXhk8u7vU4SGqqq8qFHK+ns8XSnyxzLO329eCXLtZgfmEQVIx6p/x4E9SczpTGLvWA5Pb96PNx9UP9C4GWCFo6Jqn+2Yoq1XzfjZyOS164kqKlLxCCZyJYxN5tCb9v/A0eo9lDHsiaOV5yvnYF8ty+CYXltlQt5DtjKyz1NTF/ZvfetbcfPNN2Pjxo049NBD8cILL+DRRx/FDTfcAADYsmUL+vv7cc455/DvSSaTWL58OR577DFccsklePbZZ1EoFKoeM3/+fCxbtgyPPfaYZWF/3XXX4Zvf/GbN1++55x60tbX5+4cGwOrVqxt9CZZsHweAGNoiZfztb3/z/PP2Z7WfN5HNY9WqVVLfs267AiCKvbt2YNWq120fv2mP9vhtO3Zh1Sp3bRxPbooAiGB87+tYtWqb6WM09732sVx19z3otOhUEF/fsgoUStr3PPLg/RjOaz9jbHxS+vmw497K8xWZGMCqVavw2qj2O/YNjvr2O2R4cLd2HT2YwKpVq7BpRLuOPYMjoV7HVKCZ1wjCG36/thtHtM9dMauvKev2V9bQfQOhf/Ze3qytpTu2voaRcQVABE8/twaRHc87+jmT2SgABY8/+jBedT+iXprMiHbdjz3zPLDd/xaG/UPa37N9526sWkXJ+F4oqYCqavfVB++/D6xrsH+H9hque2UTVuU2NuTagli7d00CQAzpqIq776rdly1MRrB3LIJf3/MUBg9sfpV1bEL7LDz1xGPoXwdsGNLWqz0DQ023V3h1i/aeen3rFihlBYCC1fc/iPntwf1O43vo2coed2hgH1atWoVXK3ut13fsxKpV23393XsyANvnvrbldaxatdXXnz9VmZyclHpcUxf2//Iv/4KRkREcdthhiEajKJVK+Nd//Vd86EMfAgD09/cDAObOnVv1fXPnzsW2bdv4YxKJBGbMmFHzGPb9Znz1q1/FFVdcwf97dHQUCxcuxDnnnIOuri5f/r4gKBQKWL16Nc4++2zE497714PgkU37gRefQ19vJ1asOMXzz9s7lsO3n38IRVXBeeedZ9m/LrLhnleBHVtwyEGLsWLFYbaPL7ywG7/f/CK6emdhxYoTXF3n73/1DLBvEKe/6RisOG6+5eO+/My9yBfLOHX5GTV9nWavbyZfAp64DwBw/tvPwa7hLL639jFE4gmsWHGGq2s18sB/vwjs2I23HnMoViw/COt3jeLH65+AEk9hxYrlvvwOGR65Yz2wdSdOO+ZgrDjzYKzbOYobNzyBSCKNFStOC+06WplWWCMIdwT12qZf2QdseB6ze7uxYsWbAQDxDXtxy6tr0NUzAytWnOjb75Lh/v9+EdizG8cceThKrw/jpeG9WHrEMqw4caGjn3Plk6sBqDj3rLdhblfwlf0Dky9i3dBuLDrkMKx46xLff/71Lz0MZLLomTkbK1a80fefP53IFvT76nlvP4cHH25+4DXct+s19B1wIFasOMK337dvLIeHXt2P846cy1vdjAS5dj+5ZRB44RnM7enAihVvqfn3iWd34tk712N/tDf0z7sbvv3ig0A+j+WnnorD53Vi5pZB/OzlZ5BsM//7Gsnj/7cB6N+Bw5cegpcmdmJ8OIsT3nwKjl3Y4/vvsnoPDT21Hdj8EhbM68OKFcdi5Ont+NPWlzBrjvbffvL89mFgzVMAgNl987FixdG+/vypCnOO29HUhf3vf/973Hbbbbj99ttx5JFHYs2aNbjsssswf/58fOxjH+OPMxZyqqraFnd2j0kmk0gmkzVfj8fjLbEZbubrHMtV+uvbE75cY0dlP1ZWASUaqwq6sYLlkqSTcs9TR0rrOcsVVdfXvKuSin/grI66PyMZiyBfLKOsRC0fJ76+EwVd+WlPJ9GW1f64Ysn9tRrZPqxd+0FzuhCPx9HVpn02JgulUN9nr+4dBwAcMb8H8Xgcnew68uFex1SgmdcIwht+v7aFcqVPNRHjPzdVKT6KZf/WGVmyFZttRzqBVCVno6Qqjq6jWCqjWFYrPycZyt/QXeldnswH85yxwK2Cj2v/dCUjtDi3pRKIV3IYOtPaa5gtlH17jle9uBtX3fEihiYL2D2SwxXnLK37+CDW7tHKvmxmh/m+7LSlcwCsx9odI8iV9QkPzQr7bLeltOeqI63tFfx83fyCtZmnE3GkK+tZweF65hTje6iksrGA2hqfSsQrX4fv1yHuWfO0Vkkj+zw1dXjel770JXzlK1/BBz/4QRx11FH4yEc+gssvvxzXXXcdAKCvT5sva1Te9+7dy1X8vr4+5PN5DA0NWT6GCJfhSiK+1cg3p4iJxrKBI07D89Iex7uVyyov7OuF52nXxMIA5X4X6yWLKJVxVAGE5+kz7LU2FB6elw9v3mqprGLjHq2wP2xeZ+U6pu5MYYJoFlhoaLrJUvHb4u7D88T1MezwPErFb34KwnMYjwjj7nwcsTqaLeCK36/Bpb95jk8Kuv+VvZ5/rhvMZtiLHDCjDQf2tqFYVvH0lsEwL80V7PVj6xSbnuRmekbQ6DPkFR5Q6mZ8pxeM4XmJAMPzRjP6+kdrlf80dWE/OTmJSKT6EqPRKB93t2TJEvT19VX1iuTzeTz00EM45RTN4v3GN74R8Xi86jG7d+/GunXr+GOIcGE3kB4fEvGB6uJcdpFwmobsNVF1/0QO+WIZEQXo665v+eQbVcmFXfxbFEXhadX5krOReVaMZQvYP669ZqywZwcdpbIa2rzV1wcnkSmUkIxFsHim1nzGNlmFkkqzmwkiIEwL+4am4otz7N1t2MX1NSF5wOsVFoYaRCq+qqr8daLNsnfYgVUsoiAS0d2d+ohVbwXiY6/tx9t/9DD+5/mdiCjAx09ZDABYt3MUA+O5+t8cAEMTtTPsjbB0/FYYe1eoKPZM6EjFmn/cXTIW4WuslwlMbuDj7mLV4+6C2FeNCutfMx60tDpN7aV5xzvegX/913/FgQceiCOPPBLPP/88fvjDH+KTn/wkAM2Cf9lll2HlypU45JBDcMghh2DlypVoa2vDRRddBADo7u7GxRdfjCuvvBIzZ85Eb28vvvjFL+Koo47iKflEuAxPspNhf+w3iqIgGYsgVyw7UOzdzbF3u9juqljZ53albFsFknFnCpRxFjM7aVVVrfBmC7RbtlVG3c3qSPA5zG3CBn8yVwpF8XqlX+svOmRuBx8J05YQriNfRCLmz2ERQRA6OT7uTl+7glR07OBz7BNRV+NOxcfHowpfT4KGz7HP+K/Y50tlVGoZ2iz7gFHBZOiKvbvDmWyhhO/d/Qp+8egWANqkmR9eeAxOWNyLp7YMYsPuUTy6aT/edewCD1fvnMFJ8xn2Iie/YSZ+9/R2/H3TQFiX5Rr++kWYxbz5x90lYhF9tLIPjhAnsOeLTRkJctwdKfbB0tSF/Y033ohvfOMbuPTSS7F3717Mnz8fl1xyCa6++mr+mC9/+cvIZDK49NJLMTQ0hJNOOgn33HMPOjs7+WN+9KMfIRaL4cILL0Qmk8GZZ56JW265BdFoOPY7ohpmOfNjhj2DFfbSxXChuhi2I53QHue2sN85pI34M4bhmeHUis9OoNlGW1SfCiUVXmtuVtgvmqlHtMaiEf6cT+SLdTcDfvFy/xgA4LA+PbwyHo0gUckkmMiX0NP8AysIouXICIU0IxZtnBWfrcNtiZh+EOpQidPbscLbB3Slgptjn83rfz9tlr2TN8xBZ7TxOfbO9wLrdo7gij+s4S1lHzpxIb5+/hG8te3UQ2dhw+5RPLRxX+iFPVfs6+zLTnnDLADAht2jGJrIh3Lfd0OprIKZFVmBysSZYlkbYyiTxRQW7L2WiEWQinnba3q9hlorvv/ru9iK1IwOilanqQv7zs5O3HDDDXy8nRmKouDaa6/Ftddea/mYVCqFG2+8ETfeeKP/F0k4Zmiyfi+XG1LxKEazRceKfUpyU8dOe92eou4c1opju/56wLkVny3IbIMr3rDypTLS8LZx3cr663urq+a2RBS5Yjm0k+WXd7PCvrPq6+2JKPLFMiZz1GdPEEGQ4Yq92GNfseKXG6HYa591T1Z8h64tP2BW/CB67MVCgAp77xQrBU2iRrHXPgNOFftf/X0LVq56CYWSilkdSXz3fUfhzMOrc56WHzIbP3toMx55db9UCLSfDFYEl546TsrZnUkcOrcDG/eM44nNAzjvqHlhXZ4jRJWZHcwYs5iaqrAv6kU1OzwN21lgtOIHq9iTFT9ImuedTUwbWGHvV3geoC/asqd/WaeKfVy3e5bLzk8wByqn4bM7ayctGHEaBsUOAJjyFBNspX70R+nBedVDVf0MEZLhlT1aYb/UUNiz65gM2bpGENMFtq6KhT3bADYyPM+TFb8QfmHPwvOCUOzFAFHKG/GOlRWfqetODrT3jmXx7b9sQKGk4twj5+Luy06tKeoB4I2LZyAdj2LfWA4vVQ6yw0Kmxx7QVfvHXmteO75YjLLXLxmLgJ2TNJtKzBX7aMRznpNbjO93ltUUSGEvHGyGHRI4HaDCngidoQn7k2GnpBza1x2H5wkW1KyLE0Zm27OaTyuSjDv9W6oT/hVF8bX/dWvFir94Vq1iDyAUpTyTL3HngGjFB/QwI7c9jwRB1Mc8FT+4jZ/t9ZiG57m04sfDs+KTYt86cGtyrFo1Z58BJ/eb3cNZlFWgryuFmz/8RszsMD/gT8aiOLkSUPfwq/vcXLZreCq+bWGvXd/fmzhArygcNrJCVVEUIUCvuUSAqh77JgnPiwd4cEs99sFChT0ROkFY8Z32WTq1YYqWfTfWc7YJaE/YbyJZUe404V/srdfVtAAV+2R4SvnGPWNQVWBme6LG9cAVexc9jwRB2JM1KezZhrkYsmKfL+rz59viYo9961jxx3NFV86vemSpsPeVQrG+Yp8tlFGSfA0HJrSU+9mdSVt7/WmHaIr4IyEX9txJabMvO+mgmYgowOZ9E9gzmg3j0hzD9j0RBVXBmCnu7GyuvQIvqqMRIeQv7HF31a0n4Y27a67XYipAhT0RKtlCiReCfgavOFfsnc2xj0QU/tisi00TKzrbpBR7ZxvVvMkG1S8bVSZfwp5RbVOyeGa1Yt/ustfQDa+w4Lx5nTX/Roo9QQQLO8xMJWoL+7AVe/Fg1VsqfviKPQvPU1Vg3Of1KiOE55XKakPGEE4lWKETN4xcFiexyKqqbFzszA77Pc+ph84GADy9ZaiqvSJInOzLutNxHgK8czgT+LW5gY26ixkOZRpVNNtREMLzGjburmRQ7IMs7MVxd032WkwFqLAnQmW4EtASjSjoSvmX3ei0x573VzrY1KU9jCFxotg77rE3aStgi3K+6E0Ven1Qs+F3p+PoMZzkt4U4loUl4i+d21Xzb9RjTxDBwtqPUsLhIZ9jX1ahquGp9pMFbS2NRRQkYhHX4XnZBvTYp+JRroT53WdvLARItfdGoWxuxU/GIlwFlm1DG2CFfbt9xs5Bs9qxoCeNfKmMJzcPOrlk1zjdl7HPTLNmOXC3hWGMJS/sm0wlFm3wbAJTNuT9TN7gUAl0jr2g2OdL7nKrCGuosCdChdm9etJxXxNf3fbYpyTD8wB4CjWZ5D2hMjdNZwqUmfuAF/YeT1tZX7tRrQfCDc97uTLD3piIr11HRbGnVHyCCASzcXeiklkMcWM2abgWzz32IRb2gNBn7/Mseyrs/cXKiq8oCtp4n73cvW9gXHO9zZJQ7BVFwWkV1f6hjeHY8Xl/fVtCal+WqOxRmrWwL/JDGSvFvskKe3HcXYMOH/TwPO31D2rcnaqqNRkjXvepRDVU2BOhwvvrfZ5/6lyxdz7D2ItFihWdzDZeD6en4cx9IPbYJ33qsbfqrwf0vyWM8Lx6VnxS7AkiWEx77AUlM0w7vhicBwhho07n2BdqnU5hEFQyvlHho95Vb3ArvslYtLaks8Pk/bywt1fsAWD5oVqffVgBevqkIrlA40SAiel+wJyKsYixsK/MiG+yvYKolnsdrez1GoK24mcL5ZrDArLj+wsV9kSosET8GT4m4gNeUvHlPwJJDwuuI8U+7sxayufYm1jxCx5P1Hkivolin45XCuqAT7/3jeUwMJGHogCHzDHpsQ+x158gpiNm4+7ETXOYI++Ma6nnOfYOXFt+wBT7MZ+T8WsUe9ose6IgjCAz0l5578ke8rNxtzI99gBw8htmIRpRsHnfBHYMTUp9jxdExV6GRJNb8Zlizw4gGDwVv8mu22zcXdg99sb3ezygVquRjN72wTol6BDSX6iwJ0KFW/F9TMQHnCn25bIqFMNOrPiV015XVnwnir1DK36hdoPK1DSvFiem2B/YQMWe2fAXz2yvsgIzeDo/peITRCCwNS9VlYqvb5rDDGpjaynbACdazIrPAvT8HnlHVnx/yRusySJph+1fenienGLfnY7j2IU9AIBHXg1+rJyu2Dss7JtUsWdFam14XnOn4ierxt2F+9xajbsD/D24ZeteVyrWtGGGrQ4V9kSoDEuOVHFK0oFiL96M3ITnubkpTLA59lI99k5H99Xpsfeq2O+vo9izOfYBW8a4Dd+kvx4gxZ4ggsZsjr2iKMIs+/AU+xorvkv1sFFWfF2x9zsVn6z4fsLGOBqLQ0C/j8ve+1iP/UwHLYinHaL12T8cQp+97Ax7RsKn/UVQ6G0U1YcyXvZwQVEslcEiSuKCYu90fKdX8obWE9Gp4qcdn2WLdKXjrt1WRH2osCdCZbBixe+R7OWSxYliLxbMzhR7d1b8UlnlG+M2R6n4ztoKqubY+xB8kiuWsGtEG2dj2mMfUm87T8S3KOxJsSeIYMmahOcBenJymL22teF5bsfdhZ+KDwQXnmcsVkix90Y9K76THvtyWeWFs2yPPQCcVumzf3TT/sAdMUMTzgQXv8J5g0IPgjMo9rHmK+zFPZqYit8oK36cW/EDKuy5Yh/nij2tVf5ChT0RKkyxl+3lksVJjz17TEQBV5ykfofL3ifx8e1Sc+ydLXa6jUvfdCd8CM/bPpiBqmqKuFmab1tISnm9RHxAV+yD7vUniOkKH3dn6EdnyfihpuIXzBV75z32bI59Y6z4gY+7I3urJ4wp4SJOeuxHMgX++ZC1ugPA0Qf0oDsdx1i2iBd2DEt/nxsGK+PupBX7Zu+xtwg+TDah9Vt8DsVU/EaH54k98H4e4IxmtHWvKx0jxT4gqLAnQmUoKCu+E8Wej7qLOhq55zbUhPWgRxQ5dcj5HPtgxt29Pqgn4ps9T2Gk0ZfKKl7dMw4AOKyvdoZ91XXQuDuC8J1CSU8xThtal1gfZpg99pnKQSIPz4vr66WTkKecyYFoGHTyHnuy4jczeQvVFxB77O2f44EJzYbfnY5XuersiEYUvPVgTbV/aGOwffZcsZdNxW/ywl7vsTfOsW++HvtcSbsWpSI0NWokn5lDJRbAyDtRsU/Gmu+gZSpAhT0RKuxkuCewVHz7BSJbqC2EZeD9WQ4LWTbrtj0RkzpIcGvFry7sK+F5Hm68vL9+Vm1/PaDbEScDVOy3DkwgVywjHY/iwF7z62AhfrIzhQmCkEfcYKYMhT1zPIVpybWy4quqsw2o3mMfsmKfrljxfQ7PMzqWyN7qjUJlZJpxFjoguMQk7n16cJ5zMYPZ8R8JeOyd41T8gEah+YXVqMJGJc7XQ7xWRVH4NYZd7BoVe0B4nX1cS3iPfSrueAIUIQcV9kSoDDtMX5Ul6eAk1q1S4/amwPrw2iQS8bXrchieZ7JB9WMGab0Z9gDQFmep+MEtyi/v1vrrD53bgYhF24TuHCDFniD8hm0wFRPHEVtnio0Iz4tXW/EBZxvERqXidwZkxac59v7Crfgm9x2e6yJxmDxQKexntcv31zNOO1QL0Hth+zBGJv09CBJxnYrfpIdHbNydsY2iGVPYeStlZS1l+8x8qYxSiC1OZlMg4gFkqLBxd91tccd7XUIOKuyJUGGWL7/H3TlR7N32VrrtsZ8UFHsZnIZBmc2x96PHvt4Me0DPCwjSiv8K7683t+Fr1yFviyQIwhnssDQVq21d0mcdh6/YG3vsAWcqtT7HvlGp+DTHvpkp8OLQm2LPrPhuFPt53WkcMqcDZVUL0QsCVVVdK/a5JlXsWbFcE57HFOImUuyNSrnoigrTjm8WOBgPworPeuyFcXfkLvIXKuyJ0CiWyryvcIbPVnxHir1LCyazfmbyzhYhFi7nWLGXtuLXHlT4kYpvq9iHEJ5nl4gPAG1xUuwJIij4qDuTiR4xPvYqxPA8bsXXPveKoriaZd+oVHw+x97nVHz2OkUV7bWgzbI36lnx2XtP5jB5/5j7wh7QVfugxt5lCiX+XpFV7NlzUgjxc+8EFlYYixgL+4pi30RuFuMhhLgehdkykDdt6fS/5YL32NO4u8Cgwp4IjeHKRkZRtCAZP3Gm2Huz4js9RWVW9TZZxT7ubJNaz4rvdnNXKJWxY4iNurPosWfJwPmSo9AqJ7xsM8MeEHv9SyiHaF0jiOkAs74bg/MAvcc+TMU+U2Dhefr16JbOVrDiBzvHvr1ym6HNsjesRqYBDnvsXYy6Ezn1EK3P/uFX9wVyn2VqfSIWkRrHCwhz7EvN+R6zmmjQqMT5ejDHJTucjEQU7iwI6zpLZRVs6yS+3/1wfhqh8LzgocKeCA1mw+9KxbnS4xfc0iPVY28+uskOrz327ZI3TbbYyfavmc2x93rSums4g2JZRTIWwdzOlOljWEFdLKuBhGdN5Ip4fVBrB6in2IstDs0UikMQUwEeNmqyXrI1J8wee2N4HuBulr1+IBquFZ8r9j5b8dnr1MYKe9ose0JPCffaY88Ue3eF/UlLZiIRi2D3SBav7Ztw9TPqMTShvQ972xLSU4KavcfeKjyvmXvsxf1b2Mn4xpF7DB7CTOPuWgoq7InQGGKzUn224QPOVG63in0q4W6x1a34sj32ztT2unPsXd54WX/9oplt1qF1goIXRIDexj2aWj+7M1l3U5SKR8D2I0G2BRDEdIRb8eso9o1IxTdV7F312DcmFT9bKPuqhLHXSVfsm6d4aUXqjbtj9z6ZSSx6eJ47K346EcVJS3oBAI9sGnD1M+oxWAnOk51hD+ift+Yt7C3G3VWuu6ms+CZj5sJOxhfX78B77EXFngtyzfk+alWosCdCY8jFDUSWVEy+6HY97s5zeJ4zxV7WVmpmKU14TDO1668HtP5adoBgHLXkBzI2fEDrsW3ns+yb54ZNEFOBbL3CvpGp+GJh7yIUq1FW/A7hgNdPOz5/XmKsx57WQi+w97SZu5C3f+VkwvPYuDt3ij0AnHaI1mcfRICe0xn2QDAFn58UTYploDkVeya+iFkOYY/lK1QV9vphSCzIcXdVPfbN83pMBaiwJ0JjyGHyqhNcKfZurfhO59gzK76sYu+0x95EsY/zHji3hX39RHwG7zWU2OA45RXJwh4IJ8iPIKYjbBNsnGEP6BvncFPxtc94Oq6vp66s+C6dW16JRSN83fQzQI+9Tm2k2PtCPSs+P0iW2At4Dc8DgFMr8+yf2joEv2vSQReTityEVYZJnh/KVL92aZeuyyDhU42EQwi3E5hcX0NRPwgR2zG8CkRGVFXlAdrd6bij0GtCHirsidBgVvyeAKz4ThR7t72V6YS7Rcj5uDu2WVb5yXM9THvsuVXO3Ym6jGIP6AF6MpZEp/SPZAEAB/bWP1wA9EOTZgrFIYipANtcmhX2bOMcpiXXTLF3lYrvcjqKH/g9y75YKvMCgXrs/aFueB4PbK3/+mULJYxVDr3dzLFnLJ3bibldSWQLZbw2KtcHLwufYe+ksPcoHARN0eK1c7JPDAvzHvtwC16rsEGvApGRiXwJpUpKnxie16wHRK0KFfZEaAy7uIHI4kyxd2fBdHuKyhR7+XF3+uNkFlSzMSUJj+F5+gx7u8JePh3YKUx9l3E66Ip989ywCWIqkDEJq2OwcVLFEKdRsLYfsx57JwcMbkNU/YAl4/sVoJcV/m6y4vtD3iKADRDG3dncb5gaHo8qPFvBDYqi4NSKHf/l4WAKeyctknGPGT5Bw9Yjqzn2TVXYmxTVYTsLzA4XtGvyt9WKOZTiUS35n8LzgoEKeyI02E0uyB77Ulm1LWbdzi92OyrFqWIvLq4yqovZHHt+43VR2JfKKl4XwvPqwdOBA+htd9LCoPfYkxWfIPyEBU2lTVPxK+PuGhCelzYNz3PSY98YKz6g9ZcCwJhPhb14T0qTFd8XzHqfGayVIl8s133vs+C8me1J6cR5K9g8+5dHfC7seSq+vJOy2RV7fTa8+bi7ZuqxNyuq3bZ9ur4GC4eD33PsxeA8RVH0aVa0VvkKFfZEaARpxReLWrtFgv27mbW0Hm6TSnkqvmR4XjSi8BuS3d+iHWRop6lVqfgeLLL9o1nkS2XEowrm96TrPpalAwcRnufkQIS5IUixJwh/yebrWPEjbIMfjmJfKqt8TWtL+NVj30jF3p+DSD3gMAJ2K6TNsjdYbkTcZCqM+N6rd+/bP+G9v55x6sGzoCjA7kkFO4cznn8ew43g0uyp+Oy1Y+sTQ3RdqmpzBP/phb0YBtocij07uPWtsOej7rQagB/INtFBy1SACnsiNAK14gsLkt1i6DUVP1+qf0pvhKnZsuF5gH4ibqdAWc8fdX+ivm2/1l+/cEYbohaj7hjtDtKBnaKPCbQ/ENHDjEixJwg/qTvuLhquYi9+vr2k4hdLZd7r2RDFns2y9yk8T3Qx6IU9HXJ6oZ4VPxGL8FGP9dxqXLH3kIjPmNGewJsWzQAA3LV+j+efx+A99g4K+4QHR2AYFCrZQsZCNeVAAAqLeuPuMiEVvEwcMk4R0PeR/lrxuyoHm2wP3kzjB6cCVNgTocHmpTpJX5VFURTpACUemuRUsRc2klkHNwWnij2gX5vd3yIW9lU99h5uvFslbfhAsOF5/EBEQrFnr80EjbsjCF+pF54XD7nHnllTFaV6vXM6Nkl8XNhz7AFdsfcrPE88fKmIbKSCeaSeFR+Qm8Syf1xT7N3OsDfy9iPnAvC3sB90Ma2IF3xNUhwbKXDF3tyKDzTP56PA1XKhx75B4+6CtuKPCKPuANAc+4Cgwp4IjeGKFd/JybATUuz0z2YxdBueJz7eSe8Tt5Q7UOxlLUrsb4ko1TcxL3NmZRPxAX1zkwkwPE/mQKQ9wBA/gpjO1Bt3F4+Fm4rP1tK2eLSqZ9mpFV98nFGlCgO/U/EzQrsEWfH9wSopnNEukS8zwAr7Tu+KPQCce+RcKFCxZvsIdvlgx1dV1ZNi36zvsQIfd1dbqLJ9UlhFsx1min3KoQPJ8zVYhudVrPg+vc68x95oxSfF3leosCdCoVxWuRV/RgA99oD86Z/b3kpFUYQ+e/mFiKfiO1HsJRc8MQCqev6o+xP1rZXC3m6GPRCcYl8slXlBIZWKX3kMKfYE4S8ZoX/biJ6KH25hnza4eJxuENnjEtEIIjbtRkHAEtJ9S8UXFHuy4vtDwaTgEpGZCKOH5/kjZszpTOKgTu1/r3pxt+efN54r8iLYiWLf7OF5Rf7a1X62UyH3r9tRNzwvrMLeZtyd7z32lYNNCs8LBirsiVAYzRbA3JpBWPEBYZSJg2LYKczy7WTBdZqKD+jXZleY8w2qxZgSNwvyjiFNCVgoMT9eV+z9vQGJgUTtUj32pNgTRBBk64y7i/Me+5Cs+AXzQ1K9x15SsW/gDHtAVOx9SsXn7RIRxCJs3B1tlr1QqNNjD+iH2pN17n37J/zrsWccO1N7Xf0o7FkifjoeNf18W+F3qJrfsOsyKvaA/D4xLMwS6VMB7assr8Fm3J1vPfZcsa/usae1yl+osCdCgSXidyRjNYuHX7BiWNqK76K30ukYElVVHYXAMfhGVTLh37hBZc+xmxN1tlFhm8968DR6n8PzmL0xFlGkrLJB9voTxHQmy+e9mxX24Sp33IpvLOxdWvEb0V8P6OFRTMHyCrsfVSn21LfqCb04NHd0yPTYMyu+H6n4jGNmakXWc68PY/eINzv+oAsbPgAkonLCQ6Oodyij7xOb49qbQbG367H3KxxVD8+rtuI3i3tiqkCFPREKLKAliFF3jJRsMVxwr9iz3yG74GYLZbCpKs4Ue4dW/LhxQXZ/op4V1B872iVUCzeI/fUy83+DTOcniGYh24AxTZl64+74xi+cazKbYQ+4t+I3IhEf0De2Yzm/FXshPK9JFMlWxc6Kz3vs6yn2PDzPP8W+OwG88cAeAMDfXuz39LOG+Kg7Z/syLhw0bWFvnY+QDlkNt8OssE+5HK3sFvZ81QhEHvaRZtT22JMVPwiosCdCQe+vD8aGDwiLhN24Oy+KvUMrvniabzYuygrZBc/qkMJLam22Tgq2kXRAFninIwJlbJEE0crsHc3ihO/ci8//bk2ov5eNXDJbv9iM77B67DOWir27VPzGWfH9TcU377GnzbIX7Kz4/N5ncZisqqow7s7ffc/bl2np+F7t+G4S8QG9CC2WVZRDmojhhGKd165Zrfhm4+7CnmNvpdj7N+5O+6x0p1mPfbghgdMFKuyJUGBW/BkBJeIDbhR791b8rGQByQrUtkTUUUiT01R8o6qgj7tzviDzFGwJNas9IAv8uMPAQa7YU489MUVZv2sU47kints2FOrv5UWjWY89V+5CVuzjhvA8h2OT2OOCaguzgylWfs2x51b8RAQxKux9gfc+W7xH2rkV3/zeN5op8jGQfhf25x6hFfbPbBtC/0jW9c9xk4gPVCvhzRigx67JOO4O0Pc1zVJMcmeIiWIfXnie+UFInO8jfR53x+bYU3heIFBhT4QCt3wFaMWX77H3YsWv/A7J017dUi5vwwfEHvv6vydvYcVnhb7TMSWqqgo9tTK97QEp9pWf1+FQsacee2KqMlBZQ8Me08QdPCbrZSxkxX7SYgSmayu+AxeVn4iKvR+tFaIVny3bpbLqW2/sdMRu3J3uEjO/9+2f0Gz4namY7y0f87pTeOOiGQCAu9a5V+29KvZAcxb2bD0yO5QJ2+ZuB7fim4y7C1ux9zOE2QzrcXfl0FvMpjJU2BOhMBSCFV9asXc5xx4Qw/PkFjp205dJdheRtuJbWErjLsPz8iU9E0Bm06sX9n732DOng1xhz3v9qceemKIMVgqFsF0pfNxdona9jIfcYz91rPjaxrZYVn05qMkIVvyYUIeSEuaOUlnl98F4xKrHvv69j9nwZ/mYiC9y3rI+AMAqD332bhV7sQhtxj57bsU3ee3CVsPtyDV1eJ7PPfYW4XkArVV+QoU9EQrcih9Cj72sYi+jSBtx3GOfc1agMmQ3qlbuA7cLsniKLRWexwKEfJ4fzwp02QMRns5Pij0xRWGKfbZQRinEvtZ64Xmhp+JbtAU4L+zdH+76QXsiCuYS9qPPXsxFEf8k2iy7Q7xvWlnxuWJvce9jwXl+zbA3suKoeQCAp7cNYu+oOzs+V+wdXqOiKL4XfX5iNZcdCF8Nt8OsqGbrm2zLp1/XUCMQ8awm7/ebclnFWGVfp4+709dxWqv8gwp7IhTcpq86ISU5y9hLKr7TUBM2Bq7dwYxYQOyxlxvdZ7RQsRP1supsVAn7fYpinQYsElR4nlPFPqiWAIJoFgYrCiAQnpJTLqt8w2UWnhfjc+wbHZ7nbPyWl3uAHyiK4usse33cXQQRRS9oKBnfHeJBlbUVv/64uyBG3YnM70njuAN7oKrAXevdqfZsjn2vC8El4SGgN2iYYm8+x75JrfhmqfghPbd6eF71e91PK/54vshdMEyxj0cVfsBJa5V/UGFPhAKzfPWEodjXWSBUVfU0xz7lcI49L1Ale8UZCUkFKm9hKRVvEk4C9MTgPKkxc0IavZ89UhNOFfvKdRRKalNuNAjCK0xdA8I7wBLXH3PFnvXYhxWeZ55Z4rzHvrFz7AFdtRrxYZa9cQygPiGG1kI3iNk0llb8ynvQai+wP2ArPgCcX1Ht/7rWXZ89m2PvRnBp5pF39UYVNptinzcJz0s73Gf6dQ1WVnw/MlSYDT8Ri/B7iaIotFYFABX2RCgMT7o/GZYlKaHYF0oq2B7US3ierGLGe+wdK/ZOe+zNx90BzmyyToLzAN0CXyyrvtpxJ/jz5kyxB0i1J6YmA2Jh73PrixXiOlfXih/S5l5PxTco9pL5Kgx2ACAz+SMoOpM+KvaF6ufFaWsCUQ07DI9FFMtpNnr7l4ViP8EU++AK+7dX+uyf2jqIvWPO7fjMSem0xx4QCvsmtOLz189sjn3Io+Ts4OJMtFaxzxT8FUzsrsHK+VnwwYpvHHXHkA2KJuShwp4IhUGu2IeQil9ngRAXD0/heQ577GXnsTNkFShuKTUU4uKYFyc2Kicz7AGgTXicn6fLfEyg5PMWj0b4TYn67ImpSLViH25hn4hFEDUpcGIRfZ51KNdjY8V3Ou6ukYq9n7Psjes2u380S/HSarB7pllhyLALjtXD84ITMw6Y0YZjFmp2/LvXObPjl8uqHp7nQnAJ+1DPCfUmGqSarLBnhxBiloOYIRLG4Zx1eJ5/hzfGUXcMfa1qvvdRq0KFPRE4qqpieNJdSIsTZHrsxUXSVWFfSYaWnmPvVrF3mPBvtJwpiuKqB45b8SUL+1hABfWEi+eNPZaS8YmpiFjYZwrhvMf1UXfma2U85B57o+Wc4dqK36DwPECYZe+rYq/9PaTYe8Oq0BHhI1Yt7jd6eF5wij0AnH+Uu3T80WyBuxfdtEg2sxW/WOf1a9oee1GxF9alMA4grFo6/Zxjbxx1x5B1pxLyUGFPBM54rshPJQO14nPF3r6wT8QiUj3kRtwq9k577GUXO6s59oC7ZHx2E3Gy4W0LoKB2qthr10Gz7ImpSa5Ywrjw+QpNsbcopBm6ohNSj33BPFTT6eZQX+caaMX3UbE3Ti5wetBBVMP2K/UCZO167JliH1R4HuO8ZVqf/ZNbBvhhggzsoLAzGauxYMuQCHkihhMKMuF5TfLZMBt3F4tG+P4tjKBU7hoIcNydcdQdI0VWfN+hwp4IHNZfn4xFLDeIfqAr9nWs+DYKlP3vCKvHXjLh36LHHtBvFEFa8YHqAD2/cKXY87nCpNgTUwtRrQf0A8OgyRp6t42En4rPwvO89tg3gWJf2eCyDa8XmPrIXqeE5IQYwhwZxT7NU/Hrj7sL0ooPAAt723D0Ad0oq8BdDuz4bARxj8tJRW72F2GgqioKZftxd2EF09lh9V5zGtTsBevwPPYa+9Bjn2Wj7iwUe1qrfIMKeyJweB9XgDZ8wJlin3RQuIrwOfZOU/GdzrGXPMWsN4/ZzQxS9tzJhucB9mN/3MDsjU6eN7u5wgTRqgyMVxf24Vnx67fmsDUmvFT8+lb8UlmVOmTwMhnFL7r8VOxrwvPI3uoFXujErF199Q6S88UyL2SCTMVnsJn2q16UT8fnwXkuXZTNOu6uVFb5WDWziQYpiX1imFjZ4MNsGbAKz/MzR2HUpseeFHv/oMKeqOHx1wbwh2e2+/bzmNoU5Kg7QE6xd2M1F3GaqDrpcGwbw3kqfp3CPmDFvs3hYYcMbAPf4cCK326TUkwQrYpRsQ87PM+usA9LtctyK755eB4gV8zWczqFRRBz7FMJY489bZbdwMbdyfTYm41YZZ/XWESpsR4HARt798TmAQxI2vEHPeYeyY7kDRvxkDFusi9qtvA8s3F3gPO2Ty9YhQ36asWvrHPWqfjN9T5qZaiwJ2q48g9r8OX/XosnNw/48vOYFX9GgIn4gEPF3mNhL91jbzF32Q7Z8COr017AnVVOb1VwUtj739vOnzcHByJtAbQEEEQzYCzsw7KRGpVgI2z6RliFPftst8Wr11NxUyxV2Be83Qf8gM2xH/Wo2KuqSuPufIYVh1Yz7IHqwyXj55HZ8HvbE5bj8vxkYW8bjlqg2fHvXr9H6ns8K/Z8fxGOW0cWcS2KmTz3PADZx4J5454xfOF3z+O1feOOvq9UVlEqm/e3hzmWz2ofmfDRkcVT8Q2FfYqs+L5DhT1RRbmson9Um4fqxNZVj6EQEvEByR57j0pNKuGssGcbUdeKvc3vqdtjz2eQuknFb47wPNk59tpjK4o9peITU4yBRvXYS4bnFUPY3FcVsIbriUYUri7JqNT1WpjCwi/FXizea8LzmkSVbDVkrPjxaITfY40uMZ6IH4INn+HUju9VsW/WcXfiQYNpKn7M/4L5d09tx/+u2YU/PbvD0feJhxBGxZ7twcIo7O3G3TnZQ1rB5tgbHSw0x95/qLAnqhBHoPxtXT/KPpzUsZPhsBT7eioF2+i47a3kin1ebqFz0ysO6Ndnd9Os1yvKNiWBW/GTwYXnGS239UiTYk9MUQYnqu21k2H12BfZelB/3F0Yin22UOa9s2brgpMQJq9ZK37AUvHZhtctolrMQmFJsfeGjBUf0B1lxj77MGbYG1lRGXv3+OaBGoePGVyx92jFzzdZQcYyNiKKduBnJBlA7zo7nHMqKoifT+MEBqdBzV5gU01qeuzZa+zruDvziSbNMn5wKkCFPVEFS0oFgL1jOTyzbci3nzmjCXrs/bLiS/fY550rz4D8xoxtYs3G8rg5Udc38i7mx/vU214slfki3+6kxz6AED+CaAbYRp1tVEOz4ufrrwd+pibbIa4vZq0BTnp+mykV36tizzb+iWiEj/dKUHieJ6zGfxmxmggzMMFm2IdX2C+a2Y4j53ehVFZxz3r7dPzBCW/7smSTjruzSnhnBKGEs9ffaXEq7s2M/e1Og5q9wA5nGjHujvJA/IcKe6KK4cnqk14/7Pjcih94YS/fY++kcBVhi63sTYEr9g6t+AnJxY7dxMzn2DvfdLMbkxNHQ5oX9v4szJPCc+ukhYE7BwKwKTeb3ZCYXjAFsK8rBSD88DzbcXfl4D8fk3ndPWDWt+xkg9gcVnx/UvHF54VBm2VvsEKm3hx7QBh5Z7jn6Ip9eFZ8QLfj3y1R2OvTitw5KcM81HNC0eZQJohQOiYmOP2Z4vtMUQyFfYg99pZz7CsZE2UVPAvALWOW4+7IXeQ3VNgTVbCgO7Zv+tu63Z7t+HqPfdBWfBnF3tuGjh0IFMuq7SmmqqoeFHs5W6keAmVmTfUwx95BBoHfc+xZYR6LKLYbq+rrCEaxf+DlvVh2zd34w9P+TYogCCcwxX5hbxqAf+4YO4zz0Y2Im3tVDXaDn+GJ+OZraTIm71Cqt26GBdvgjuWKnjbNWZPcAf1eSJtlN7B7ZsxkDrqIlVttf6WwD7PHHgDOOnwuAODvrw3YrhF6i+TUSsW3SnhnsD2cn58NtmdxWoRbjZkDGjPuzrgvFqcKeFXtmWJvTMXnr4eL91G5rGLr/onA7z2tBhX2RBWsCD9hUS86kjHsGc3hude92fGHKpav4Mfd2Sv2WY8bOnGDa3c6my+VeZqoU8Ve2oovM8feUWHv3NHA/ja/QuvE/nrjKXb96whGsX922xDypTIe3bTf159LELKwwv6AGW0AwlPs7TI3xNTwoGfZ8xn2FtfiZHa73mPfeMUeAMY9rJ1mBx6kgnlD1opvNRFGD88Lz4oPAIfO7cDC3jTyxTIefbX+/Wpw0q8e++Z6j7HXLmZpxdfWiXyp7FmFZrhV7K1G3QHh9thbh+fp+y8vLRelsoqxHAvPs5hj7+LvvOmBTTj9+w/irz4FfU8VqLAnqmD98HO6kjjr8DkA4PlDwy1fARf2bIEolVUeoGLEq2Ifjyq8zzVrs7kWC8w2h9b/pBBaUu80MlfnxJctyu567B2k4lf+tkmfbkA8Ed9Bfz0gqCc+3wjZe2bvWNbXn0sQsgzwwp4p9uH22Ful4ouKZtDJ+JM2gZpO0pWbwYqfjEX5uu2lz94sB4Gs+N6QteKzVrGMMTyv0mMfZngeACiKgjMP01T7+17aa/m4YqnMx495nWMf1qhLWXiRajFmUNzb+PX5YOuxUxdAvmjtLghzjr3VAYN4cOslGV9c3zprUvHdOxNe3auNF3xt74Tra5uKUGFPVDEs9MOzfq27PKbjh91jD1ir9jkXPeQiiqJIL7jsFDcZi1ieHlshpjXXU110C1XtZle3ybqYY+8mFd8nxX485zwRX3u8v9fBYDecvWM5m0cShP8UhE04U+zDnmNvtR6IhX0h4D579jdbFvYO7Odex576BQuS8pKMr+cgCD32HuythL2dm8EmsVj12M9sD9eKD+h2/Pte3mu5bxvJFPiEiZ60tx77ZlPsWd5H3OLQTmwz9GsdZXsWfxX78MbdWR0wRCIKYhGWo+K+BmDrWzoerflbvRxCsgO1LB1gVkGFPVHFME+wj+O0Q2ejIxnD7pEsnt8+7OrnZfIlXhj1BNxjL56uW9l6/NjQsQXXbhHXZ9g7U56BaiWp7vi+OunObk7U9Y288zn2RjuiW5gy1+FUsU/6ex0MdmPdN0qFPRE+7GBUUYD5PVp4XliTH7I264Ffio4MkzbuAUdW/IL1uhkmXTxAz71ib9Zjn6Aee0/YJaszzHrsVVXVw/M6wy/sT1zSi85kDPvHc1i7c8T0MWxN6U7HHYsODCeZFmGSL1as+BaKfSSi8M9HvbZNJ0y6LeyZ49LkNQg3PM/f6UpGrEbdAd4OIfVpBFTYi1BhT1TBF/y2BFLxKM6s2PHdpuOznxeLKOh0UeA6QWbB9sOCyXufbArICZfKM6A9X+y+VO8ks94c+4SHVHw34Xl+nX5PcGXO2fuFK/Y+Fz3shjOWK4amlBIEY1AIuWKHXWEr9lZ97ZGI3poUdI99xmZdkFV+VFWtu26GCZ9l7yEZP2OSPUBWfG/wZHWbfUKbSXDsWK7IDwbCHHfHSMQiOO3Q2QCAezfsMX0MG3Xntr8e0PcXzTbujiv2dQ4sUjH/1PByWeXtf+7D82rX17DG3RVLZbClu15Lp5eWC6tRd4C3PBC3YwanOlTYE1WIij0AnLdMs+P/7cXdrpInWWHf05ZwFITmFrsgDq/j7gD53idmz3OaiA9oln+7ZPxyWeVFe72TVicLpl1YlhltPqfRs9NvJ6PuxMcbbZFeEW/W+8iOT4TMILf1JvhnLezwPKvCHtCVsaB7bdmBnaViH5db74pllW9kG27FT3ufZW/WLkHhed6w69NmmH0e91fuER3JmKd9hheYIHPvS1aFPTssdO+i5Bk+zVbYSwQfpnxUw7PFEm9rcPrzdKXcZHxnSKn4ovBj9pzpzk8PVvyseSI+oK9Vbl6LDCn2plBhT1Rh7Ic/felstCei2DWSxRoXdnx2UOB2VqpT7EaE+GHBlJ1lz9PdHRaoDLuNqnhDTZpsINz02Lsr7JtDsW8PSLEX3R8UoEeEDQvO621P+P5Zs4M7eOq4jtw4g9zAVDGrIFLpEaHC57nRVnw/ZtmbuSqosPeGrBXfbCIM+7yGnYgvcsbSOYgowMv9Y9gxNFnz70MeE/EBXWVuOiu+RD6C7B5OBlFIcFqE1xt3F1Z4nvj6mV1HLOI9JJH12Btn2APOWqiMsD02FfbVUGFPVMEK8Z7KSW4qHsXbKmEsbuz47GQ46FF3DDsLYtZXK379hYgVmG4Ue8D+bxE3sHV77B0p9szR4KDH3udxd24V+7SgnngJezQiuj8oQI8Im0GhUGAKYb5UDiWNmqvBdZRtFqBnNYnEt2uRDc+zsZ+Ln+dGF/Z6eJ6HHnuT7AGy4nujUJSz4rebWPEH2Ki7BtjwGTPaEzhhUS8A4P6Xa9PxBz3OsAead9xd0WbcHaCvZ36o4aKQ4Gd4XmiFvbBum+USxGPenRm8xz5l1mPvJTyPFHszqLAnqhg2SbA//6g+AMCqF/sd2/H1n9dkin2YVny3ir3NSSZbCCOK+YKccNEblSu6Uez9tQePuzwQER/v582wSrEfJcWeCBdRsReLtzDs+Hbj7gB9Ax24Ys+vxa7HXk6xT8QiobSH1YMr9j7Msa9W7OXcC4Q5VnO9jbSZhOftZ60zHeEH54nodvzawn5owg/FvrnH3dUbVehn4ryo2JfKqsP9lvX7LJ0IJxVffL7M1kPu/PRwgMOmupgp9ikPaxX12JtDhT3ByRfL3AbdIxTipy+dg7ZEFDuHM1i7wzxl1YqhSe8hLU7g/TpWKrcPir1sYe+bYm91SGGzQY27CLfRFXvnVvxiWfXl9J7NsW9zGLaYikfAngY/U8NJsScayWBlJnZvexKJaIQf4oVhx5fpsU+4aPlxw6SdYi+ZrlxvkkjYsJnO1GPfXNTrfRZh976JKsW+kojf8MJec1o+8doAH8fGGGSCi6fwvIqS22TvMfbaxeq8dikf1XBj65+Tn1nvEEJ3FYRjxTdzDQD+tFrVDc+TzEYxUi6r/LkO2tXQajT+zkY0DUxdjyjVH8BUPIozDnOXjh+2FZ8t2HbFsJfQJN6fZZuKzwpUd78rYWfFt/lb4twq5yQV3/24O8Cf/vYJfiDi7HlTFEW3RvoYoJer6rGnwp4IF27Fb9cCSNM+h1XWQyo8j1nxA59jX3/KiF1wKkM/3G1scB6gW1M9zbGvtISZjrsjK74rChJ2bkC/t1cr9to9YlYDe+wB4A2z27F4ZhvypTIe2biv6t+4Yu+HFb/pFHsn4Xner914aGK3LxSpV1SzXJOgi9aCTSYBV+w9rO9s6ofpuDuX4XmieEdW/GqosCc4TF3vTscRMVi7zz9KS8f/q8N0/LCt+LZ96TwV34ce+7AUe5ej+5wqacVSmY+scjLuLh6N8N/lxwx5t4o94H9CP0Cp+ERjYQogcz21hTQGSVVVQQ22Xi/1VPywrPjma1NCcgpIs8ywB3TFftSTYl+ZFkCKvW/IWvFNe+wnGt9jD2gH3Uy1N9rx2V7Pm2LfnOF5+ri7eoq9fzZ3Y0uUk8MCqfA8mywnr+RsFHs+7s7LHPu64+7cheeJzzutc9U0/s5GNA1m/fWMM5bOQToexY6hDNbtHJX+mfwG0iyKfcG7WiPdY+8y3Z2RtEmd5Yq9xaY77rAHTuwldzqmhykXmQYq9gDQHsCc72yTWPELpTJ+/shmvNI/1rBrIMJHVOwB89nZQZAX5hvXS8V3M33DDWy9tbbiO+uxb/QMe0DvOfV9jj17Lqj31BXyVvyKYi84xJqlxx7Q++wfeGUvSkKgrJ6KP/XG3bH9EktzN8PPcXfG0GDfrPh8LxuWYm9V2Icz7s6pu0jc45FiX03j72xE0zBkSMQXSSeieFvFjv9XB3Z84/i8oLHvsfe+qWOhJnbFo9t0d4bdRpVt2qxCYpz2wImLo1M1iykXfsyQZzdKNwciumIfjBV/XwPH3d3/8l58568v4bq/vdSwayDChxX2vR3Vir3fYx2NiMpTPSs+2/gVw1Ls41bheXIKYjNZ8fVxd9577KtT8ZkKVnIceEs4D88THWI8Fb/BVnwAeNPiXnSmYhicyGPN9iH+dT9aJJs2Fb9sb8VP+1jY1yr2/ljxw0rFZwW7ZY+9DyGJ9cbdpYRsFCdrlfi8U499NVTYExym2Fst9ufxdHx5Oz4v7EOeY2+v2HsPz7OfY+9Vsa9/kslOyi177B2G57G/JxGL1LRi2JH2MRmf/YwOF1Z8vcfen6JHVdWq13lgIh/4WC8rXh/Q5hGzAzhi6lMuqzUzp/2eQmEFe99HI0rdTXLMxfQNN9iG50mPu2smK74fc+wrPfYmVvyyqhc6hDx5iT5tQHeITeb1AxQ2xWJ2Eyj28WgEZyytTscvlMr8/eZLj32TFfbMMl7fiu9fj72x7c9JkZmro9izz3PRYdK+U/jhgsV7nbVaeXFmjEiE56mqs98hHmyTYl9N4+9sRNNQT7EHgLcdNgepeASvD05i/S45O/7QRLhWfLsgDj/C82RtXLzH3uu4O7tDCgv3gdOTVp6I72LD2+6jishulG5CB9n3+KXYF0oqxH2xqupWy7Dpr4zaC9qaRzQPw5kCf/+xNTQdkhXfzOJthh9WTbnrsQnPc2rFb4LCPug59gD1n7qBHd7azbFn78VSWUW+VEahVMZwZR/VDFZ8QLfj3/fSHgC62BJRzBVUWcKahuGUgoRin/Szxz7nXrEvVIKNzd5n4r4uyMJV3orvwxz7OuF5gLO1qtqK70ztn+o0/s5GNA31euwBTXlmp78y6fj5YpknhobeY2/Xl+5FsZdMK+Wp+IGF59X/W5xuuPVEfOcFddpHCzy7UboJHdTDjPxR7EX1jx147W2QHZ8X9rRRnzawUXfd6Tj/PLfxUKVgrfhmY9TMiIeUim8Xnic7u51b8V2sc37DCvtcsew6wd7sdRLVNzoIdA4vdmyca+K9fTJX4hb3iAL0eCia/eT0Q+cgGlGwcc84Xh+Y5GJLT1sCUYfOPJGmVexlxt2xUXI+TI0wKvaOrPilikvSpKhOxvTxvUFazW3D85hA5PJ1LpTKfO02U+wTUf3vdJIJYjzYpn2RDhX2BGeYB91Z35BWVNLxZez4wxntJqd4PBl2gr1iX1/llkHvfaq/kEx6CIEDRAWqvvsgYeE+cHqizn6Pm8KeFdR+hudZKXP14D2PPo27E616C3rSAIC9o40J0NszQor9dIMl4osJ2/qIrXCs+CxTxAoWUhW8Yl//oFTait9Ein1HSv9b3NrxeY+9sG5HIor0lACiFlkrfjSi8PfRRL7IR931ticdt7MFRXdbHG9aPAMAcO9Le/jhg9dJRc067q5Yx97O4OKMD4nzRsXeSRFer8deURS97TPAZHy7cXde59iL61pnqnbtVhTFVYDepOF5Jju+TuPvbETTwCxa3XXU9bcdNgfJWARbBybx0u766dz8ZDgd93Qy7IRkHcW+VFb54uRknJsRfbGVnWPvLRXfamOWl1Ts5cPz3I8CZH+j14K6WCrz62j3MO7Ob8U+GYtgblcKALBvvDGFPVPss7RRnzbw4DyxsPfojvnPh1/D3ev7bR/HlWCbtTKMVHxVVflGzrrHXm5skh85K34RjSg8S8RtYW9mxQdo5J0XeJ+2xHtE7LNnB3GNnmFv5KzK2Lv7Xt5Tk9nhFrHgKzdRjgPb49VX7OuHLDthvEaxdz7uzmotCiNAjyfzW2Y1VTJUXDqyWJtRRzKGmMVhi5uRd0YRyY+8hKlC4+9sRNMgo9i3J2M4felsAPZ2/LAT8YH6ir1Y4HpR7J3PsXfbY19/ZJHdHHun42i8WPHbfLoBiaewbrIJ/DpgYOiHHVHM6dR6Jhuh2Kuqyn8vKfbThwHTwt69O2br/gmsXPUyvvjHF2wdV7piL2nFDzLgqVTm47osrfiOe+wbb8UHvCfjmyn2gL3ja7rw1JZB7HM4ptROxRQRwyz5DPsmK+zZPPsnNw9iWyWE1eu+TDz0cFv0BYHMRAM/R8kZg3qdjNot2DhD/BzLZ4Uenmf+XucHt0V3hze8v95ErWfYOW3N8DKNYKrT9IX9zp078eEPfxgzZ85EW1sbjj32WDz77LP831VVxbXXXov58+cjnU7j9NNPx/r166t+Ri6Xw+c+9znMmjUL7e3teOc734kdO3aE/ac0PbKF+AVHzwcA/Om5HXU3c3rKfni9ZvV67MUPfj2bluzvkJ5j71mxdxcE6D48z0Noncc0emZriwlWUif4GeIHiIcdEb2wb0CP/eBEnh/QkGI/feAz7IVCgRVwbqz4g5U1eSxbtA2BFA+16hELITxP3Cy3WVyPfhAqacVvgjn2gBig53zNKpTKPPW+prCXzByYyqzbOYILf/Y4rvjDGkffV2++uBF9ln1RUOybIziPsWRWOw6a3Y5iWcX/rtkJwD/FHmiuPvuiRBuFv6n4LBPIed++XX87c0+GodgHFZ5Xb9QdQ/ZQVqSmsJ/mB5gizXFns2BoaAhvectbEI/H8be//Q0bNmzAD37wA/T09PDHXH/99fjhD3+Im266CU8//TT6+vpw9tlnY2xMt4lfdtlluOOOO/C73/0Ojz76KMbHx3HBBRegVKI3gohdKj7jnCPnYmZ7ArtHsri3krRqxmDFiu/1BuKEeid/bNGIRRRLS5AMen+W9funUCrzm533HnubOfZ24XmSJ63sOXOz4W33Kalb7K9XFOftG0zN9CsVXzw8mV2x4u91qP74AbPhA1pLSaNG7hHhMsB7dvU1lDlZnChDjHHB7v364ETdx7KfLxueF6QVn60riWjEs53TzukUNl4Ue3HDnzJkIZAVH9i8X3uP7xrOOPo+3c4tU9jr9xzWpjWzvbkKewA4u6Lav9yv7Y1nTNHCXsZtISvOyMBEBDYFwa5FUyRvc4AkG9TsBbvDBa9z7OuNumO4OYQ0ijdu7odTlea4s1nw3e9+FwsXLsSvfvUrnHjiiVi8eDHOPPNMvOENbwCgqfU33HADrrrqKrz3ve/FsmXLcOutt2JychK33347AGBkZAS/+MUv8IMf/ABnnXUWjjvuONx222148cUXce+99zbyz2sqVFXFSEZOsU/GovjQiQcCAG59bJvl44a4Yh9eYV9PsfdrQyczx14scN2m4tuFH7FEVau/x2m4TdZDeF7aJ6WcJ+K7dDmwosevOfY5U8U+/MJ+z2i1S4BU++mBbsXXC4U0LyScv8fHhc/F1v2TdR+rW7zrr5fxSnhekPPS7RLxAflCVp9j32xWfOevJysiIkptcZBwEUg11RiqfH6cbvqdWPH5PSevK/bNZsUHdDs+w8sMe0ALaGQzzoMOznQCG3fHQj3NSAUw7o4dvjq5N9tlOaR4wRukYl/f4eB1jn29UXeMlIu2oVorPu2JGO52zyHxf//3fzj33HPxD//wD3jooYewYMECXHrppfj0pz8NANiyZQv6+/txzjnn8O9JJpNYvnw5HnvsMVxyySV49tlnUSgUqh4zf/58LFu2DI899hjOPfdc09+dy+WQy+kb+NFRbW57oVBAoeB+5mzQsGtzeo3juSL/gLfH7b//wjfOx388uAmPbx7Ahh1DOGRuR81jBse1YqQ7FQ3tOYsp2t+QyRdrfudE5eAiEYt4up6Yoi0gmULJ8ueMTGh/ezyqQFFLKLhYmGMR7W/JCn+L+P8zlU16PGL+eimq9jvzxbLU3ztRWYATUcXx85OKaYv/eNbb52NkUnve0nF375lkZSM2kfPnczqe1d4zyVgEvWntJrt3NBv6GrBrqLoIG8/kkIy420y5XSOI8GGKvbiGJiv7r4lc7Rpn99oOT+j3tM37xuq+BybYez9af72MVNbcnMma6xdjk9p1p+PW1xKBti7nitbrMqBnE8QjalN8BjoqheHQhPN1ZTTDnpcoisXq+0SisiZPZPNN8Xc2gv1jmlJf715tBivsFdX+3smC2MYyeeyrtGnNSAez5/Gydh81rx096TiGuYLqbR8EaHupYr6EiWwOhbbmOCjLFbTPd0Sx/nzr+0Rn7wszWPthb8XpOuFgD8QK2SjM32fssHI8499n2PgeyuS1/x+z2EdG2fpecLe+D1X2wh0J688EO5ScdPDcTRgcThPZ3JRf52T/vqYu7Ddv3oyf/vSnuOKKK/C1r30NTz31FD7/+c8jmUziox/9KPr7tWTfuXOrTyLnzp2Lbds0Jbm/vx+JRAIzZsyoeQz7fjOuu+46fPOb36z5+j333IO2tjavf1rgrF692tHjB7IAEENMUfHA6nsg44JeNiOCtYMRrPzjo/iHg2pPy17cFAEQwZ7tm7Fq1WuOrsct6wYVAFHs2T+IVatWVf3b9nEAiEEt5mv+zQmjee3nZPJF/PWvq0yfqz0Z7TFxlF3/rlf2an/Ljt39NT9j9erV2LhZe35f37oZq1Ztqvn+wZx2Dbl8Qeoa1u7Uft/+/l1YtcpZBsWmyrVu3bEbq1btdPS9IuuGtJ9TzIy7et42VL5/197a198Nawa0nzcxOoJ1zzwGIIa9oxnL1z0oHt2uvdaMv91zL3o9uj2drhFE+GztjwJQ8Nr6NVi183kAwMuV9+TOPfst3+NWr+3Tu7XvBYAn1m3CqtxGy9+9dof22H39O7Fq1XbLx+2svDdf2vgqVmVfkfirnLNpFABiKOezln/zeEF7TKGk4i9/XQWrQSybtmjXu/W1V7Eqa/33h8XgHu16nlv3MvpGNjj63p0TABCDoharnpfVq1djYkR77zzx9LPIbW4eRTVM1lRe6/Gss3v+ZE577h575GG8mq7/2OH92u94Zs2L2Lw/AkDBlpdexKo9az1ceX3crt0Ht0fwTEa7j7y2YS1W7X7B24WUtefp3vsfRF+TbIt37dZej5fXr8Oq/S+aPmbbGADEMDzmbp8hMjKpPQcTg3sARPDqlm1YtWqL1PfuG9C+94Xnn0Nxa+1ndHRQ+1uefv4FxHet8XSdRth76OXXtd+xa/vrWLVqa83jNlfuA5u3mv+7Hc9Xfv7gHuv7yNiw9pgnnnkWBZPnwYxNW6v3RI89+QwmNk3tdW5ysr7LjtHUhX25XMYJJ5yAlStXAgCOO+44rF+/Hj/96U/x0Y9+lD/O2Iurqqptf67dY7761a/iiiuu4P89OjqKhQsX4pxzzkFXV5ebPycUCoUCVq9ejbPPPhvxuHxo3bqdo8DzT2BmRwrnn79c6nt6DxvER371DJ4biuPHbzsNnYYemjtvew7Ytx9vPu4orDjhAEd/h1s6N+3Hz195Dun2TqxYcUrVvz27bQh48Wn0dLZjxYq3uv4dY9kivvHs/VCh4KxzzuUj9kTW7hgB1jyJ7o40Vqw4zdXvUV/sx29eW4vuGTOxYsWbAFS/vo/8ZSOwZyeOPOxQrFh+UM337xvL4ZvPPYQSFKxYscL29228bxPw+mYcvGQRVqw43NnFvtiP3762Fh09+rW6obx2N/Dyi5g/p9fVz5m5ZRD/+fIziLd1YMWKt7i+DkZhzS5g4zrMmzML//CO4/DN5+5FSVVwyhlnhTrt4e93rgd26Acmp7x1OQ6a3e7qZ7ldI4jw+c6LDwLI49zT34Ij52v3nc5X9+OXG59Dqr0LK1acXPV4u9f2tQdeA7Zqh6yFVA9WrHiz5e9+efWrwPYtOOSgxVix4jDLx6296xU83L8Ni5YchBXnHur4b5ThoY37gPXPY3Zv7d/MGM8VcdUz9wMAzjz7XEvb/r1/XAvs68fRy47AipMXBXK9Tnhp9av4+54tmHtA/efZjOe3DwNrn0JPu3afEV//P+5bi9fGBnDkUcdgxbHzg7n4JueeP6wF+vtRKCt4+9vPk54t/6Wn7wVQxtlnnoH5PfUr+8f+dwOe3b8Di95wKJ4a3gkgi3NPPwXHHNDt/Q8w4HntfrEfz/xBO3A4+7STcezCHk/X86/rHsLkWA5vfstbccS85tgX//e+Z4GhARx37NFYcdwC08ds3DOGH657HIglsGLFGa5/l6qquPwJrUA+9rA34Ml9WzB77nysWHG01Pf/5LXHgIlxvOXNJ+KUN8ys+fd7xtfixaF+HHyYf2uV8T304t0bgZ1bccgblmDF25fWPH7Xo1vx1+0b0TdvAVasOMrx73vqzy8BO7fj6MMOxoozDzZ9zP8MPIdXR/fj8GVHY8Xx5q+Zkf8beh4Y2Mf/+4hpsM4x57gdTV3Yz5s3D0cccUTV1w4//HD86U9/AgD09fUB0FT5efPm8cfs3buXq/h9fX3I5/MYGhqqUu337t2LU06pLvxEkskkkslaSSwej7fEZtjpdY7lNcV9RntC+vveeugcHDKnA6/uHcf/rd2Dj79lSdW/D1fSMGd1pkN7zjpS2muWL6k1v7Ooaqd7qXjU0/V0RvQNYxERdJj8rFzFwNCejLn+XW1J7fvM/pZ4PM57WtuS5q91W0r797IKKJGobRAQa1Fqc3HNXW3a854plD09t2xKXUfK3eesu00LuMvkS7685wqqthFMJ2LoSCfR0xbH8GQBQ5ky5nSHtw7sNSSYlxDx/Pe1ylo2XVFVlQeazu1p469VJ/+sWb/HrV7bjNCH+Ppgpu7rzz6L7TafxURc20aUVSWw91O+rH0O2xPW19IhrMtlxfrzwbqirNbNsOmuvJ4TeedrZ7HyvBjX7Hg8jlTldSkG+Lo0OyPCpIGyEjU9hDeDhZOmk/b7ISZoZEsq9ld6+ud2twX6nLtdu884og/x6IsolFTM7+3wfg+p7ClUxdueyk9Yu3+q3lqR1j5zOY/7lUy+BBYtMqdbOwDKleR/Jp9oYfE+Y1lD+RJ8f37Ze4hFAqQS5vu+VCXTpQR368h4pRe+pz1p+f1pF2uVMcugMA3WOdm/r6nD897ylrfglVeqrX0bN27EokXaydWSJUvQ19dXZUvK5/N46KGHeNH+xje+EfF4vOoxu3fvxrp16+oW9tMN1nflZDSdoij4aOUU8b+e2FYzF3m4simdEeK4u/qp+P6E58WjER6qY5VWykPgXCbiA+CbEMtUfJ7YXj8VH5ALt/Eyx96v8Dw+ItBl4CAfu+dXKr5hUkCjRt71jxjD86ZvINZ0YTRT5Bs/MRXfy7g7MTxveLKAkUnrnj32HjOOUTPidRySDDLhebGIwu339QL09PtAc/QE+5GKb/Ya8akq03i+MwvwBeSTxUtllRdr9UamMdi4u32jOZ4O34zheYCWTH7TRcdj5XuOwgIbJ4IMbO/RnKn4EuPuiuWafasTxADT3vbKAY+DEDe7RHqZoGavSI+7c/kaj7JMhzrj7lIu1io+KaXOnn+60tSF/eWXX44nnngCK1euxKZNm3D77bfjP//zP/HZz34WgFZYXnbZZVi5ciXuuOMOrFu3Dh//+MfR1taGiy66CADQ3d2Niy++GFdeeSXuu+8+PP/88/jwhz+Mo446CmeddVYj/7ymgs+cTzu7Ib3n+APQkYxh874J/H3TQNW/sZuq17EqTqifiu9fGjIfl2KxuWYLvtt0d8A+5Vl2jj0gl2jqpbD3a9wdS7NnScPur8OnOfaV55il087prIy8Gw03GZ+l4vPChRJgpzwDlaC7jmSs6jPO1hQ3432Myevb6oy8y/Jxd3ap+NqbslgO7j2ZEcZgWqEoCn+e6hUa2UL9A9GwYRveUQ+FvdmaTePu9FR8QP6eIB5QWaWVi7RVPo+vD2r9r22JqOuD6TA498g+XHTSgb78rERTFvbyc+xLZdVToj8TcNoSUa46OxlNZzfuLiUxWtkrebtxdx4Pbh2Nu3PwPmLPyUw2jYD2RBzHd7Zbb70Vf/3rX/l/f/nLX0ZPTw9OOeUUHljnF29605twxx134Le//S2WLVuGb3/727jhhhvw//1//1/V77/ssstw6aWX4oQTTsDOnTtxzz33oLOzkz/mRz/6Ed797nfjwgsvxFve8ha0tbXhz3/+M6LR5jixbwaGKjPnZ7Q7U9c7kjG8r9ITc+vjW/nXS2WVf6DD7EWWUuxdzGk3kraZgzrpUXkGxI2Z+e9gX7dakGNCP6HMouxlw8uUtAmPY+bG+Qbem2JfKKm+bDayheriphEj77KFErdks35PUuynPoN81F31+smK28lCybHaNG74fG4dsA7jqacGi8T4xq+x4+4AQaWu8/lo3jn2ztfOTJ3nxc1meaoxKCj2soqeeAguNe6u8txvr0wuaVa1PgjCcOs4hR0wxurOsdc/+17upRPCfsXNCD32vLEJFkaYoBDk/b5gc7gQj3kdd6c9R/XG3blxF7F7AqsvnByoTHUc39lWrlyJdFrbXD7++OO46aabcP3112PWrFm4/PLLfb/ACy64AC+++CKy2SxeeuklPuqOoSgKrr32WuzevRvZbBYPPfQQli1bVvWYVCqFG2+8EQMDA5icnMSf//xnLFy40PdrbWW8zJz/yMmLAQD3vbQHOyo3t5FMAWzP6cTe75W6ir2PSg3bSFkt4hMelWdA2JhZnETmbaz4iqLwxVqmyPWk2CfrH3TI4nWOfZtw7X6o9kZXxOyu8K34zB2QjEX4wQIp9lOfAYvCnq09pbLquGgbr2yyWDH5+oC1Yl9PDRZhxU8xBCt+PcUeEA9261nxK59pF+tcEHRVXgs3in22nhV/ms+xz+RLVe+DTF7u/SlajuN1ZqEz2CH0nso6PbPd47iSFiIRoCskWyjhn29/Dv/znLMJPYWitvG0KlTZv7HsbC8W7sm8vs+zE3vM4Gq5hciY5op9cGsrO5C1Foi8Hd4wK353HSu+G3cRuyewg7Tp3HJkxHGFs337dhx8sJZseOedd+L9738//vEf/xHXXXcdHnnkEd8vkAgHZsV30w9/8JwOvPXgWSirwG+efB2AflDQmYxJ9an5BTs1LZbVmo2mnxs6vffJfCHyRbGP11/s9L/H+vllm24pxZ7Zzl08P+zv9KqU8xYGl9kEsWiE36D86LM3KvazO7RN274QFfv+ig2/rzslHFzRTWyqwxT7mUbFXvh8OrVoMsWeJezXU+x50WjzWYyHoNizzbLdeiqjUttlk4QNs6i6Uuyleuyn5yGg2F8PyBdcLNciFlGkUvSNh02zOqZRYc+EgwAO9Z7eOoi/rN2Nnz7obFRygSn2dV47RVG4Gu7l8zGR09cl3rfvYE22s8GH0WPP1kPbHnuX6zs7sKxnxa8nyFnB2rOYYk899jqO72wdHR0YGNB6qe+55x7ep55KpZDJZPy9OiI09PA8dzayj1RC9H731OuadXgi/P56oLrf3LhI+GnBlO6x9xKeZ2fF5w4E69/BbhhyVny5nlozxM2NF6Wc96x5yCZgz/mkx7YAoFaxn9NV6bFvQGE/t0so7KfpZn06YWXFFw+vJh1uZljxeOR8bRTXtrqKfXW+hBUxB4eHbmFril1bgIxK3XxWfL2wd9pawZS8FFnxaxiccFfYs2KrnpVbxHivmjWNrPhB9tiPViYaOM3t4WFwNp9vrob7odgnorqLU/K5KJdVfohkVdi7sfc7xS48j7UJuFnfc0XdNVMvPM+pu0hVVX7v66Ue+xoc757PPvtsfOpTn8Jxxx2HjRs34vzzzwcArF+/HosXL/b7+oiQYD28PXU+fPU487A5WNCTxs7hDP6ydje33YSZiA9Ub9ayhVKVpTsrUQjLYttj70OBKm7MVFWFolRvNOx67AF9sc4X7TeMzMpkt5G3+j2JaAT5UhmT+RJ62hz/CAD+HIi0JWIYmiwEotgzK3yYiv2eSiJ+X1eK31y99Nw9smk/BsPN/iNcMFAZcdhrUii0JaLIF8tctZCFKfbLFmiK/bZ6ir1kXzuzK7NNahBIW/FtXE6A3IFomLDe01JZxWS+5KgNqa5iP82t+MOGiQ+y7haZVHUR472Keuz9gU2JcFrUFll4nk0bRcqHNPVxoXUwbSP2GJHJcki5sPc7xc41EHfQzmmEHSQriubetYKtxbLFubYn1v439djX4vjI+ic/+QlOPvlk7Nu3D3/6058wc+ZMAMCzzz6LD33oQ75fIBEOwx4T7GPRCP6/N2tJq79+fKunnn0vRCJ6X3mQir3daa8fBSpbaFXV3AZl12MPCIuyg/A8N1Z8QA+u86LYs2wCLy0M7T5cByNneE54eN5oeD32umKf9KzYb9g1ik/e+hz+69XmKGoIawYnWM+uSWEfZ2GV8psZVVUFK76m2O8dy1l+TtjhkW2PvQdFR5aMdI+9/edDpoUpTNLxKKIV27BTO75cj/30VLIGa6z4sqn49j3aIsaDr+nUYx/kuDv2WXBaeOuKfX3HRcqmnVIGsceerSfZolyoqbgns7PiB1m06uF55s8X20O6ObhlAdodyVjdthaZ0FMR0cWhjxmkwp7hePfc09ODm266qebr3/zmN325IKIxcOu8B4X9AycsxA2rX8ULO0aw4JW9AGptpGGQjGvKsfGDzpUaHzZ0dhYpfxR7/TpzxVLN4i8zvs+RFb9YrU47pS0exTAKnkbese/t8PC8sUOBSQdFjxXGwyBmxZ/IlzCRK3oaZyiLaMV3u9lhsLF5e6yFWqJJ0MPzagsFVkw4+axlC2WUKpuzBT1p9LTFMTxZwLaBSRw+r6vm8RnJcXdew5Vk0FPx7XrsW8+KrygKOlMxDE8WMJYtoK87Jf29dVPxp3nbzrCxsJcNz3Os2Fe/J6eTYh+kFZ8p9pnK9A+jY9EKdjATs1Hskz70r4s99qwIV1Vtb2Z3ICo+Z5bj7nw4fLBDT+a367F3fg2jEqPuAGHdlvw72YFKIhbh+z3ZFojpgONd6cMPP1z330877TTXF0M0hmKpzEdSeFHYZ3YkccEx8/A/z+3Eqhf7Kz8vXCs+oBW6YyiaKPYNmGPvQ489YH7jlAmB4jNIA07FB/RDDCcqohE+PsbDNAGm2E/4oNgbXQwdyRjaElFM5kvYO5bDkhAK+71CeN6OIS3HxK0Kx07+J0sKMvkS4vHwP5+EHFbheYAwy15ShQSAsZy2yVIUTfleNLMdw5PD1oW95Lg7PRU/wPA8h6n4Vp8PVVV9vQ/4RVdKO2RxmowvN8d+eipZrnvsJRVfhvFeNZ3C89hnP4jwPLYnLVcci1Yj4YzYjW9jpCsHln712IufwVzBvrDXD5AUy0MLu+lLfmAXnudkD2lEH3VXf5/hNDxPbM1KhRAw2Go43pWefvrpNV8T35SlEj25rcaoYP9z22PP+NjJi/E/z+3k/90bshUfsFbTcx4VaZEw5tgrioJELIJ8sWw+vk+mx97BDFK9iHWp2HMV0Xt4nlEFcXYdFcU+gB57QLPjbx2YxN7RLJbMavf8O+zgqfhdKWGcl7u/Tfy+PWNZdLXLq4NEuFiF5wH6+uPkEI2NuutIxqAoChb1tuGF7cOWAXrOU/EDVOwrBxi2c+xtAuMKJZX3ZjaLFR/Qxw+OOrTicycDWfFrGDIU9rJrpmyPNsN4r5pOhX2wir3+WcgUah2LVrDXzy780I+CcEJwZsajEcQiCoplFZlCCd2ov5fWR91Z/11O+/bdYOdQ0feQzg9u9VF3ck4r2deC76/jUaQTwQcMthqO72xDQ0NV/7d3717cddddeNOb3oR77rkniGskAkYcTRfzOJrumIU9OOaAbv7fPY2w4ltsaPxUauwKez/m2APWf0u5rHLLmVSPvQPF3u3z0+bCHmyEK/YenA7MJTERQCo+AMzp1IrhfePBJ9CpqsrnI8/tSun2WpcbKdHS1z9CCXrNiqqqlnPsAf3z4WTDxzbKLMRo8Uwt4dJs5F2xVObri51iHwth3J24kauHPuLNYpKIoF43ixUf0K2qbCMsi374Uvu3TPdUfBYIzHSnoMLzjJ+PaWXFr8xfD0KxHxPcK7IzylVV5dciW9h7aVWZNDgznYTd2YXWOf15bsnbWPG9tFrJjLoDnK9Vk9zZGeNhz1TY6ziWxbq7u2u+dvbZZyOZTOLyyy/Hs88+68uFEeHBetF62v2x5X705MW48o8vAAg/FR+wPonV05D9C8+zmlnqh2IPiG0F1b9HvJEm62x2ZWeQihZVt1b8dq6UuyuoS2WVF55eetdZS4Cfir2o7s3mAXrBF8ZDkwW+AZjrs2LfH2IAIOGMiXyJv+5mhYL+Hpf/rLHgvI6KOrxopuY2eX2wVrEX+xVtw/MqoUjFchjhefXXBavgVIb4ddlwtDBgir3T8DypOfbT1IrPBIs5nUnsGc1J3w+cWvEjEQXpeBSZQgmKoqd0TwfCVOxlKAkBb3af75QQdueWCcO6lIpHMZ4rSt2fc1KFfQjj7or1wyITnnrs5az4TtuGxNasZAg5BK2Gb3e22bNn45VXXvHrxxEhMjShnar5dUM6/+h5XGWa5yAIyC+sVO5sEHPsLa34Piv2BXP3gfiYet9vtyjnqjby7p4fN4FeImJPvJfnjSv2fvTYmySD88I+hJF3/ZVRdzPbE0jEIo570YyI71f2s4nmY7Ay6i4Vj5gWs0y5djLHfkyw4gPAIqbY769V7EV10269jMfCU+xtrfg24+7EXBLZMK4wEGfZOyFTJ1TQaSDVVIO1sszvSQOQLw4LNj3HZrD7VW9bgk84mA6wJPVAxt3ldMVetmgTk9vt3Kd2OUkyMFcgW1OZc0bmvSbjDEkL9/tyQONE7RR7L1NPpBV7iTGlImILUhiHH62GY1ls7dq1Vf+tqip2796Nf/u3f8Mxxxzj24UR4eH3aLpUPIqff+wErHl9GMcfOMOXn+n09wN1FHuXirSIbsU3X4gmfOgVB6wXPPbfigLE6mwkZMfdic+Vd8Xe3QLL+utjwshCN6T9TMU3cXnM6WKFffCF8R4hEV+8Drc3MdHSuCeEgwnCHQN81J15vy5ve3HSY88Ve22TxRT7XSMZ5IqlqnYTcYyaXQHM1p+mGndnofzkCv4d7voJm2XvNDyv/ri76W3FZ3Ps5/ek8fzrw9JrJjugclLYswOn6WTDB5pPsZeZDc/wI3Gej+etHOw4sYXLWPHFg8xsseTZAWqG3UGW6Pp0Mp0A0Mfdddn22DtrixDvB2GMBGw1HL9Ljj32WCiKUjOn8c1vfjN++ctf+nZhRHiwD5+ftvnjD5zRkKIeqKdyBzDH3qSILVXCUwBvveKA9UY1L6k88dRamxsvu7lFI4qjDY1I2mNvu9hf70VN81WxN0md5j32YSj2QiK+eB2ue+yF7yPFvnmpF5wHCIdXDg7RxitFI+uxn9WRQHsiiol8CTuGMnjD7A7+WLPQSCv4nOOAFPtiqcw37LKp+FbrnT7DvnkS8QFRsXeXil8/PG96bni5Yl9ZO2WVWdZS4uRwmR1qT6fgPCDYwn5cLOxlXzthDbILP+RFuIfPB1t/2evvJMU+L5Hen6o6bC0jiC4PW8VeuL5iWbU9MBGRHXfntC2C99gnYr5kJUw1HBf2W7ZsqfrvSCSC2bNnI5WidOVWhSv2HhPxmwW9+DGm4vvYY18nUVU8OfQ659zOim8XdCebWM038h6eG2ZH9KrYe33OeP+xD4p91iR3YE6IPfas+GaKvVfbmbhB6g/h+gl31AvOA/TDKyfj7sYNtlFFUXDgzHa8tHsU2wYmqgp72VF3QPCp+GK7gddUfD/vAX7SxVLxMy577E3C81IO7a1TiWyhxJ8bp1Z8VqTaha+JtHHFfnoV9rKOQDeIir1swcfWoGhEQcSmJcIPC7cx7FdX7O2fD7v58YCW38AmIwWhSIthg1YFu3jwUCiVHQk/bMpHt22PvbPifJKve/q4u3ypjFJZnVatMFY43kEvWrSo5mvDw8NU2LcwLD3WLyt+o9HtyubFsFuruUi9HvvJygY6onjfQFon/Mu5DxKSPfZmveROafMYnudHIj7gn2KvqmqVM4LBrPhhpOLvEUbdadfBVAa3qfgUntcK1JthD7jLsxgzhOcBWjL+S7tHa/rs+ehLic9iLMA+W0A/jIpKtOjoqfgWhX2zWvHdKvZ563Xb6WZ5KsHEilhE4Q4r6R57F1Z8dhht9XmdqgSl2GcLparDAquQYiNsDarXnsioJ87IYhQjUg6mlciMu2PXmS+WAxl5Vyrr4z+trkMs+AtFFXDwFueKvYPwPBm7v2jFF11luYDaFVoNx3e37373u/j973/P//vCCy9Eb28vFixYgBdeeMHXiyPCgaXiNyLBPgisFftwrPhMGWtPxDwHNCVt3Ad2s10Tkqn4+gx7L4U9K6hdhufxEYEeFfvKwu71RlgdKFhrxR+cyAdiQRTRrfjJynXUH+dlh3ggsH88+Osn3GFnxWfvcbdz7Bl6Mn51Ye9Isa9YXosBhTuJo+7s1lM7+7mfI0/9xE0qfrmsTzKxs+IbWyenOuzz09OWcDwasiBhkTbCnv9Z063HPiDF3vg5kFfs6ye8i/jSY1+j2MuH58nu4YIMhxNfN6vriEYUPjLS6eush+fZ9NhXXouyKncfEcNUxXaFIA4/WhHHFc7PfvYzLFy4EACwevVqrF69GnfddRfOO+88fOlLX/L9Aong4an4U+S02Uqxzxb829TVO+3lG1GPifiA9fgmMyXZjLjN+CeG2Vg3p7R7LKgnDP1qrq8j6e2AgSEqXeLz3JOOc0Vgf8CqPbPizzEo9u7n2Fc/J2EEABLOGaik4vdaFAptHqz4nSmxsGez7KtH3tVTgo14SU2WgTmA7Gz4gAMrvod1LgiYouUkPE8sdsyeG/ZcyG6WpxJsT9PbHnc8C7xgY00246SDZiIRjeDEJTMdXmlrE5Rib3SuZPKSqfiSM+wB7wWzqqp6j33SRY+9ZGHvh7PACjbqDrB2qCiKwg9vna7xTsfdAXJ7G/2wN8bbFQD3TsaphuMd9O7du3lh/5e//AUXXnghzjnnHCxevBgnnXSS7xdIBM9wxS5j1wfTKlgq9j4Ur4x6i+2EoNh7JWmh0OYD67H3oNizgtpleN4kV+y9HYh4bQlgsI2zMVAwElEwuzOJ3SNZ7B3L8R7OIDBa8T0r9obv6x/J4oAZbR6usPXZsGsU+8ZzWH7o7EZfCmeQp+LXL+ydhedZF/bbBoxWfHnFPhbRXUFOU5NlyAjqjB1WrUsMP11bfuJGsRcPUM3W7WS8erPsNhS1FREn/dRz15nhxop/8VuX4MNvPrDpnCBB42XGeT1qFHuHqfgyr13S4YGPkVxR6+kGzHrsZcbdyb3PnB5MOYE9X/bTlRTkS85eZ1VVHVvxAe2567BxbWZMnBL5YplG3lVwvNLPmDED27dvBwDcddddOOusswBoL2KpRE9qK6Jb8ae2Yu9reF6deaXGU1wv8JTnksXfYnNIwdU0yVR8tzPsAVFF9KbYe+2R4oq9x/C8eoGCeoBecIp3tlDi+RdB9NgDwG5Kxsen/+sZfPxXT2HncKbRl8LRrfhW4+6cu2N4j31S32QxK/6OoUmudgHm0yCsEJXNUgDKsDiz2A6rg1BGzkfXlp+4mWPP1tlkLGIaFCbakd0eBLYqrLDvbUs4Vjx5n7bDg5Bme0+FQXCKffXnQHZPUXRwKONVCRcFjLaaVHz75yNfOWS0Vewd/EyniAchdacrSWY1ieSK+jQTOyu+ouiquxPFnj03ViOupyuOd/Hvfe97cdFFF+Hss8/GwMAAzjvvPADAmjVrcPDBB/t+gUTwDE21wt5EsVdV1df+ynqnqH6FwAHWAUi8P8suTEryRD3nY3heoxX7dp8U+3qjsWZX+uz3Bjjyjo3TS8Qi6KnkX3hX7Cs9uVFtAzTdR96Vyyp2jWSgqsCmveONvhyOXSp+2kVAJO+xFzZZ87pSSMQiKJTUqkOeDC/s5cfdAfZZHm6YFIKS7Gj1VPzxXFH6cIS7Kiyel4gQNjjdkvHF9kKnc671HntK17bDSTHmBKMVX/Z+V3BkxfdWMIsHjiyJ3Ym6zorepJ1iHwtOsS9I7iP59IOi/PrO1PqIAlsFHhAnQNn/ncZx0k5aIKYDju9uP/rRj/DP//zPOOKII7B69Wp0dGgjcnbv3o1LL73U9wskgiVbKPGFrad9aljxzRR7UfH2okoz0sJNoWzYiPk1tg2wtpbm6xSdIvo4GrvwPD8Ke2/j7saF2aReEK/D+No4oa5iX0nGD7Kw7xds+Ow03atiz26IsypDTKa7Yj+WLfJUYGOAXCOxS8V3GggG1I67A7Ti78De2j57J+F54ia6UPa/gGQ5AjLrgrQVv0nn2APV87vrIeNksHs+pipDQiBwWnCSyYQIOrFzT3eCGnXpVrF30kbhtceeHaqKQoSTnyl7rbxoDSAYzm6GPYMV/kUH6zsPzkvHpdqz9BZaBz32LsYMTgcc76Dj8Ti++MUv1nz9sssu8+N6iJBhN8BoREGnD4VoM2DWYy8uFn4q9uxni6qJr4o9n0VsnopvG54naZXzx4rPlHJ3NyC/DkTE788USq5/Xr1JAcyKvy/Iwn6kur9euxbt9SmVVRRLZcd2UbbhmJ1SsX1C4T3805WRjK4MbW+Swj5bKPHPkFV4XruLz5pZeB4ALOptw6a949g2MIlTD2HXUHF2SKxhLFgJ0K2wfmK0XdZDPhW/uYq2RCyCVDyCbKGM0WwB3RITajIyhX08grGc9fMxVRGnSrD3japqr7/d4TULFIs32XukGUlYtAp6ZSzntrAPb9wda/UTDxyduENkU/GdOk6cwPaFdkGRcRcjTUdYcF5KTjDUBTn7v5O5QtOV5z7IyQGtiOsd9IYNG/D6668jn89Xff2d73yn54siwmOYzbCXPFVrBcwUe2ZlVxRnabdWiJuDTKFUtemc9CndHbC2lsqGQDkOz/OgZLGTa69z7Ns9HogkYxEoiraRm8gXXRf2uTo9cGzk3b4AU+VZ0T23Wy/sxUOpbLGMDseFvfY+mF3J+9s90jx95Y1ALOxfH2iOwp7Z8ONR68NWUYUsl1XTHmsjZuPuAL3Pfpug2DsJz4tEFEQjCkplNZBk/IwDKz63BlvOsW/Owh7QVPtsISedjJ+RWLOn6yx7sb1QdFxl8iX7wp4Ue2n4uLuArfiySixTlO2KZcAPK36tgOOk11s2FT8ZYNFakFTsXVnxuWIvt/9y4i5iax/bKyY9vpZTDcc73s2bN+M973kPXnzxRSiKwq1NrCikAL3WQk+PnRo2fMBcsefj3GL1Q0JkiVZGbOSL5ZqTVHaa6Me4u6TFRlV6jr1k6Ikvc+zjscrvUpEvlqVuriJMsW/zqNgrioL2RAzjuaL2Mzvd/Zx6z8nszhCs+Fyx1wPUqsbCSKTHGhEVe/F3TFeqCvsmUewHx3W10WqtahNUyGyxZGtTzxVLXFXrMCj2i2cxK77+97NiWtayHguwsPe3x75U9bhmojMVw76xnHSAXrZg/7xMeyt+exyxaASJaAT5knavnmHzvbw4pB57W5KSjkCnsM8Ac7E4teLLKPZc5XXpZpkwcRimHRSYTsfdBavY17+GmIuWC56IL63YO7fiswPuIJ+jVsTxkeQXvvAFLFmyBHv27EFbWxvWr1+Phx9+GCeccAIefPDBAC6RCBKm2E+V4DzAQrH3MTiPwRcTgx3WX8Xe3FoqO+4uIWmh4uqPh+dHdC24mWXvl2IP6JtdJ+FiRnQXQ71U/OB77OcKVnwxEMtNn72xsN8zlgskybxVGM7ojrPtg5NSPbhBM1AZdWeViA9UK+kydnyxb9u4LrEee9Gx4KTHHtA3hoFa8eMSPfYWrUuMZp1jD+gb4NGMM8W+XotCwqY1YarCw/Mq+xq2hkuFmlVUSadtTtMR3RHo7+eeKfbsAN1peJ7UuDsHo+nMMFPs2bois/+RvdYgi1b2utmF58nuI0WcFvZOgoEzhglKZMWvxvHK9fjjj+Nb3/oWZs+ejUgkgkgkgre+9a247rrr8PnPfz6IayQCRJz3OlUwC+EIYn6xVY+Wr4q9RaBIXrbHXjIVuV4RK0siFuFtDm4K6kmfxt0B+im6235/oP5hEAvP2z+e8xTQVw8+w16w4gP2I72sKJbKKFaudWYK3D69fzy4w4lmR1Tsx3JFftDZSOyC8wDtgMfqYNEM1l/fntATnBmLmRV/cIK/l3Urvtx64KYHUxbjzOJ6tOoce8D5LPtM3t5lxe8f08yiysfdVT5DTmbZkxVfnqDH3bGWt0DG3Qlj5Nwc6LLxvB1mir3EQZrsHi4V4Gc4X5IbuecmJHG08hrKW/HlFHtVVWsOVbyMu/v5I5tx5g8exM0Pveb4e5sVxytXqVTiSfizZs3Crl27AACLFi3CK6+84u/VEYGjK/ZTx4pvNjYjCKVG7HMVCUaxdznHPsRxd4C3AL0Jk9Ru99fhLaEfqH/YMasjCUUBimUVg5P5mn/3AzEVXyTpMgFWVPiTEWB2JZhtOtvxRwzqaDPY8QdtRt0xnLzHx0xG3TEWzEgjGlGQLZR5a4nTzI1YQMod4DQ8T3tMvmi+WW/WOfaAfrg+JLmeyLgqpqMVXwyfZM8puy/JpZWTFV8WMTzPT7cTW69md2gH6LL3On2igXwKO+Du88EFHDE8z8EBEk+kl0zFd+OCtL2GotxBiOx0JRGm2HenJa34kqp7rlgG01LShlR8N6/j7pEsXts30RSH+n7huMpZtmwZ1q5dCwA46aSTcP311+Pvf/87vvWtb+Gggw7y/QKJYBme0j32teF5XqzmVr/HuOD6O8feJhXfzkIVk9tw+5GKD+g2ejcBevx588HpwFPDc35Y8WuvJx6NoLeyaQzCjq+qKvZUfu5cQ2GfsrEbWyG+T2MR3QkwnUfeNWNhbzfDnuFklr3ZqDtGPBrBgh4tTZEF6MnYvKt+RsUF4GQckiyTEr3kDPGg0yypu1lT8QHdobF/XK6wlwk4tJsSMBURJ/10pZhVV/4QjBR7ecTnyM9DPWbFZ8442aKWKfYybRRiqKIbpZftLarH3ckXmLKHEKkge+wlDxfYhIiCg8KZh+c5TMW3e+7E90Jb3Psc+0kfW0CbBccr19e//nWUKzfv73znO9i2bRtOPfVUrFq1Cj/+8Y99v0AiWIZYKv4UsuKbnfzp84v9tOKb9+35O8fe3IbFFmS7cKtEiKn4gFBs5NzcKP1zOrDDgQlfrPjm7xnW/7cvACv70GSBW/XmdFX3WptlSMggBkhGFN0J0D+Nk/GN/czNUNiz8Lx6VnxA/5xIWfG5Ym++yVo0U+uz31bps3caphmXDOl0g5NU/KpwSZMNYhD3Ab9g64lsa0xGwsngJJBqqiD217PwSat7tRlOZqFPd8TPm58j72oUe8mDqYJkoQpoxT8L2XOTpj5h0jropD1KD8+rv64F2T/OCnW70Y7MveJojj0bdyer2EuuVeygNxGN8AMcJ9kGRiZ8Cm1uJhz/Jeeeey7/3wcddBA2bNiAwcFBzJgxg9vyidZhWBgLM1Uws+UEEp5ncUoYjGJvsOJLjm3Sx5RIFvYenx92mJEpeFDsfXje9Dnf7hX7nM1hx5yuFF7uH8PeAGbBM3t8b3ui5j1rNvVBBr3dQntPzK0cGOyexrPsmWLf257A4ES+KWbZc8XeYoY9I+3Eip/T/k6r8XmLZrbhkVeBrUyxl5iRLsI2yMFY8atnFtdD3NDnCmWg2uwSyH3AL1gRI13Yy4y7c5nH0croo+70gsKJosdnoZMV3xbx85YvlgHrvE9HsP5sdqidlSzYnL526XgUY7miKzXcTOl1FtLY+FR82YMQV1Z8h+PuZJ2IGX4/EJ531p7owpk0rRX7L3zhC5b/1tvbi927d+OMM87w5aKI8Biaij32JiecolrpF7ap+L4o9uaFufwce+0GZ3eazk6svSpZbS4V+1JZ5dfgx/Pm9jpEbBX7juBG3u0xScRnuJ2/awzb0hX76VvYs766oxZ0A2gSxb6Sim+n2Lc5aHuxmmHP0AP0mGLvzMETZCo+V+wlrkVRlLr282aeYz+rk1nxnRX21GNfDcuomCF8fpwoqU5U3+lOJKIIh3p+KvbVqfhOx93Jui2SHkLXzJReJyFusjPkrUKa/YBb8WP1D0J4VpMTK77LcXd2+xqz8adu90SA3qY2lRR76ZXrv/7rv/Ctb33L9N927dqF008/HX19fb5dGBEOw1MxFb+yQBTLKoqVhSuI3kqr3ic9VMWPVPz6Pfa+zbH3OTzPqSVK7BP2RbFPelfs7YobpibsC6Cw14PzaiUQt32z/DWOscJe+9nTubBnin1zFfasx76+/OUoPC9nHZ4HAItYYW/ssZcOzwsuFd/JHHugfjHrV0hoEMxiiv2YZI89t+Jb3wOmoxWf7Wl6hT2Nkz7lPFnxHSHrCpQlXyzz9+vsDu3wWbZgKzoIzwO82dzNFXv982Y3LYcr9nY99hYhzX4gP8fe+frO7q3yVny5fY1ZmGra0+vIWkCb757gFukjiv/7v//D29/+dsycOROf/exn+deZUj979mz87W9/C+QiieAY5j32U0+xB7QFNhaNBDvHPtBUfItxdyW5v0c/aZUNz/Na2LubH8/662MRxZfDFz8Ue7vnhM+yH/O/MLYadSdej9PxN8aUf/az+8mKj2WVwn7XcAaFUrmhm3rZ8DwnEyjsFHveY79/Eqqq6sFsdYpGETfjkGRxkooPVFS4bNH089HM4XmzOqpHaEYi9Tf8zhT76WPFH2Q99u36nsbJIZhs3zGhkYhFkCmUfDs8GhcCb0XFXlVVnplgBbfiR+ReOy9K74RJlpL4WcwVy3XXrLykYp9yOQVHBtnwPNmsJhHWTuE0Fd9uX2OWueJl3J3ZdINWR3rlOvXUU/GHP/wBV155JX77298CAPr7+3HGGWegt7cXd999N9rb2wO7UMJ/VFXFcEYPmpkqiH3i7GaTMxQ1fiDOQWWoqupruruV+iQ7A1UcR1MP/vx43My4HTMn9tfb3bydXYeHHnubdgc2YzeIVPx6VnwenucyFT9p7LEfyfo6qqiVYIX9wXM6kIxFUFa14r5R5ItlHhwla8XPOEjF77RQ7A/s1Qr7sVwRQ5MFXjTKHoTGKxvpoo1K5QZ2LbIbr7pW/CYu7GdWMhWKZbVmWoMZbI2V67GfPor9kElukBM7MwsIk1V9pzt+z7JnNvy2RLQqcV7m4KBQdua28GJzZ3sWs1R8wF5h1xX7+mtskOPumOBjd4jltMdeVVXXVnzb8DzemmXWAuH8Pch+nh9jlpsFR3e3888/H7/85S/xyU9+ErfccgvOOOMMdHV14e677+az7YnWYTRbRKmyEE4lxT4SUfgJI1uwg1Tsq3v5y2A1kq+KveEm4XiOvWx4nm9z7N0p9n7014vX4SUVX88dsLHiB5CKz+zxxhn2gAfFvvIeYO9bdjCRL5Z51sZ0olRWeRHd0xbnxW0j7fjiqC47pUMfd+ddsU/Fo5hXcXBs2T/B3/uyKnmwVnxnrU0yVny7aSKNIBmL8tdcps9eZiThdLTis8+Q6HhJOSiOKBXfGW7U3HqwNbkzFavaj0gdyoRoxTdTeqMme08rZMfdBdlj7zQ8T/Y1zhRK/JDX7/C8SbPwPD9eRx+EuGbB8cp10UUX4Qc/+AEuvvhidHR0YPXq1ejq6gri2oiAYb1o6Xi0KXsOvWDc3MkWwk4wm2Mv2shk+1ProffYm6fi2532yir2rOjz+j5gp9dOLfB+JuKL1+Fpjj3vSbdS7CtW/NGc74p3P5thb2LF18fdOeyxN0w+SMYimFVRCadjn7046q473RyF/cC4nuhtZ8Vuc1Cs2PXYA7pqv3HPGP+a7Bqmb/z8/RyUhVBNaSt+nWK2mcPzAPDPo8xhIc2xN4dlVPSYKPZO0sqpsJdDdo8hC0tT70zFEXc4ks7poQxXel2lqZu3XMom48um4gc57k62HSBeCdeTDc9jo+5iEUX6HmI12tmI7uAyseI7fB1VVfW1dbZZkP5LjjvuuCqLbDwex/DwcE0S/nPPPeff1RGBMjwFE/EZycoYE67YB5GKbxJqIqpLdhtzGdj1ikGAgDjHXi4VX36OvVcrvjvFnp2a+q/Yexl3Z6PYVxTvTKGE8VwRnZKWMxl4j309xd6hCsc/A8Jr3Nedwv7xPPpHMzhi/vQ6oGV25/ZEFPFoBAuboLAflOyvB5x91uwUe0BLxn9yyyBe6dcLe/lU/MqcY58Ve3FtlT30Y5tUsxFvzWzFB7Q++9f2TWD/uH2Antwc++mXis/2Nb1Cj72Twr7gUPWd7iR8Ds8TFXtAW4PGJUfSOR13x4pJNjHGCVZKbyoexWi2aHvg6mbcnUzOgBP0Q6z6P5O9xrKtVvqou7j09coeQjLRKG1S2DttV8iXyvxvmkqKvfQu+t3vfnfVf7/rXe/y+1qIkGGWte4p1F/PsFTsAw7P4yNQfDr9E683XyojXlkjZTeobEEuq9qmO2Zyki2GZfkVnue8x97fU1Om2HvpS7NT7NOJKDqTMYzlitg7lvOtsM8VS7zAMyvs3Sr2ZmFbfV1prNs5it3TULFnhT2zPzPFupGz7Acqo+7kCnv5zxpzEtXrdzywEqD30u5RANraEZU8nGRhVQWfe+zFvy0luXbXK2b52NMmdajN6mTJ+A6s+HV77N217bQyZop9G8/DoXF3fsPUXL8Ue72w19YqVtg7ee2ke+wdvC9E6im97GfaFaiy7zPWRlJWtefYzz2sHp4nF8Is+xrr/fXy+zkrd6qRDJ9G4L3HflJwlsqMU20VpJ/1a665JsjrIBrAVFbsjfYl2bnvrn6HsPmcNAlU8YJ4mpsrlBFPaDdR/e+RW5ABzaZm9vBCSQXbj8tunq1od5DULTKZ8/d587PHvt5hx+zOpFbYj+bwhtn+5IywML5ELGKafZF0qdjrf4+o2E/fkXfGcTzNYMVnRclMm1F3gLvCvp4Vn82yf7mi2Dtx77DwJSdzjmXgqnRc3gFl9flQVbXpFfvZHfK5HfrkArLiiwzVGXcnlYpPPfaO8F+xZ1Z8ba1ikzlkFPsif+0ke+xdBtHWU3pTki4AaSu+sCfLFvwt7PUJEP7OsZdp/TKSkrTim8+xd7fOMUdnMhYxFb1alanzlxCOMUuPnSoY+yx1W3Wwc+z9Vp6jEYXfpMSNqtM59oD1aat4U/P6/KRdptFP8MXaJ8WeHTB46LGXOQyaHcDIu37Bhm9mY/PaYy9uDOZ1pwGAFHvoivXrA40v7GUU+7QDK/6YhBWfjbxjz4tsTzsAxCtFN0sU94vJgvPsDatiVlz/mrWwZz32Uop9XkKxn2ZW/GyhxDf+M4TPkJNkca76Nul7pNnwPxW/othX1io+7k3itcs7VOz9UHpreuwlXQDS/e1RhTun/O6zlw/PcxaOKtP6ZSQpG55ncqCZdvs6sv36FErEB6iwn9YMTcEZ9oxaxd6fcDgRMyu+38ozIB5S6L9HdtxdTFC5rBZl9hwpivcNLw+ta7Riz0L8PCj2OQnFfk7FKr9PYiMuS71EfPF6nG7WMyY5Cux37JmGs+yNhf3CGVphO5otYqRBUwJkZ9gDWjYAIFesjOe0v0emsGc4WSv1VPxgrPhODhl4MWvY5ImfFz9VLz9hB4V2qfiqqkrOsZ9eqfjMhRiNKFU2YCfJ4ryw9yEjZzqQqLzH/CrsjaM5uV1eQo1lir2s+urWis+U3lS8tl0pLRGeVy6rfK20K6oVRQ+g83vknfzhgrNwVJY/4Kiwj8kV5/Xm2Mu4Osyu06/Q5maBCvtpzMh0UuwDsOKbqQB+K8+AEAZV+VvKqr7A2v09iqLYWuXEpGivwSzpymzRCYdKeWCKvYfwPL0f1/o5Zsn4fhb2rMhm4/SMuFfsaw8q2IgzUuy1zzMrrBplxx+shKaxmeb1SEta8QulMn/trebYa/8Wx8z22iRxGZyOQ5LFbBNnB1v7jQ4lts4pSvMGo83qYIV9/fC8fKmst0/Vs+K7tKi2KszxMqOtOrRLNjyvVNbb0siKL0fC51GXY0IqPiBvbRevIeHUiu+4ILR2ZqYkDpEKgrNJxhnitnC1I1+UO1xw2mM/7qqwdzruTuixr7xHSmXV0ftwKibiA1TYT2umo2If9Bx7v3vsAX3BY4W5WJ/LhEDZ2aj8Cs4D3IfW+Z6KX7mOQkl1rSRwl0ed9wwfedcCin3ORLFn4/Smc4+9uP41us/eXSq+XYqwfrhl9/kSVXsn6wHb+BUDU+xdWDprFHv9cNfPZGk/0Qv7+utJVihypKz40yQ8b9hCrOBz7G0KI/EeSVZ8Ofwfd2dIxXcSfFg5lWFhnnYkHTg5RPh4XpN9now7RNyTyIQ0BjXyTrZ1wbEV38V+TtZdxHvshXVPFF+cPEdTcYY9QIX9tIb12PdMZcW+8iHX+4sD7rH3ORUfqD3JLAp7Z5mbArvxWhf29gWsLG5D6yZ40qlPVnxh0Xer2ssceDBVPZAee5MZ9oAHxZ6n/Iup+NrvGM8VuVIyXWB2e6bYA40v7J2k4rdL5lmwntVUPGK7gVtUCdADnCn2rOWn4HePPdtAO7gWK+UniMNdv5klWPFV1fqQhN1zYhGl7ms63az4gxaFfRt319kEmomFfZO6OpqN4MbdMcVePjxPD4MLp8e+nmJf73qdFvZOxjU6Qfb5sttDGuE99k7C86RT8WtdXNphrfa/nbyWEyYJ+1MBqb/mxz/+sfQP/PznP+/6YohwmQ6p+DXj7nwMzzOz4k/6XKAC4iFFtWIvaynlNqqi+UaRF3w+PDdtLsPz2I2yzSfFPhaNIBGLIF8sYyJfQk+b/feIFIXU23qHQWyWPUuy9wNmxZ/rd499vvagoj0ZQ1cqhtFsEf0jWd9G9rUCRis+gIbPsneSii9rxddtkfavbbVi7yYV31/F3osV3/j5EFuOmhXWClEoqRjJFCwP3WX664Hpl4o/xKz47dXvdb1Huf59SXScxCVV3+mOU5u2HbWp+PKqOgvvlM1HcFswc8XeZF2SOSxgrZSx/7+99w6To7rS/9/q3BMVRtLMKCAJRJREEJhokA0SIKLxGmywFxzW2BgMC17bfL0G4YQT4Mja6/Vidg0G+wd4sZFNEBlhECCBRBBJWRpJM9LkzlW/P6rvrerqqu6K3V3V5/M8PPaMerqrK9x7z33PeU9IMNXtw64XQDWyps3zrNXY8znHSqZVxNx31PNdEQQBiUgYqVzBomJvfX7xA6bO+m233WbqzQRBoMDeRzSDYs9T8XPuqzV6TpxjLgeoQHl/T/ZxZlNKq028rqbiFwdylgJfzZSF4bZiz94rmxdtOeOrg4Jq7e4Ad1PxdxU3CVxX7HXa3QGyM/5wegR9w2nMm9Zu9XB9i7bdHVDfXvYFUcJg8ZispOJn8iIKomTYc15rRlWJ2WrFvhFc8Z2Y55Up9tU9M+pNIhrmG239oxnjwJ5t0lU5L2ZVsKDAygu1z486gJMkyXDeZIpk2GTARXjois9S8U0GfIAqYDbtim9vLlVKLvUU++oZBmZb3fH3NGksZxXuSWC23Z3VGnsv+tjn9LNiE9GQ5cC+0nX0M6a+zcaNG70+DqIODDWVYu+eKs1gi4VsQUS+ICISDnmk2Oun4pvdpDCbim+mXr8a6gV4KlswPXGNe2A62BKLYN94zpYzvnpyqKzYy4H9UCqHdK7geHNEkqSSdnd6sM+wupBSp+Krk+67OxPYsGuk6Qz09BT7eqbi7xvPgmVfmxmT1SrDeDZvmG1hpfXQLJs19hGLio5ZlEWchcDesMa+8VPxATkdfzidx56RLA6Yqv+aVLENYHXFvjTbK+iwjBfthgjbABEleb42ugfYmEpp+OZxP7AvbrgmFFNTwFxQyzsamDXPi9p7PiopvaZq7Avyv5kO7C10QLEC32AIVx5H7NbY2zHPK4gSX0/rMW6QLSFfy5y1VHxWUkE19kQQyBVEjBQfvkAq9prB1RPzPNXAki6+vxeu+NrUUjZumZ0U+KBsMPFyxd6FFNVYJMQ/j/WgNoOd9ijV4K33HCj2sXCoonLTmYzy6+CGM/7geI5Ptkau+HZVBkXlK73ObAOh2Qz0KgX22wdTyLvs8F4NJSiJmlKc4pEQ2K1ZacE3YuHZmm2zxt4rV3xlEefchEmZAxp72WPGQI/ViltJxa9Usx8UWBbipBZ9xR4oNR7UkjNpJkYoeK7YW0iXZ6UU5vvYF+dSi6UqlZReM4G9en1hBjMt9OyQNbkRwsd3k6VWTtrdAZVVe6MsLn7eLVzL8Wausdeybds2PPjgg9iyZQuy2dK2LLfeeqsrB0Z4C6uvF4TShW1QSES0ir37izr1e6WyBbTFIx71sS9VoNiYZ/a7VHOtdTMVH5AX4UOpHN8NNUMll1knxwFUr0HWw0yrO0AuP5rSFsf2wRT2jGZ4jbZdmFo/qTVmuAnFy0ysuuKrXP5HVL/vbtKWd4orvhIETG2Pc2+GnUNpx9fTCgOj5h3xAfnea4lFMJrJV7zHrRgZTWyJoj0ewUgmb9EVv5iK73pg72IqvgcGql4wxUxgz8bsKueFjRWiBORFKfBKNEvFn6h5hqLhECIhAXlRQipXQCf01zxme4sTCjEXN/XyBZE/89w8z0JQa3Vjhm8aWO7iY6bdXfUae6vH6XaNPT9fpvvYm7vGIzbM89TjciYvwshmxsh3JW7jWnohxDUClr/NypUrce6552LOnDnYsGED5s+fj02bNkGSJBx11FFeHCPhAawtTEcialib6WfKFHu+qHMvcBQEAcloqWHHmA2FqRraXsRWA/tqxicsQHSrTKElFsZQKmfJQK+Sy6xd2ObKmA1XfL2e70ZM7ZADezcM9PqqGOfJx8Q2eqzW2OuXo/TwlncpS+/nZ/IFkacLqjc2QyEBMycm8d6eMWzZO17TwF4xzjOfQZWMhasG9tyMyoR6IggC9utqwfrtwzZd8T0yz7Pliu/TVPw2+fpXygBSzPMqj9nqjclMXgy8Er1P1cdeSzIWxkg6XzFAJMXeOjEXzfNGVdl1TO01o4AzWFeOiMVUfKuKfaU2aWbS5rMWhSYr58AKWZOZA2xD0Ow1HrNRux4KCYiFQ8gWRMPvmc0rpsYt0fIae8DaOfJCiGsELI9e119/Pa677jqsX78eiUQC9913H7Zu3YpTTjkFH/vYx7w4RsID9gW4vh4oX9yx4NVt4yStWylbYLur2GtS8SWh5PfViFZpR5NxXbE359atppLLrP3jsK/Yq3teV4PV2e9xoeXdLt7D3tgV3a5iz1U+zX3DFPs+F539Gx3WKxkAOjSqQr3q7PdaaHXHMNOFwqqREWt5ZyV7RnHFr79iH9NkODG86IziBWZS8dMmlSb1gt3qRqAfYan4WsUeUIKjSs+KomAGT+zwipjBRpodmNIbj4T4+1pRq1mquNmMC7umdEzp1VXsTbTns2ye51W7O5ah4rJiz7LEzGwmqzHalGWoN0u0c0LCxrooqIq95RnuzTffxKWXXgoAiEQiSKVSaGtrw7e+9S384Ac/cP0ACW9gin1nAOvrgVLFPl+QXaMB99Mwte1S+E6uJ33sS1PxzU4K1VLl0gYBn13YLq1Zxb4gSnxiddOdlBkYjtmosbek2LOWdy7U2FfrYS8fU6nJjFn4ddbW2DehYs/S8NvikbJ69noF9gNjLBW/eqs7hpnNqxEL5nkA8NmT5uD0w6bh7AW9po+DtQbLu6zY2zHVVDZCDVzxGz0Vn/eyzxq+xmy7O6aCAc3hjM8Ue22NPWCuZRhPkaZWd6ax2gqtEtoe9oB+9yEj8pYV+6LKa3Hz38jADTB7n1nLDFFaK7vsim9SsVcMmM3W2DOBy2Jgr8lO1cJ8myIhoWz9a6cloOKV0OSKfWtrKzIZeQHb29uL9957j/9bf3+/e0dGeEqQe9gDpTX26gWN22mYvP4rq1HsvQjsiwOWut2dGarX2Lubiq8oI+YGWHWqvKuKfdxBjb2FLgq85Z0Line1HvZA6T1sdndakpTNE+0GTk9HEoCcxeN2ql+jwjc2dfxFvOpl//LmfXjh/QHsHknrGpnZScU3kx1jVbE/atZE/PpTR5c45FcjYtE12SzM/d2WK75hH/vGXsSZMs+zkGVVTQULCpl8gStwE/UC+2j14IhS8a2jmOc5nzsUR3xlrIpr1liVULoaWAuYrafiGweuZtrzZawq9hF7x1mNjAc19pl8ga81rdTYA9W7eFTqRmAnFV95v2Ap9pa/zXHHHYfnnnsOhx56KM466yxcd911WLduHe6//34cd9xxXhwj4QE8Za0JFPvSwN6bVPwyxd7FHUBtqhtvd2cydb5aqxK3zfO4Ym/SPI+9LhISXL0+XLG3UWNvJQiYynvZO0/F7xuq3OpOPqbS9FozSqz6GdBuVnQkI9wrom8ojdldrdo/Dxx6PewZXvSyf2XLPnz0P1bxn9viEczpauX/zZ3Sind3jwLwIBXfZlqkFbxzxXdinudTV3ym2FeqsefnxUT3hGgIIxljFSwoMLEiHBK4o7oaM+nMWUrFt4ybrvhaR3zAmts5yxgym3HBAuZcQUJBlEz7TZlT7I3PB7vPTLvix+xlFlRCkiTT7QGttLtTmyZbFbjiVYLzVIUMLjMbKlq8aE/dCFie6W+99VaMjsoLkOXLl2N0dBT33nsvDjjgANx2222uHyDhDazGfkJTKPbFnqFVWpfZ+xxlMJEkySPFvrTG3q55ntHEyyZMN/rYA8rEZjagVtfXC4J714enKVtw52dkLCj2rC2dO6n48ntUUuxLTGZMLqbUk512A0cQBPR0JvB+/xj6hpsrsJ+gF9hPdl+xf68YtEfDAgqihNFMHuu2D2Hd9qGy105us2CeZyI7xqpibwfFFd8j8zxLgX2VVPyGr7GXr3//aBaSJOmOiWmTqfhA8/Sy36syztOb57Vlc3rkLCq+hLIOccM8byRTNPpUpeJbca636pGgngvTuYLp1HGWGaK3qW5qA8miYm/m3rVKXpTAEsfiVfrYxyyUW7CN5JZY2LIxt1GrUkalDZW4hZINBlfsPdz0rgeWv83cuXP5/29pacHtt9/u6gERtWGwaRR7UaW+uj9ZqxX7jNqx04t2dzb72FevsXc3Fb/VonneuM16rGq0OFDsebs7U4q9HIS70cfeTCo+IAcn2YJo2hCLXeNwSNBdtHazwL5JWt4N6/SwZ8ycKAf2g+M5DKVyrrQDZRsJZ87vwY8+thBb947j/T1j2Ngv//d+8X8jIQHHzpls+n3ZM2Ouj713m7iRokLmtiv+uK3AXn8j0z+u+PJGYbYgYjiVR6fO5rvZGnugeVLxWX39BIM1TQuvUzaeD7jiS4G9aaz2OK+ErmIfqxzsMWQFWj6GiEnFvqRlsYXAfryCl5KZ9nxWSz60XZ7cQL0erLYRwnxoCmL1zIZR7jRvfT1XbawaZ+OeXqaEjXNEin2RuXPnYvXq1Zg8uXTxMTg4iKOOOgrvv/++awdHeMdg0yj2BZUi7f5knVDV7akDWSvtmarhtN1dNeMTt83zFEMv64q9m7RYLAlQw3u+m1Hs25WaWCvpfOWfWeCqUyXzPEAOTkaQN707rVxj/e/DUv+bpZf9UIXAvjUeQVdbDP2jWWzdO47O6Z2OP0+9kRCPhHHA1HYcMLXd8fsmzdTYpxWjQK/w3BU/av7YE1Vr7Bs7aEtEw2hPRDCSzmPPaEY/sM+a62MPqEu5gp2Kz7IQ9YzzAHNtyMymJhMK3JzRDcVeJ7Bn65Jqir3auNPs9QsVy/8yeeMWa3qMVWiTZibAtNvuzk3FXr0eNNvuTv47EeGQ8bjDAns7pV/xKmNVpQwuMxsqWoKq2Fue4TZt2oRCofzEZTIZbN++3ZWDIryH1dgb7W77HbbDmSlR7N3flVMPuGywj0dCZU7bTihLxZdKf1+Nqqn4FhzgzcCVcpMB9ZiDHd5KOKmxt7LZMbktjpAAiBIwMGZftWfme7FIqKqpZaKKe6yWVIWdbqD5nPF5YG9wnme6XGc/WGEjwQktPBW/ers7vbpjt4gWN7OYK7VbpGxs+hmlniuu+I2vzkypYqBnSbGP6p+PoLGXt7rTf8aUubpC7TOl4lvGzRr74XR5Kj6rL68WsKnLgKxcv4SdFO5Ktd4WAnvrqfjuPcPsGAQBVcUI9fmsVmfvZD2XqDJWKZ4rlc67uXOUzYu8fKRpFfsHH3yQ//+HH34YnZ2KilEoFLBy5UrMnj3b1YMjvCPwrviqwMdL0yT17qzSw97dBbTiis9S8YWS31eDB/YGA7KVenIzmEkPVlOpJ6wTHPWxZ5tBJs5JOCRgSnscu4Yz6BtK89R8qyhp+PGqXgPs2ltV7I2Cmp7O5lLs2fhnFGjPmtSCNVsGXauzr5Qh4AQznR9GdVQwt2EbmW7W2EuSxFMv7aTiZ/KFkhp1v/SxB+R0/Pf7xwwDe2s19s2Vim9UXmiqxr5AqfhWcdM4U1exN5linVNtKpptdye/fwhDKffapLH7LFeQ29HqiTxZi5khSsDrfip+LByqut4oDewrj/FK6Zd9xd7IKJFv9OqMe3zNb/IcqdenTeuKf/755wOQjZZYH3tGNBrF7Nmzccstt7h6cIR3BN4VP6Ls3mVcNodTk1Sl94151BNTm4pvtd0dq58ySpN12xWfTWxmlfLxCmltTmDv56TdnVl1r6cziV3DGewYTGPhDMsfB0DVw75KfT2gmuhNKvbVfBS6O+WWd2xzIehUC7Td7mVfLUPALtXa3RVEqaLRk1uwhbQbBlqMTF7k5k7WXPHl14qSnJ7LFs9+ccUHgK72ooGegW+HlW4B1dJbgwJf0xh0lbDSX9ysWznhjSu+eqxS5joRoigZGiCr1zdmXfEB67XZ2bzIg9tKij0gt6Nt0wvsrSr2JrMWrGDFmT8cEhAOycav1TZw2EayrRp7k4q9fiq+tZaAbH0aC4dMXwe/YPrMi8XdsDlz5mD16tXo6ury7KAIb5EkKfg19mrF3sPaSrUDKjeBc3n3z6krfrzW5nlx8y62QOW0NidYrfVXY7U8oXdCAmu3AjsdpLIz47pqxnmADcU+X3nzptkU+2qBvdu97KtlCNiFG4Ll9O9x9eaal674MQ8U+3Gbiopakc/kRa42ZapkrTQSSi/7rO6/W+tjb858zO8wxd6wxt6EuzrV2FvHyKzSDqO8j70qFV91j2fyouFmFquxD4cES92PrKZwq9cTeinc6nVZ2qAdrRJUmxuLrHQGMAszO6zWw57BOrqYTcW3kyFW1Tyvwoam1XPEHfZdFpQaAcsr+Y0bN1JQ73NSuQIfWAJbY6/qTzrOF3TepeKncgXPTOC0g531PvYsFb+25nmNotibrfVXo9TjmrtneoqKt5PAeJeXij03IdM/x2wzYc9oxvVe5I2IWcXerRr7Si78TuDZMQb3OFNPYuGQpwEtU+zdrLFnC69YJGTJkFKtQKnTMn2l2BcDe6NOG6kqz7OauMUUVb+yt4pYUS27BaBUfDtwxd7jVHzAXAs5q5syVh3nmRBh5KUUCgmKkZvBvdYI7e6sKPaAuuTCXCq+nfVcVfO8CqVZVjdoxjwS4hoBW6PXU089hXPOOQcHHHAA5s2bh3PPPRfPPPOM28dGeARzj42GhcCZRjDU6jNbVHuTil9UTrMFVd2VR4p9zm4qfm372JtZQKnxSrFvraFizxTv7YMOFPuieV41R3z1cZk1xKqm2E9ujSEaFiBJwG4X2vY1OtUCbRbYb9uXQsGFFm5sI8HtDKlqfha16GEPKO2l3FDtGHZ62APywpo7dauOxy997AFgSntl87x0FTNMNc1SY89a+E4ySsU3EcCxTU03zW+DjtLuzs3AXhknw6rnudK1460KLaThA0qnGLMp3OMmzOGq+QIoJR9Wa+xdNM9j2SlVWt0xqrVNZow5aK+qLrvQg63ldM3zLF5Hr4S4RsDy6PX73/8ep512GlpaWvDlL38ZV155JZLJJE499VTcfffdXhwj4TLqfq/VTDP8ilqdYotqzxX7jL2FaDXYQjSrScU3u9tbzdzG7VR8q6Z1XrniqzcYRIvBmeI7YO6cTJ9QVOwdBPa7bKTiu1VjHwoJ/HObwRm/mmI/rSOBWDiEvCg5Kq8A5NInr8zzeLs7g1R8vZpVL+Cp+C72sef1lDY2HPWCWb/0sQfUqfguuOI3SSr+3ip97M2Z51kLuAhVO0VXFHvmil86XsWt9Ia3uM5LmmiDqGbMxIZjsop6bFexzxZE5F3KqLPqJ8F9VKqMI07MWpUSQ/1rYarG3mxJRUBb3QE2+th/97vfxQ9/+EP867/+K//d1VdfjVtvvRXf/va3cfHFF7t6gIT7BN0RH5B3eaNhAbmCpCj2XtfYM8Xe9Rr70kWqVcVe6WNfG/M8blqXsdbH3u3sEfVGQSpXsLRxYDUI6JngPBWfm+dZUOzNTmK873WFa9zTmcC2fSn0DQVbsc8VRL44Mwq0wyEBMyYm8X7/GLbsHceMiS22P28sW+ABr3ft7qoo9h4vXngqvgc19laM8xixSAjIlG58+aWPPQB0tRXN84xq7Mk8rwxeY2+g2JvpY6+4lTf+PdIosMAwmxdLulDYQS8VH5AD25F03ly2hYWyHUApQUyb3PjiQkSFdV6iyiaSdfO86oZ8VsnmrZWdmO1+MOpgPVdtE7JSFpcZc0w1Xq07GwHLd8f777+Pc845p+z35557LjZu3OjKQRHeEvQe9gw2SCiKvceu+HwH0N3PiWkWZlb72DP1wWhAznjVx96siYlHO6fxSAhsjrfay96qYt9bDMZ3Dadt7agXVMowU/8rUW1nW0u1VHxAyRRwqlA3Omw8AICOCoG2W73s2efFwiFTCqsVeHZMlRp7z1PxVa74kuROcM8MAe2U6GhbhALWfTPqCa+xH83onk+2oWetxj64in0mX+DzjZF5ninF3qKhGFGq+DrJ2BFFiQeF6lR8wFzLO7v+CDyzz6wQkaluulbteK1uIGkN+dyAK/ZmBSKTNfbKnGN9E7vaWDVewVuEb9CYPD/jHpWANgKWR6+ZM2di5cqVZb9fuXIlZs6c6cpBEd4yyOo9XVaPGg0WlA0X07vcSjVXw1Ou8qKHir3WFd9eH3u9XdCCKPFJJuHSYoYNlOZT27zZORUEoWrgY4TVzY6utjiiYQGiBOyyUaO+eySNXEFCRJUSX4lqtWhazJRbMJ+AvoA747NAuz0RqWjK5lbLu6FihlRHMup66VMLb+movygdzRS/a41S8QG44kkAOFPs4zrPh9LHvvEVGlZjn82L3IyKkS+IfMymVHwZloUYEoxTgFtMKHrM/JEUe/OoA0MnHhuj2Txvb6mn2ANAKmv8/nmbHQ26is+aWW8ZNi5VVuwrlw5YVewFobohn1X4Mbis2Cs19tbH2USV7CL23fWyL9n5Ma3Ye2Ta3AiYnu0/85nP4Kc//Smuu+46fPnLX8batWtxwgknQBAEPPvss/jd736Hn/70p14eK+ESg2PB7mHPqIlizwL7bMEzEzijVHw3auzVA6jbin22ICJXEKsukrzcOW2JhTGayVtW7K2qe6xGfdu+FHYOpkyp7mq27ZNV8t4JSVMO4JYVexM1uayX/c6A97I3W++uBPbOMhgGU9ni53lzfwPGC8iRmin2paqdG0NtpXrKauiln/vJFT8RDaM9HsFIJo89I5mS9l/qlGFKxZfhPexbYoatzhJVylYAVZ22xXTuZkYb2LfG7b3PiKqDh3YtkjCxKWO3jIJ1oekzOe+ZMV2rZtRo1ZGevWc6J7qu2JtOxY8oWVmVGHVgnhevUmI4xs3zXKixJ8UeuPPOO5FKpfDFL34R99xzD9atW4drrrkGV199NdavX497770Xl19+uZfHSrgEc8Wf0BpsxZ6l9Qyn8iU/u0lCtbD2qm2buk+sJEmqPvYmU/F5jb1xSifgZmCvDJRmDPS83DllO7tmjfwYVl3xATkoB4AdNhRvlu49Y6K5DQE9RbISZnwUmk2xrxbYu9XL3qtWdwDQEpXv71xB0lXLalZjrwqE3Gh7Bdh3xQcMUvFd9hLxGqYk9muURLViZ2aTohlc8Zlx3kSD+nrAXCp+llLxLRMOCXwz2smzz4zz9DYhmZJb6doxfw+rHQ26Lc57LPuvkmdP1cDeomIPWA9cq8HWg1YFomo+KqNetrurYKiq9jUwUw4W5Bp707O9+kR95CMfwUc+8hFPDojwnsHx5lDsE2WKvdd97D1S7FWDWDYvqvrYW62NKp8Q2MQTC1vrFV3x8yIhblw4ns1XDWjGPGoTCKjq/U3WzzHSNupxWZ29HWd8ptibDuxtKvaVghqrCxy/wlLjzSr2btXYe+FpolYuUtkCtH6otaqxV6s+bhnovdU3AsDYDK0SeunnflLsAdlAb2P/WJmBnjr7xkxpB98EDHCN/b6x6obA3FzLjGJPqfiWiIYFuazPSSp+BTd1M8ZoShmFtXWM0g3GmmJfKXDlQabBvWbVkR5wv5e91QwH0+Z5GSeu+NXa3RmvsdVlhpm8WHUDV/FKaGLFHkBgW6M1G6zGPsiu+IAS+HqZip9QpeKPmxjw7aBeiGbyovU+9irXWi1sonQ7m4FNQmMmatv5DrgHKVGtFuv9GXYMBZ0442/bxxR7c+7rdmvsK90zLCVx13DacntAP2E6FX+yfC32jmW5muTl59mBbaIB+i3vuMu0x4uXcEjgRpVutGMay+Tx4NrtAICzFvRa/nveIrQgP/eSJPkwsNdvecdb3ZlUmpotFd8IanfnHdwZ35FibxwQmjFGs+ryzujptDbvmauxr+y070SxdyuwZ/e66e5KJgJ7SZIctS+ull00biIVHzC3iamsO5tYsQeAAw88sGpwv3fvXkcHRHgPmwQ7k82h2DPzvNr1sXd3ER0pLppFSR7wrPexN06Ts5NybobWeATD6bypgNpMzZpdmLmYWYd+huIib12x396Air2ZYGBKexwhQa6R7h/LYGp7dRM/P6Io6JUD7bZ4BJNbYxgYy2Lr3hQO7bUXmA+azBCwSzIaRq6QlxecLaVjT61S8QE5BTabF5FzYVPor6/twFi2gDldrThu7iTLf69NxVePfX4wzwMqBPYVnKH1aIZU/Gqt7gDlfOVFydD7xa6zerMTi4QB5B0p9myd1q5Tm60o9hXM80R77e6mtMchFOe9gbEsN640go2pldZ51YzuMjYCe3UHJjdg18pshoOZPvaZvMifITtzDhcsDNY1bB2jt1aMFrNOC6KEdL6ATpjLFA2iYm/pG910003o7Oz06liIGtEMfewBRbVhVSRe1FaqFwusltYLd/d4JIxUriAPnFbb3VXoY28ngDVDkre8q5wCXxAlPll7kYrPdtWNXMONUHpeW1DsmfmcjXZxSmDvlWJfvM4Vvk80HMKU9jh2DWfQN5QOfGBfqdUdY+akFgyMZbFl7zgO7e1w9HleBfYtMeNNNOaobqf1kFViLLB3IYC8+8WtAICPHzPTVqagNqVT/Zz4TbHfo6mxZ4qh2TG7GVzx95po4ave1BzPFtCZ1AvsKRXfDtVa6pqhomJfxWVe/dlWgmVAvtZdbXHsGclg13C6amBvxktJ6ZZUORXfyn3GzoFbmTdWN7GUVHzjjVt1yaOdDEze7k5nrMoVlE0DIxEoGZXNks1sfrBx1I57f6Nj6cx//OMfx9SpU706FqJG8LQ1G7WLfkIbxHixoEvElPdkyooXO4DxaIgH9op5nsUBOa9nnlc94LOD2RR4deDviWLPa+zNT4aSJCk19lYUe5aKP2gtFb8gStgx6K1ib7a0oLsziV3DGewcSmPhDFNv7TusBNqzJrVg7dZBR3X2ngf2LCtFx0dilBlS1USxlxf3TDmzy5s7h/Hq1kFEwwI+usjeTahNP2f3f0iwrujVCxZgaBX7tNVUfJcDgkaEiRWTKhgCR8OCoujlCrrPIwu4IpSKbwkWTDtR7JXAvvy6WOljb+f57ulMYM+IPO/Nn15ZvDTjpaQu0dQja2MTIlmlbt8qVo/BTCo+N86LhQ27U1RCybQq/45qA2SjsS8RDWE0Y7yhombMROaFXzF9V1F9fTAoiJLpVFS/ow3KvHDFj4VDvLZ0OO2dy6Y6kCtI1vrY80lXr92dR6n4LKDW9mDWwuqcIiHBk40XlgVgxTwvWxBtZXn0TpAV7oGxrKWWNLuG03KLMJM97NXHZVaFU1LxK5/j7o44P6agYjWwB5w543uv2BfbeOncc06MjKwSCVVXdMxwz4tbAABLDp3GVWur8GA2xxR7ZoZpznCuEehqkzfe92jM81Iq8zwz6HUICBp7TbTwFQShanBkx9SMcCuwL6bi6yr25v0R7GRbTLPQ8s6Ml1K10gGrPeQBD2rs89bOV9REVgbbnLGbfVkpu4g9s+GQYHje4pHK512NGa8Ev2L6rjLTPsBrbr75ZgiCgGuuuYb/TpIkLF++HL29vUgmk1i8eDFef/31kr/LZDK46qqr0NXVhdbWVpx77rnYtm1bjY++MRhJ53jQMqFJauwZXpjnqRcLDE8U++Kxs4ETsNHHXm+wzFlL6zQLSyl/b/doxdep6+u9WHAzpdKK+ZndtN3OZJTfC1ac5a32sFcfl2VX/CrPgFJOEODA3kLNuy8C+6hxdgx3xa+BYu9GOm4qW8D9a2TTvE98YJbt99EuELl5pAebu15Rrd2d2U3HZkjFN2OeB1QPjrJUY28LthbJuJCK36Hnim+i1VvewbXjBnom5j0zXkpV7zMbRp5ut7vLWjTPi5owSBzjpV/25ptEhVR8tqHSUqEbCPt7M+sipcY+eKn4pu8qURTrmoa/evVq/Od//icWLlxY8vsf/vCHuPXWW/GLX/wCq1evRnd3N5YsWYKRkRH+mmuuuQYPPPAA7rnnHjz77LMYHR3F2WefjUIhuKlpRrAe9q2xsOVaJL9Rpth79H21aUFeKvbDqgDV7EZFZfM8b3o7z58u1yO/vmOo4uvM9IR1Atv9r5Y5oIadE0GwtqMuCAJ6iqr9DgsGeswRf+Ykc2n4gHK9zCokSmlBtVT84Le8sxJoz3Sh5Z3XGVJs/BmvWGNfG/M8wJliv2LdToyk85g5KYkT9++y/T5lqfg22lfWmykq8zy1sGJbsQ9wKr7Z8kKWsWQUcLGODtTH3hqVxAOzKIq9jnmeqVR8e+3uAEWxN7OhbUaxr+YJYMek0f12dxZr7CPV+9g7NWuNV+h+wOa3SiVI3GDQxDnyshtTvfHF6DU6OopLLrkEv/nNbzBx4kT+e0mS8JOf/ATf+MY3cMEFF2D+/Pm48847MT4+jrvvvhsAMDQ0hN/+9re45ZZbcNppp+HII4/E73//e6xbtw6PPfZYvb5S3dhnwmQmKGiDVa8WddrP8aJmh23CsF1tQTA/gVU0z7NhEmeGBcU6tfXbhyu+zktHfEBZJKgzHarByxNspO32FhXvHTYU+xkTzBnnAXYUe/k7VQsGmHJhxwDQL/BA20TGEmt5t21fCgWbbu9eK/Zsgak1iJQkqbap+KzG3oFqd89qOQ3/oqNn2qrRZGid4JVWd/5RZ1gZQiYv8usIKM+82TGzkgoWFFgf+0qu+IAqQKySim8nOGxmPG93V8VlHlDV2NtQ7NWtXqsxZiIgrLYRYafdnZLe7267O7OBvZUae/uBfXHzQJTK5pFKjvgMlpFo5Kqvxuu1Zz3xxVbFl770JZx11lk47bTT8J3vfIf/fuPGjejr68PSpUv57+LxOE455RSsWrUKl19+OV5++WXkcrmS1/T29mL+/PlYtWoVTj/9dN3PzGQyyGSUFLjhYTlAyeVyyOXs9zT2GnZsRsfYPywv2Ce0RBr6e7hBRDM3hwXJk++cUA3O0bAAQSog59Lgy2BprkPj8j0ZD4eQz5sLVoWimZUoAal0pmTiG8tki+8nuHpuDuhKQhDkmrWd+0YNa2WHi9+nJRb25NokiyPccCpr+v1HU8VzHAlZPiZWo75t75jpv90yMAYA6OmMm/6biFBMMc4XTP0NWxBFBLHiGNHVKp+wvqF0YMeHoZR8z7dEjcdJxuRkGNGwgGxBxPa9o3zjwyyiytOkJeruM8Zgi6ER1T2ey+UwlskrXhGh6t/VKdFiIJ7K2psj39k9itWb9iEcEnD+4d2OjpfFZalsHrlcDuNp+ZrHXB7nvCQiyJs2Y5kCdu4bQ6KrFYBiiBiPlH8XvWc7hOLmRs7cWOE3sqqNj7YqzxgLEIdTGd3XsYBLkMSGPFfV1nf1gm2EpDL218dsXE7q3Ncs+ZI9z3qks/Lvw4L18zOlTZ73dg6lqv4t20CNhYzXkxFBMjxeSZL4BkhIMv9MsnMw7uAcA8q5SRe/h9l1cQgS/zuj17P1aUvU+tpJ/gxl3TyWzpSIZCPF905EjdeKseKifzRd+RypuzFVuo6Nhun1ocfH4Zh77rkHr7zyClavXl32b319fQCAadOmlfx+2rRp2Lx5M39NLBYrUfrZa9jf63HzzTfjpptuKvv9I488gpYW88pavXj00Ud1f//iHgFAGPmxIaxYsaK2B1VjNm+Tvytj9fPPYXur+5+TGQ8DkAeUqCB6cl5Hh0IAQljz+gYAYQhSwfTnyBvM8qP+1xV/h3qD8tXt8jnas2sHVqxw13diaiKMXSkBd/7f4zhkor7a+Uq//PnpkUFPzttb++T33757r+n33zoKABFIhazlYxrdLV+nF9e9jTnjb5n6m1fflf+mf/MGrFhh7m/60/IxjqXMHWMqK9+jq555ChOLeyx6YwR73+37xvDQQyvgE58x0+RFIJWTn4UXn30S603MgBOiYewpCPjTisdxgMVur+N5QJLkD3n+qZXwosR7zw75/nntjQ14dORNAPK1HcoCQAQhSHj80Yc9v5Zjo/I99vw/XsTQBuvZDQ9skr/HoZ0FvPzs446O5f0d8nP//uatWLFiM94sjgPp8VFfzXtJIYwxCPjrY09h/2K3xfVb5PPUt03+bnqon212H6RzhUA+0+z7CZDw7BOPolKix/iwfO6ef/FlZN4vv0eHi/fw6n88j92vl/1zw2C0vqsX+wbk8/rymlcR27HW1nvs3COf+zfXrQG2ll6bN4vrhO279hg+v28Vn4sdW7dgxYpNlj57VwoAIti2t/r4MJySj/OF557G2wbenq8Xx5td/fvK3k/eO5LnhCceX4kWk1HY5uJa7Z33N2PFio3m/qgCW7fvABDCu2+/hRWjb1Z9/ZbN8vl9+733sWLFu7qvebk47g7177I1zspJcfIJeehvj0Dd5OLVAfm9M2PDhu89vFc+xpdeWYvo9jWGnyMnh8if88wTj3kyL3vB+Li5ksCGDuy3bt2Kq6++Go888ggSCWOlRJsuK0lS1RTaaq+5/vrrce211/Kfh4eHMXPmTCxduhQdHfb6GdeCXC6HRx99FEuWLEE0Wp76uWvVZuDdDThgZi+WLVuo8w7Boe+5TXho69v859M+fApmT3Y/sv/9ztXYOrYPADChNYlly052/TPu738F7wz3Y+r0/YBt29CajGPZssWm/jabF/HVF+Wykw+ftqSkf/c7K98FtryPA+bMwrJlh7p6zI+NvYa/vNaH5PSDsGzxXN3XjL60DXjnDczsmYZly4509fMBoHvLIH791osIxVuwbNkHTf3Ny5v3AetWo7PN/N8wxl7ehr9vewPRzqlYtuwoU3/zo7eeAZDCWYuPw9H7Taz6ekDOhPj2mqdRQAjLlulnHTHyBRGF5+Xrf+bS09AeEwzHiEyugG+vWYmcKODEDy0JXOeM/tEM8MJTEATggrPPNJXu/f/teRl73h1A70GHY9lR0y193tZ948DqZ5GIhnDe2cvsHnZF1j38Np7dtQnTZ83BktPm8mu7ZTALvPwc2pNRnHVW5XvEDf576wvYNjaEI49ahFMPsebHk8kVcOOPngaQw1VnLcKHDpri6Fj2vrAF/7f5LXRN7cayZUcg+sZu4K21mDp5IpYt+4Cj964l/7P9RfRvGcQB84/CmfO7AQCvrHgL2L4Fhxy4P5YtmVfyer35fyiVww0vPwEJApaecUbgjOE29I0ALz+Pia0xnH3Whyq+9v6BV/DucD8Onr9Q91n+7vqngEwGp5x8Eg7tabx1XrX1Xb1YMbQWr+/bjYMPPQzLjrVnevmjN58GxtP48AePx5EzJ5T8W/yt3bjznbVo6ejEsmXH6f79G4+8A2zfiAP2n4NlZx5k6bPHMnl8b+3jyBQEnHzqUsNU8mxemUvPPmOJYXnVpPf34j/fegmxljYsW3Ziyb+NZvLAC/LG5dlnnm7a32jP85vx1y0b0DXN2dqd3UOTp0wD+vfgiAXmrtk7K9/FYzvex4yZ+2HZskN0X/P2yneBze/joP2NX1ONr65+FLmChA9+6MO8RAIAsmt3AG+vR+/ULixbtkj3bx8ZeQ3r9/XhgIMPxbLj9zP8jF3DaWD10wiHBJx71pm+6ZTCMser0dCB/csvv4zdu3dj0SLlIhYKBTz99NP4xS9+gQ0bNgCQVfmenh7+mt27d3MVv7u7G9lsFvv27StR7Xfv3o0TTjjB8LPj8Tji8fLtuGg02lADqhFGxzmYktNvpnQkfPE9nNCSKK23a03EPfnO6nSh1njEk89IsH7svP47ZPpzIhFl91sKhUv+jhmstsTcv68XzpiIv7zWhzf7Rg3fO13MvGpLePNcTWyTJ4bRTMH0+xeK1iPJqPVrOWNSGwBg53Da1N/mCyI3qps9pd3057Un5WuaFyUIoXDFusKMqJRsdLQkeBq/3hgRjUYxqTWGvWNZ9I/nMaWz8bOTrDCWk891ezyCeNycz8h+Xa145t0B7BjKWL4fil6l6Ex6N2+0F8e5dEHinxGNRpEuyKmtbfHazFmsfl0UzI9NjBWv78ZgKoeezgROPbTHdHcII1ri8ufnRPlc5IsZVYlo2Ffz3pR2efwaTCvjFzO9aq1wXdXPdpvKSkkUwohGG3rZZ5mRrHw+JrbEql5bZtLK7gstrH64JV79vepJo61DE8U1UF4SbB/XSLF2fVJb+dq0LVH0m8hJhu/PPN1iNp7xCdEo2hMRjKTzGBgvYGKbvpHtuCoVuqMlYWiy2Fb0b8nkxbJjkbLKeqw1ETftJdJWHOczhfL3tAOz3EiYXPuxa1yQ9J8dAEjl5O/WnrT//MQjYeQKeRSk0nkkw9eKxuuyJH++K9+HWVEpAY3F/OM3ZvacNvTW7amnnop169Zh7dq1/L+jjz4al1xyCdauXYu5c+eiu7u7JC0pm83iqaee4kH7okWLEI1GS16zc+dOrF+/vmJgH1QGij1xJ1cxmQkCWrM8z1zxVTuuXrS6A5RF83BxYyZmwQRKEARD4xOvXPEB4LCiM/76Cs7445nqDrNOULe7M9uyM+2gBSDrZb9z0Jx53q6RDPKihGhYwNR28/XbahOwdBVTLLXZjplngO2SB9EZnxvZWchEYC3vNg9Yd8YftNBazy7M/EdrLDVawYzKCyIO2t3d8+JWAMCFR890HNQD6hZvRVf8nP9c8QGgq12ep9Ut71Im3KHVqDt7mDGV8hvMELiacR6gakNmYMLmpGVaM2OmFVolSo0+dVzxi90M0hU6O+SL5qbRkL1rZ2beY4ZrsXCoovFdJaM7Nj5GQoIlg1C3291ZNc8zc41HM/J856S9qtb4lMHb3VVsM2jOVNiMAaKfaehv1d7ejvnz55f8rrW1FZMnT+a/v+aaa/C9730P8+bNw7x58/C9730PLS0tuPjiiwEAnZ2d+OxnP4vrrrsOkydPxqRJk/CVr3wFCxYswGmnnVbz71RvBsbkBcJkAzOzIFHmiu9B8AqULrC8aHUHqAyyisZJVlsVygZg5e3R2CThdh97ADisVy5I3rYvhcHxrG4nhrFs9Z6wTmBBTa4gIZMXTW1gOOkUwPrAj2TyGEnndBcparYV26hZ6WEvH1vpYr3SRMomuVgkhFBIQLUun1M74nhjJ7BH0z87CFhxxGd0F6/p7hHrGx12Ps8qSru7UjNNNxZZVmBZI5XaIemxsX8Mz78/AEEALjxmpivHwheHOf+64gPAlGLG0Z7ihjyguEOb3YwNheSN3WxBDKQz/t4xcz3sgeotw1jQEiFXfEvwzjt5e51DxrMF3nVEbyOSPbeVXPGzFgNVLd2dCbyzexR9FZzxzbS6AxR3dr3jZWswq8eZcL3dnTVn/qiJdqYsYHYnsC/9nmba3bHzXmkDCAh2D3ugwQN7M3z1q19FKpXCFVdcgX379uHYY4/FI488gvb2dv6a2267DZFIBBdeeCFSqRROPfVU/O53v0M4HMyLWol+pti3kWLvFuoFllcBapy5+RZVOKvfJRoJAdlCuWKf906x70xGsd/kFmweGMfrO4Zx4gHlfanHmGLv0YZIaywCQQAkSW6nY+Z78p7XNjY7WuMRdCajGErlsHMoXT2wZ63uJprvYQ+ULtbNKvZm+153FI95OO0Pp1gr2Gk911VUAvtVwZXVz+uogWKv7WPP2kfVooc9oHTusKrYsxZ3iw+cgukTrD0HRrBnly1eeWDvF5ekIkyxV2+ypUy2rlQTjwQ3sB8cNx/YG2W3MNi9GyPF3hJKuzt7QScbq8IhQfe+NtPqLe9wU0ZR7I1bvbLAtdo6jx9vXizz88rYaHWnfs9KmxtWyNnuY288how4bHcHKAKcdqxi37ulwrjHz3uVc8Q2aGq16V1rfPetnnzyyZKfBUHA8uXLsXz5csO/SSQS+PnPf46f//zn3h6cD2CKvVH7sSChDuLCIcGz9Dr1RORVSjnbsR6xGdjziVezo84mSq+yGeb3dmLzwDjWbx/SD+z5Drg3Q1EoJKAtFuEK+pT26ve9ksVg75z0dCYwlMphx2AKB05rr/haOz3sGfFocbFeZQffalYGU0zYJlKQGLKRGt9VvGcGRq1nMAwWWzh5m4ovXy9tYO+0p7BVIsUU2JxoXrXL5kXc97LcjePjH7BnuqUHT8Xnir1PU/GL83T/qDoVX76uZlPxAXmsGMmUq2BBYG+xh/1EE6n4lRT7giiB3bqUim8N9lxpMwLNwjIR2xMRXSOzpIk0dBao2t2U6S62Mq2k2I9ZVOwLooRcQeJt2AB7Pezl96xejmAFtolldkw0s3HLhRo3FPucNhXfRB97k+UKygZNMMVdGr2ajP4ReaHZ1WSKvZcLOnXA5Jliz1PxbSr2hjX2ihmfF7A6+3Xb9evsx9kA62HwwQLVEZOBqtMgoLeoOu4wUWe/bZ+cij9zknWlkgUv1SYxqz4KLMtgJICK/aANBZ35kewbz1lWo3kqvofdBYwU+3rV2FdSdLQ89uYu9I9mMaU9jg8fbM1JvxLadM6Mg/KaeqIb2FvMwAHKNzqCxD6u2JsxADNWPdXPtpEpGqGPmTTtSgxXGavY3JUtiDxlX0vOoWI/jSv2xhu44yYV+0RMuX+0gbjdrBCzarRZrJYEsI3bbIVr7MacE4/qZ2coqfjG7x03ufnBSyoCWmNPo1cTMZ7N80VBs9XYexnYlyj2ntXYFxX7DDPPs6jYsx31GprnAbJiDwCv79Bv08F3wD3cOWWBKlMwq+GGYg8AOyuk9DGUVHzrij3bUKqmwqUtpu52JK1thPgJO6n4E1pivDf2vjFr6fjDNj7PKkp6sbbGvraKvZFBZyX+8KKchn/h0TNcVUkV8zxtjb2/ljxTVIE9M/9kQamV8cnIkCoI8MDeoWJfEthTjb0lYg7vL7aJ3BY3cDtX3etG6fhWzeC09HDFvkIqvknFPhYOgSUeaANxq7XtjGr+EFbJWa2x5z4KlczzXFTstan4OWaeZ0axN2ee56WgVE/8NcsRjmCO+PFIyNNAqlEoVey9+77qlEjPXPGLQRzbrbau2BfTqLTmeXlnQWw15k+XA/uN/WO6CvC4x+Z5gFqxN6dAO3HFBywq9oOyYm+1xh5Q7U5XUeFSFsstgqzY2wnswyEBk1rlAGuPxXR8O59nFTb+jGlr7HlgX5u2WIorvjnVbuvecTzzTj8A4KKj3UvDB5TxUgns7ftm1BNWY5/Oifz68o06C3N4L2Y/cAAAgpJJREFULGJuE9CPsM22SRbM8/TdypX71q6zerMSc5yKX1npVa93jAJbpaOBd4q92Rp7QRAMywd4Kr5N8zy3XPEVxd7c+TKTiu/GZrIT8zxl86PyORqvgaBUT2j0aiJYOl9XW1y3jilolCj2Hi7oEjVQ7LWTgOUaewPFPuMwiK3GpNYYN8R6Q0e1H/O43R2gmIeZrRl36qDNW95VUezzBZG3xbOn2Je29DKCb1SYvGc6LJYu+Ilhm6nxrHRpwKKBXi3a3bF0QqN2d7Uyz7Pqin/varnF3UkHdGHWZOv3fyWUOs1iKr5PXfFbYhE+p7CWd7ZS8dlYEcBU/L1csa/+jHEDsgqKfdhiGzLCebs7FhB2GIxVoZCg2siu3NHAiSs+IPtQGW1QWAkIjRR2u4q92hXfbOveSlg2z6uSkaVuWegksFfWNU5q7Ku54nsvKNUTCuybiIEmcsQHaldjX5M+9prA20ofe8C4Bs7rVHwAOKyX9bPXCew9Ns8DVKn4JgNVp4o9a3m3Y7ByYN83nFb1sLdeGmNWsbdeY882QkixZ+jVOlv6vJrU2OdLFnzckKpG6YbRkHlXfEmS8P9x0zx3WtypKUvF5zX2/lvyMPNGli2SMrHA1RLkVPxBZp5nQbHX+lEA1hVMQiFmIk27Eop5nvE4WS1oYxuKEZuB/aSWGGLhECTJuLUp739uYkw1ak9n9z5TK9VuPMdZi+Z5yuaN/qZCJq/4HzjZTDbawDEz7vHyxCqB/XgNBKV64r9ZjrCNWrFvBkpr7GuTiu91jT3Deh97/VQ5xTzPu/PD0vHX6xjoMTMaL01M7Jrn2T0nvcXAfudQuuLOOquvnz4haUshsqrYm1X4lFT84Cn2dgP7yTYV+1qm4otS6fPN1ZMaKfZ881CsvujM5EXuPv3BeVNcPxa2OMyLEvIF0beu+IBqU2lErrO32sceME5v9TvZvMhLTiaZqbE3YZ5HjvjWiTtU7Kul4gPVnfEVUzp7GzOhkICpHfKztsvAGX/cghDBgkxtgOrUFR9wp+Wd1QyHaoq9er1QqSVdNbSbsgx27pNR43Nv2hWfFHsiKAwUa9Emm5gAg4B6EedVqjmgUew9dsU3+rkaRsZWSh97787P/KIzvl5gzxR7L9uOWK2x5+qezXMyrVNeHGTyIvZWMFtzYpwHGLeF0WK13V1HgAN7u6nxPLgas6jY1yAVXz3mqOvseR/7WrW7s5CKz7JBBMGbjAL1olndv92rtp5ewspA+kczJYtdS+3uDBbLfof1sA8JyrhViUo19nnRWbu0ZsbrGntAmb+MauxZm82IA3+E7ip19lbWK9UUe6tZl5FwiKv8brS84+0Bzba7i1TuejKmSsN3UsrC/VE06xpzin3x+Tbrik+KPeF3mGLfDI74QO3M80pq7D3rY+9NjX0tUvGZM/57e0b5gArIRoAs6PQ0FT9uTbFXNjvsnZN4JIwpxfTZnUPGBnqs1Z0d4zzARo29xVT8kXTOlVq+RsKpYs/ahZqhIEpcTZzgYWAfVtWfqheRtVfszafi802HmLNFoBHq8TGTE33rig8om0p7RrMlSp2VFqVxkymqfmPfOPPMiJm6j4yCLcB6+y9CwWmN/bArqfjO2t0BSp29kT+OlQzDJPe1MGp3Z/042Sau0013SbJ+v1draTjqUnq7oXleznwqfrWMBrMmiH6FRrAmgqWRNkMPe0De4YwUJ3tPa+xjNVDsNUGZbVd81cQrSUpg7aW54NSOBKa0xyFKwJs7R/jv1UG+t4q9vXZ3Tu6Z3uICoVKdvaLY2wvsrbriWw3scwUpUApfOlfg38dKH3tACa4GLCj2zKjPzudZRa+XPbvfa1Zjb6GXtRmFzgmRcAjh4tifyYt8ce038zwAfJOwfzTDn+VYOGSpljioNfYsI8pMD3vAXCq+k8CwWamFYl/p2gH2+8OrYYq9USo+G1NbTASvhoq9TfM8QGnJt72Kf081RNUQbfZ8KX3s9a+xW+1Vq5nnVcpUMmueR674RGBgi9JmMc8DlAfdy8A1WQfF3o0ae/XA6aViDwALprN+9ko6Pts1jagURy+wagaXcajYA+YM9BTF3l4qvnnF3lpLw9ZYhPfgVQenfod9l5CN9G91OrRZWHZAayzsuQrYonHGlySpDq74lVM11Zgxy3KKWvkJhGI/klFt0ln7HkFNxec97E0Y5wHKBpi+Kz6l4tvFeWBvQrGPVO7j7tQ8D1AU+75h/XGeBZdmFHujem+77e4AZa3ARAG75NWBvcVUfKOMrFGXSr/0zPMKosTPW6Vzr6TiV74PR6mPPREUuCt+a3Ok4gPKIOGpeV5Juzv/1Nira5i8NM8DgPnMGV9VZ6+uV/Oy/WKb1VR8rtg7COx5y7tKqfjOFHuzRjFWfRRCIYGfM7MtAv0AC7Q7klHL6d9csbdgnjdYA+M8hlaxz+RFXjNcqxp71vvbSiq+V4o9UKpSKzX2/lvyqDsypEyoVnoE1TyPB/YmfYPYXJ0rSGX3KZnn2YdlBHpqnher3LJRMYNznorfZ5CKb6XG3ijDwIliz9YKTBSwizruNXu+eEaWQdDMzo3TjWS9TUh1dqeZPvbZvAhRNM4cI8WeCAzN5ooPqBR7D5WaREx5b69SyrVBpt0ae3WaLAv4QoL3LX4OKyr267YrLe/GLbSOcYLi8m5OfWY7xU6CAOaMv8MgsM8XRB70z5zk0DzPZVd8QG2gFxzF3olD/WRVYG/Wd0Bpded9hhQP7IvXmqVFCoK3HSfU8HKfCgsqhqLQeRnYK4GA4orvv4XclHYlW8ROD3vA2JDK7+wrpuJPMvmMqbOWytzKWWAYoVR8q8Qj5jf19OCBfYW1QDXzvLzFvux6cPM8I1d8K+3udHxPAGdeDmyt4FSxZ8vAkGA+w6FaqZVbZq16ZUNswzokVF77qsWLSgZ6VtoW+hEK7JuEgijxerRmqbEHlEHAy1Tz9ngUkZCAWDjkWdqrW33s1alyalM1LxVzQGl5986uEf65tXDEB5TgwWyNPZtQnGQxcMXeIBW/bziNgighFg5his2NtrhZxd6GQaLVFoF+wK4jPqB0EskWRNNZDMpGgveLB606xOsdPTKn00Nxxbei2HuYih9VNr583ceet7tTzPOszmfBTcUvmue1mruP4pEQLzPSBlxuBIbNSiysKKV24H4gDszz3Mi4mMZq7Icyuhu4Yxba3SkZBu60uwPUir07qfhWzpXaIFH33GTMn5tK6Bl9jqva01Vaq6rXbJXWRYpiT4E94WMGx7PcMMNs2loQiNdAsU/GwvjJx4/Azz5xhGeKUFmNvUWFXc+11mrttRN6OxOY2BJFXpTw9i7ZQM9KT1gnWG3flrZZx6qmd4LSy14P3sN+or0e9oB+LZoeVtvdAcFseedEsU9Ew1xNMltnP1RME65NKr58bGwBNJqW/7dW9fWA2qDTTLs7+b7q8HDTI66q+w1CKn4qV+A+OZSKL2NVsRcEQWl5l6VUfLdwUmMvSZKpDJ5KHQ0Ad8wPWWCfLei3qlVq7N1od2c/sN/uUiq+lTp/9WvzOllZbpm1suA8rZOKX23cCxUFNsB4XSSKkrJRQO3uCD/DethPaIk21cSl1Nh7+53PXtiLM+b3ePb+Zan4FoNxll6Y01Psa6BiCYLAVfv1xXR8bmDisWLPgpvxbMGUmqgYbdk/LpaKz5R5LU7r6wFj91gtThR7s4aDfkBdY2+HrnZrdfbs8yYka5iKX1wAueVQbIWojo+HEbUxz1OeDz+n4rfGI/z6bt0rjxuWU/GD6opvscYeUM6dNuDKuVCj3aw4qbHP5EW+GVixxr5Khpob5oexSIhntOql449xV3z75nlO3PuZeV6/pvWlVZhib2VzQV2iktfZvB31ULE308OewQQMo8Be/dyTYk/4Gt7DvonUekB5yK0Gwo2GVmmyulER11l016KHvRoe2Bed8cdrFHyoFwtm0vHdUOyntMcRCQkoiBJ2j5QvELbuddbDHjCv2FttdweU9rIPCkqgbS+YZGOnacWe19jXzjyvLBW/hoq9kopf/3Z3QHBc8QFFtd9SHDes19hXNh7zKywV36wrPqCofmpDLoD62DvBiWLPNo+r+YFUC9jyojvtChUDvdJ5O19QMn/MKfYGNfYOAvvOZJSPmU4M9Ngy0E4qPqC/geNWFxZ98zzz3iLVMjtYOYUgOFvjNTLB/FZEGf28h33zGOcBtTHPqwXaScB6H3uWiq82z2PpqTUK7HuZYi8H9mOquikviYZDfAA3k1qecaFEIRwSeFrfjsHywF5R7O0Z5wFWFHvr34ep2pSKr6A441sM7GuZiq8xz6upYh+q3A5JTU0Uex4IiDzg8Os8wFREtiGYoFR8AMDuoqpqxTfIWLGnGnu78MDeoP66EmrTtUplackKNfaSJLl2/YwM9MZUCrmZNYvR8WYcpOID7rS8K9hQ7COqa6M3xnNXfA/N88wp9pUzO7gBYpV6fT9DI1iTMNCEjviAsnCs5QLXC8pr7C0G9jo76m4o01aYP11ueffWzhHkCiJX7FtrUOfUFjcXqIqixHejnQYBPZ2s5V35BKz0sPdesc/YKLkIonme00B7cjF42GMyFZ+Z9dlN/bdCUtPuTjGjqkMqvilX/GKNfQ1c8dVZJ37N3GLzNlvMt1AqfjEbSl7XME8TM7BnRTtuMsWX+thbh50zSdKvv66EMhZUHicrKbHqz2RtN+2iGOiVBvYswyMaFkwFxEaBPS8ZsB3YO295l+eKvfnAVhAElY9K+Tjiliu+IlioUvFzzGjZTAlEeSq/mlqZNtcTf0c7hGl4D/smcsQHgC+esj96OhM408P691ogCPJkYld50qt/VWrsazPAzZrUgvZEBCPpPN7ZNVozxR6QA4j+0UzV1HL1wtdpiULvhCSweR92VlTsa1djb8Vwi22IBbHGvtaKvd3Ufyu0qlPxY6q0yBpuaLIUWGuu+N6n4qu7GPhWsS/6O7BNQuvmecFzxe8fzaAgSgiHBEuCBQ8QNeZ5Sip+MFU8L1EHqbmCaEk1N9v6UrluOoG9KhPRabtCZUNeo9hnrK1XjM3z5J/tZha44Yyfl+RzZKe7Uq5QQC7vYY0924TM6aTimxj3+IaKQXYSN0D0udhXieB+M6IE5qY7ubW5FPtDeztwaG9HvQ/DFeLqwN6iyh7T2WnN2HBLd4IgCDistwP/eH8v1u8YUtqj1GDn1GzLO/XuumPFvtjybrum5V2+IPI0Pyep+LWosR9OkWLPYOm+lmvsa6LYq1zxY4oxJctUqQWNZ55XDOyL1yEcEnybZs1aYjJh0nYf+wCl4rPAa1p7HGELnUWqpeKb7etNKKizHLJ5ERYsD0xv8ikBW/n4oq75jrik2GtT8cctppobpYQ7ccUH3EnF5+Z5trorFXRr7MdccsXXG6usmOfFDTbutMcZZMWeRrAmob9JFfsgoXZ0turuzCaREsU+X1vzPABYUDTQe337kKWesE5pN9m+jSlakZDgeIHHnPG1qfg7h4o97CP2e9gDynWrZljEa+wt3DPK+SLFnqEo9uZS8YdrWmNfGqzUwzwv2mDmeTGu2MvXwa9qPaAo9gzrfezLVTC/01ccV5nZmVmqu+L79z6pF5FwCGxvxaqBHptjqgXMPFDWVeyVz3SaccHup13aGnuLXXy4eZ7meJ2W+rmRim/HPE/9er3NW5Yl5lyxLzf6tFdjX0WxD6gjPkCBfdOg1NhTYO9X1BOB3T72Gd0a+9oF9swZf932IW5iYqZ1jFPYoqFaoOrmOTFK6eNp+BPs97AHzCn2kiQpGzgxK33sA1xjb9OlfnIxsDer2A+yVPwauuKX1djXIRU/J1pJxfe+3R3LOvFzYD9FM29TKr4yrvZ0WitnUjpIlI5tShsySsW3g2LQazWwNzcWJIvzl16KNc+2CAmODdGM5m2m2JtdrxilhLM0drsbSDPrZJ4H6Gd+MtzaTK5knpeMmqixjxjfJ4C6ZSEp9oTPaVZX/CChTr+3UxsFaGvsa5uKDwCHFZ3x39g5jJGMHPjUMhV/uEqgmub9rp2fE2bopHXFZzvt0x3U1wPmauwzeRHMpNhaKn5Rsc8EQ7GXJMk18zwzin2uIPLFSE1d8evY7o6ZVlVT7NM5JZWzNjX2TLH370JOO2/b72MfnFR81o7MqmKfiOmn6pIrvjPstrwzm73DMs70auzZusZpqztAScUfSedLWiKOcaXXrGKvn2GQcdDuDlDWDQNj2bKWjWbJ21XseeZn6RgvSZJrnVh4JmJBhFisPUpZMLxTzDErp+KTYk/4HqbYT6bA3reUpuLbTaFStbvLsSC2dgveOV2taImFkc6JWL99GEBtzPNYoFqtxt6NVncMFtj3j2ZKFtRutLoDzCn26nQ2K6n4QVPs1S3PnKbij2TyVX0N2CYC4K0qzTDsY1/LdncRc+3u2D0lCECbh88+2whlJRFWfUkaCaeBPXeKDqRi73Iqvo8zO+oJm4+8UuzZhoy+Yu9eGUV7IsqDd3Uve6U226Riz4/X3Rr7zmSUz8/bbar2eZuKvVEqfjoncv8Pt9rdAcp4ZcU8j61zjOboMQtp/X6FRrAmIJUt8JuZauz9CxvwBEiW68jiejX2LgaxZgmHBBzaI5sZsuCnFu3ulPZt5lLx3QgCJrZE+XlXLxDccMQHzCn2bBEUEqzVHqo9Caz2JW5EhlQGanYXHh2JCFdZBsYqq/a81V0iYsnYyy683V0da+yZaZVWzdHCa2pjlftWO4Wn4qf9n4pfVmNvNxU/UDX29hR74zZkVGPvBJ6Kb7PG3rxiX/7+rN2dW9eO3VN6gb3Z9UrSwMXfjfuMiQJbbdbZs0tkNWuA9bLXBvYss08QnAfMpYG9fO7YvGYmW4JtYhrX2NfO26le0AjWBDBH/Fg4VNOaS8Jd2IAXEWC5jkxv0lXM82o7DLA6e0ZtzPPMKdBp3k7Q+WaDIAi66fhu9LAHlPshL0qGLcZSvDYtbOmeYeerIEp8t9zPsMC+IxGxXYMpCALfGO0fqVxn77Se3yqtPBVfvr+5ClZLxd5ku7taGOcB5a74fk7Fb42FS1R6J6n4QdioA4Cdw/IGqWXFPlYl4KrBRlwQ0TPoNYPSx76KK36MbU6Vz0dutyrkgb3KQG/cYnteJg6kcqXPnFPFHnDe8o7tvVo9X0bXmBkLtsXsz6+MSDjEN8OZaJGycO6rmeexY62FoFQvKLBvAtQ97J0+dET9YG087MwHbADPlij2tTfPA3QC+5qk4psL7DM5dzc7FCMeZQJ2KxVffd2MVHu7nQ9aYmE+uQYhHd+t1nO8zn6scmBfS0d8oEIqfh1c8asr9t4b5wF6Nfb+Xe4IgoCudiXbznpgL79elBR108+IooRdQ/Iz2G3RPM+4v3hR9fXxfVJPYjoGvWZgam9V8zyD6wYo97TTVncMvZZ3Y7zdnTXFHig9J7xlsaPA3pmBntNU/Kymjz1zxHdrvtF28WDZEqZS8Q3aDDK4CSLV2BN+pp874lN9vZ9hg52dmDOqs9PK68lrvJCZP72j5Oda1DrxGnuTir2VevRK9PCWd/ICIVcQeZA/0yXFHjDenbZbbiEIgunyBT+gKOjOSpHYGNo/UjkVv5Y97AGVClmsdVT62DeeK77Z1FunsI1QttHg5xp7oHT+TlrocAGUfvcg1NnvHc8iWxAhCMDUdmvrGm0HCQal4jvDc/O8qJKhplWMeUcDl9YyPTqp+LyLj8mAUD3nqufnrAvH6rTlnW3zPANX/NGMu+ntCU1HAbaZY6Xdnd4GEGDdBNGP0AjWBAxQD/tAwCYCO/MB203P5cvN86y2TnLKAVPaSoLSWqTiswBnuIY19gAwfYK8QNg+KAfzfUNpiJJ8LZ1utIVCQlWVJO0gA8FsJwE/4Jpi31oM7Kso9oPj8pg7IVmbMVe94EnllcV1e7w2GwuA4oovSXIJhxG1TsVXfvb3Qk49XljdqFPX0uqlMvsNFnB1tcUtBydGNfZ5kdrdOcFsxo4W0+Z5BoGy/JlFV3yXyii6O3Rq7LPWauyj4RA/HrV6nMs730BynoovH5db5nlum7VqFXtL5nnVaux5uztS7AkfwxahbFFK+BN1jb1V9Gqj7KZpOyUSDuHgHkW1r41ibzIV323Fvlhjv7MY2DOzG6c97BnxKpNYykG5BQsKq22G+AEWaDsN7Fk6dHXFvlg3WiPFPhEJg1VZDasuVy3rCNUpzJXqbIfT5lJvnaIN5P2cig9oFHuLz7OZTUA/YdcRHzCRik+KvS3sK/bmMnjikRAf47TXLu9yq0K9VHyrij2gf69lXFHsHabi2zTPY6/XtjQd8yqwZ4q9rRp7g3Z3XLGnwJ7wMQO8hz0p9n6GLVRtpeLrmefl3DOKs8r8Xjmwj4SEmiy4zbe786rGXl4gsInYaQ97Bne7NlhMZZwE9gFqeafUvDubzLuKm6PVauxrnYofCgk82BvOyqvfZDSMSA2DFLVaVimwr59i7+/lzpR2dSq+9edZWSz7P7DvK5YzMWXVCtXM82r5zAQJpd2dtYwQlhFWLSgUBIFvuGu7OyhlFO4o9qyEzoliD5QbuUmSpJjnOVHsJ8nHt3csy4NqKxSc1tiXueK7HdiXrmvGrfSx592CKrvit5B5HuFnlB72FNj7mbiDVPzK5nm1HwYWFA30WmLW3Nrtwhx3RzOV27dlXHTFB6ByxZcXom4Z5zGqpZ2xzRurCh+gqM2BqrF3S7EfrZKKnyqm4tfIFR9QFj1Msfc6cNaiVsu0io6ampnnRbWBvb8XclNU83dL1Pq1jUdLVTA/40Sxr97ujlLx7RDVKferRiZf4IFuh4nxIKFymleTc1ux75Q30faMZvh9YbWPPaB4YbDjVRtXOgnsOxJRPpexMj8r2K6xN3TFd7vGvnSsGld19zH7t9qNOwbLvCDFnvA1rOcypeL7G7YwsxOH66bi18kVHwCO2m8iACXlzWvaTLZvc3uzgy08h9N5jGby3Oxm5iS3FHsW2Bu0u3Ohxj4Iir3bNfYsC8qIWrviA4oSOVw8tFo64gNAOCTwVNnKin2NzPO0qfgBMs9LWDTPA4LVy17pYW99HK1mnuck4GpmeKmHhXZ3ajNbM+NVtU2ZiEubMl2tcURCAiQJ2FNsbTpuI4WbZRiki3+rzph0avTnxEAvz9vdWQzsDfrYj7qchcXGqnROREGUuOBiRrGPa4z3tIxZUP/9Co1gTQAbmLosuscSjQUb7CKC9XZFbNIVVcZWdh3T3eDAae347aVH45eXHFWTz0tGzbVvc3uzoz0R5ZPdzsGUB4p95bQzxQzQhmKfCJ5i79TMjrviVwnsa52KDygLzqFiKn4te9gzuGpnwjyvWt9qpwQtFZ/N3yHBXvAZpFR8L2rs3VZ9mw07NfZsLGhVtVetBL92mk0ZZnzo1rULhYSyOvsxGyncbLOVBZleBPZb91pX7J2m4msNEhVXfHfWTersIvVzaqrGXrUpoAdX7Mk8j/AzimJPqfh+xlkqvvJHbHLJ5OuXig8Apx4yDQdOa6/JZ6nbt41mjAPVjAs9ZrX0FlWlHUNpbOeBfW0Ue755YyMNmbvip/yv2A8WA22nZnbMp2TvWKai83s9AvukJhW/1oo9oCg6+UqKvcm+1U7RLlr9norPynomtsRslS/FNIZUfoYFW912UvFjRoF9MTj0+QZQvXAS2JsdC5Q2aJoaew+MD6d1yBtpu4qbSOM2WoiyeTeVlY+XlUKGQ4KpjYxKKAZ6NhR7bp5n7RiiRedm7TVWXPHdGdPVrvisJl4QzK1V+WaKTnmiJEmKV0KAFfvgblkQAABRlLB3jJnnkWLvZ9ik5sQ8D5AnlyTCjoI+P9KeiGBwPFexfZsThduIngkJbNg1gi17x3kPe7cCe7OKvdW+10AwFXungfak4uaoKMlO+5MNxtTB8doH9rzGvqjY17KHPUM2HiuQeZ4HTJ+QxI/+aaHt8iU2pvk9FV+SJD6OOqmxz+blNN+wJr046lLLtGbDqBVaJayW5RgaH4rutrsDlE0jlh1iJ4U7oQkys7zVnfPjdNLyzrlir5+K3+aWYq8yz0up6uvNbGhW8h1K50Sw/fggt7sL7jcjAMgLWqYsTSLF3tcsOWQaVr7Zh8Njeyz/rXoiYYNyPWvs64G8m5yqkorvvmLPHHbXbN4HUZLfe4pLm2zafq9a+DV2oNgHocberZr3SDiEiS1R7BvPoX/UOLCvh2LP0hSHmGJfwx72DDO9rGtnnhesGnsA+NjRM23/bVBS8YdSOT5O29nkUBtwpXMFnpLLU/F9vgFUL+I2FPthi5t8RkEb7w3v4rXr7pDn7V3DaRREid9z1mrsS83zsi76ODhpeWfXPC9mENizTQ+3ssTUbXzHeas7c2uYSqn47DgBoCXA614awQIOa8vUkYg4rukh6susyS2487KjcfAE6zX2giCUDMr5gsgdWuuVil9rlEC1Uiq++5sdvcWd/xc37QUgt7pzqxOAWcXeXrs7ptj7O7CXJEkJtF1wqWeZTwMGzvjpXIEHT258nllaNOZ5tXbFB5QNxMqu+LUyzwtWKr5TtL2h/QpLw5/UGrM1rqnvC3U6vqKmNsd86DY8Fd+WYm9unDQyz2NrGTezLbqLzvh9w2meDg7YrLHXKPYxF8aiupjnGWzcKl4J7re74474ZgN7g3sEUMopWmJhhAKcmUMjWMDZM1JMwyfjvKaHt7zLiyU1as2i2POWdyYUe1cD+wmlKXNuGecB5mvs7fS95jX2Pk/FT+UKfCHihoLO2obuMQjs2SZCOCTU1MCOBfZZsZ6p+OVtNbVYVensErRUfKdoe0P7FZYabaeHPSAboyV1TNgUA7bgLvi9RL2+MIvVspy4gfFhtuD+pgzLBtk5lObBZSQkWFLbtRsRSucF91Lx943neI27WQqS/PlupeKzdneuKfaqTUj2jJpt8cnOeV6UDDMLrLQs9CPNPdM1AUyx76JWd02PugepekHTLAteFuiYccV3NRV/QukC1K36eqC6Yp9y8H2CkorPAu1ISHDFMEdR7PWd8dnndSQirmVmmCGpWfjUxTyvuPAzMs9L55S+1Z6n4ges3Z1TuNO0jpLlJ/ocOOIz9Az02OYftbuzRyxc3Fi0pNhbK8tRAuXSz2AZQhEXrx0rods1nOaBc0vMXJ03Q9uBQVHsnR9neyKKCcWMsO0W0/EV8zyrfewN2t1x8zx3U/HV5nlmMyXU47xWtWfv5ZZ7f6NCI1jAYYtPpjIRzQsbxLN5qSSArWXwUU/aTZjBMTXL3VT80kDezcC+umJvPxWfOcj7XbFXG9m5ca8rLe8qK/a1rK8Hyhcr9VDso6FiYG/QMUC9SeT18UXDAtSXm1Lxg1FjzxV7J4G9jmKfo1R8R9hzxbdWlsPKBo06GrihhDNYRkjfUJor0lZbpCU0GxFuBvaA/XT8vF3zvFDldndujekJtXlezlqNvbymlf+/dl00xlPxSbEnfAyrA6XAnlCnUXlRS97ocAW6QtqaEgi7aMLTqVXs3UvFr1pjX1xIJG3V2LP2gHmIFVq7NTpuB9qs5Z2hYl8HR3ygvNyiHjX21VLx2UK+LR5x3O6pGoIglGSqNEtmkhFBScXvc+CIz9ALENk9G6FUfFvYCexZQGi2ZCnJOztoA3v3FfupxXZ3mbyIHYPyPWc9sDcwz3MrsJ9gz0CPDc/Wa+zLx3dJkpRUfJcV+3SuwINxbUaaEepx31CxD3CrO4AC+8DTz3vYUyp+s6M2t1FqyZtnCDBjBqf0sXdv4E9Ew5is6kgx003F3iA1kZHOOlDsi+dLkkrdZP3GkEs97BmTqyj2g9yor7abqVqX37oo9jwVv7JiX6tNB/VzTIp9MMzzFMXe/jiqn4rvnmN5M8LUcmvt7qy64uvX2Oc9qLFPRMO8k9R7e8YAWA8ItTX2bhs0MsV+6157ir1VPwlezqnavEnlCryFnHs19mrzPOttBpMGggdX7APc6g6gwD7wMMW+ixT7pocN4rm82HSt7gBl0qmYiu+BYg8oBnqAN+Z5xoq9/e8Tj4T4PePnOnu3FXu2ScM2Tb3+PLNo0wvrE9gzV3wjxb7Wgb1KsW+iTUw91HWrfsaVGnsWcBU3PguixIMTSsW3hx3FftiiK76R43mOB/buZlswA733i4G91RRu7fG62e4OsN/LntfYu2Cex8yIQ4K9zEA9dM3zLAT2fAMoW3ovkmJPBIL+Yrpol0t9swn/oqvYN5GK1WHCDC7tQY09oCxC45GQq5ts2ho+LU42cARB4AuuRqyzlyQJV9z1Mi797xcrqpBu9bBnsA4j/SPVauxrG1hrzYXqYZ4XCVVueWW1vZVT1ME8peIHJRXfhRr7YoDG3M7VgQr1sbeHvXZ31jb6uDeCZr7LFXdl2PjjFmzefm/PKADrpmtasz/3a+yLqfiD1hR7llBldYMhptPublTlP+CWX5PaD2Q8Z63dHaBaF2kV+yzV2BMBQKmxp8C+2VH3IPWilrzRUdeMG5HxwBUfUBT7GS72sAdMKPYO2/eZ2QypF8+/N4AV6/rw1Nt7cMdzmwxfxwLtCS71lGcdRgbGMpCk8pRztpEwIVnjVHxtjX28thkDgBIUUSp+4xGEVPyRdI57pNhtdwcASU3tc0lgTzX2toiGrSv2Vjf6Ejqmh4DK+DDilWIvB/aWFftY6fG6Xe4xY5JNxd6ueZ6eYm/RJ8EM3DsoJ9pS7A1r7DPkik8EAHLFJxjqiZftZMabKRU/Xr3G3ivFvrfY8s7NNHygumKfcriBY6aTQL2464Ut/P//4vF3sXskrfu6QZfN7Lra5bE0nRO5AlD6eVlXP88sDdHurmiIx3qCa7GaeusUMs9TCIIr/q5h+RlvT0QsG5mpKe8vrmxERV1WfZsF3nXHS8U+pr85xbpwuH3t2ObRcNpeQJiIaMzzXFbspxcFg8HxnKU5mg0Bds3z9AJ7J8+jFh6Y5wuqGnvz78/U/TJXfFLsCb+TzhX47jb1sSdiqt1Wp0quH2mvUmOfK4goFBcIbgcBZ87vwUkHdOGyE2a7+r7VFXtnXgqN2st+z0gGD7/eBwCYOSmJ0UweP354g+5r3a55b4lFeGAwoGOgV78a+9JrXA9VQnHFbxTFnmrsGXGVCuZXdrpQXw+ozPM0Smo4JCDkcbeGoGKv3Z08HnSYVewj+op91qMae+19ZjUgVAJM+XgzLgf2Jb3sB82p9pIkoSAJto4jqpeKX7yGbm4kq8cqVi5jpX6f3yfkik8Ejb1Fc6doWEBHjes9icZD3aqEB3xNpGKxYGLYIEhVK1lub3jMnNSC33/uWHzo4Kmuvm81xZ4t4u2a2lQ7Z/XiTy9vRV6UcMTMCfjJRUcWf7cNr20bLHut2674gKLa6znje/F5ZlAH8rFIqC6p54orfmXzPLMLeafEShT7YC/mqhGEVHw3HPGBcnd1xa2cgnq7xCym4ucKSo9y0674LFDWKva8VaG765lpmsDefh/70swQNzsvzGR19nvNBfYl2SmWFfvyVHzWMcdNs1bn5nn6qfjkik/4HrbonNwad7Wul/AnbJGbKzSnKz5L/83mRd3FrXoS8EvarlEtGSA7PTMlw75iXzTPSzVOKr4oSvjDi3Ia/iXHzsKi/SbiI0dOhyQB3/rLG2V1714o6Kx9aL9OL/tBl2v6zZJUqUltdaohrN7ujqXi16PG3h/PtFcEIRWfO+I7qK8HlI1OpgbyVG5yxLeNen1hhlHVZrFZtddIsfciYAbKfRzst7srNc9z06BRccY3Z6Cnvj5Wz5deH3uu2HsS2KsUexvmeZmywJ4Ue8LnUH09oUZdY5/hteTNMwSoJ55RHQWaBcexSMg3G2FsAtNTSdTBvt3r3JGo7ktQa555tx9b96bQnojg7IW9AICvnXEwktEwXtq8D395bWfJ6912xQeULiN6ir0Xn2cGdR/7erS6A4BIqHzhp0ZR7OuQit/0gb3/XfF3uuCIDyjqX1pjnkc97O1jNRWfjQWJaMj0hopR7XSOK/buztva+8yq0pvQmDRmC8U1hov3mdWWd2rF3nIqvs7mzYgHNfbqTETmim+pxt4gk5FlF7h5rI0IjWIBpp8c8QkVpTX2zafYh0MC36nVC1T5ZoePAoBKin1JYG8zDbmaL0E9uOsfmwEAHz1qBl/odXcmcMXi/QEAN694s0TR8UJBZy0LBzSKvSRJdauxVysatVLEtVR1xc/Uut2dfE7CIcH1NF2/wfvY+zgVv29IDl6c1tgbp+I39z3iBKvt7uyMBUYp1kofe3evX0ciUlLGZlXpLetjX7zP3NxkZIa8W00q9uz6hAR5XLQCX0PmlfGdqeDepeIz8zwLrvia55vB1H9yxSd8y0Cxxr6rlRR7wqjdXbAHOC1sEaHX8s6P54SnnOmoJClVBoJdQ6hGM8/bNZzGyrd2A5DT8NX8y8lzMX1CEjuH0vjVU+8B8C7QNlLsU7kCV0RqnYofj4T4Qq1ein01V/x6mec1u1oPqBbLATDPc6rYG5nnua34NhNW293ZGQu03QwYbCPRbY8EQRBK7jXL5nmq+VkUJT43uLkBYV2xt2/gp9vuzotUfNV5s5eKb1Rjb91h34/QbBdglB72FNgTpaly3BW/yRa8ihlcuQLNzomf3LMrK/bOr3FHg7W7u3f1VhRECcfMnoh509pL/i0RDeP/LTsEAPDrp9/D9sEUxrIF3unA1Rp7A8WetdaLhgXbhoV2EQTlM+uWil+l5ZWymK9tuzsK7IORit83zFzxnZnnJTWKnlc12s2E1XZ3dsYC9XVTe6nkPPRIUNfZW253p5oD0vmC6674gKLYmw3snWSn6Le7k58hV13xVWtVrrJbCMaNTIXtvJcfoVEswCg19pSKT6h21FWp+M3Uxx5QJh/9VHzWKcA/56SSYu9GBkIjueIXRAn3cNO8/XRfs2xBNz4wZxLSORHf/9tbXK13O9Bmiv0ejWKvzg6oh08DS1esm2LfoOZ5ze6ID/jfFT+VLfCNM8eKvUb5zXuUyt1MxC3X2Be7h1gYC9h6RZRKNxByeW9c8QE4UuxLAvuc6HofewCYXlTsh1I5XcFCS85Ba0DddnfFkgovauwBZU61korPn++8gWJPqfiEX2GLzi4K7AkA0UhxtzUvIs3N84I9wGlpr2AGx1JU/XRO2GIqL0plLcbYAt5KCpsW1rKtERT7Jzfsxo6hNCa2RHHG/G7d1wiCgBvPORSCAPzl1R14/M1dANwPtBXFXj+wr3WrO0b9A/tiKr6Bajdc61T8YvaNn7JwvCLBa+z9qdgztb4lFnZsvsjGRKbg8T7oEUrFtwsL+kTJ+PlX4yQVHyhVY1npjxftCqepFHur42o4JPBMBrlMy32TxrZ4BBNZL3sTqr2T7BTddndFxb7dgxp7ADzjzlYqvsprR5IkUuwJ/0Ou+IQaffO85hoC2CJiVDcVv5jF4KO0XfUmhHbBnsqyVHznin0j1Njf/YKs1n/0qBkVN18O6+3Ex4+R6+9/8PcNANwPtKe06be7Y4rihDoF9nVPxQ8VxxixXLHP5Atcsap1Kr6fsnC8gqfi+7TGfmfROK+7M+F4k84oFZ8Ue/uoVeicQcaOGp69Ezc/FkTDAphdjLr8zMvr11Oi2FsfR9T13l60uwOspeO7kYqfFyWIxTHeC1f8SEi5zgxrfezLFftsQeRtLUmxJ3zLwFhRsW8lxZ5Q18CpzPOabMHLdpUruuL7ULEHyuvs3di8qZThUEu2D6bwxAbZNO8TGtM8Pa5beiDa4xFukuh2oM3Km4ZSuZLU03q1umMoin2d+tirsoK0qO+hWm088FT8JtvA1EOdiq+uT/YLvIe9wzR8QNU2TWOeFw3RfWIXdWBvJh3fjmKv9hEpDeyLqfg2TWIrMa2kxt76uMU7MGQLPDMk7vIGxMxJ5nvZZ52Y56k3b4pZEl644guCUFY+ZWWtyl6rzuoYzyj3S4uP1nh2oFEsoEiSRIo9UYK6B6kf087dgCvQFV3x/TMshlSpflrFnu1Wu1FjP5rJ85S4enDvi1sgSsDxcydj/yltVV/f1RbH1afN4z+7HWhPSEa5A/3eMUW1r1erOwYLWNw0MrICC4zyOvfKiMo92WqbJbuQeZ4CWyiLkv71aXRYKn53hzPjPEBPsadUfKdEQgJYIkWmUN3HYdimkaa2VSHgXbs7QFtjb30uZWOyOmPJzRp7wKJi7+BcqdP3WZaEF674QOlmbDIattTZJxEr3/xhPezjkVDgW58G+9s1McPpPJ+8J1G7OwKl7WiUoK+5hoD2Ci7vGd5j1l+bHXGD1i6slZMbgT2gTOC1JlcQcc/qrQCAS46rrtYz/vn42Zjb1QrA/UA7FBL4uKpueccC+wkt9RlzPzB7IiKChMNndNbl8yM6rsmMWhvnAaoae589016gXij7sc7eTcWe+ti7jyAIuuZqRrDxwOompJ7jed7DVPyZE5MICXK2n50NQr6JlBUdBdWVUFreVVfslRp7++Z5gJKVxRV7l8d1tUJvdUOFdQJSb/4oPeyDXV8PAMH/hk0Kq/1sj0eaTpUl9ImpFt1+7NnuBpVqxpVOAf5a3MUjYYwgr6PYs6wM+98nHgkjHgkhkxcxnM6hs8a92QFg5Zu7sXskg662GJYeqm+ap0csEsIP/mkh/t/963DO4b2uH1dXWxx7RjIYUCn2gyn5/9fLPO+Lp8zF9JG3sGB6fQJ7PXMlRq172ANAb7EtmhvBoN9Rq22ZXKFuPgx2cauHPaBKxc/J/cXzHrZLaybi4RCyedFUKj4rk7I6HrD5LJUtrZ8GvDHPm9wWx+2XLEJ7ImLL2yGu2kTyTrGXx7mte83X2Ns5hnCx9l2U5DFekiSMZmug2FsN7HU2f5Qe9sFf8/prZCdMw+vr26m+npCJqVLxeY9znwWxTmmrUGPP+9j7TN1LGCj2GZc2b9oTUWRGM3Wrs7+72OLunxbNtLwYOWb2JDx67SleHBa6iiVO/SNqxV4+R/VKxQeAemadK674eqn4TLGv3bk55cApuPtzx+KwOm10NBKsbCdbEJtesVcv7tN5b9zKm5FYJARkrNXYW+1wwDdlVMZoXir2AAy7sJghqWOe510qvhnF3lnWQDQsb/TnRNllntl1uB7Yq86RZcWetQHWU+wD7ogPUCp+YOH19ZSGTxSJ6pjn+S2IdUrlVHx/licoplgaxb54jZ32b+/gWQ61b3m3ZWAcT7+9BwBw8QfMp+HXAtZGlG2iAvWvsa83lVzxa93qDpCD2RMO6Gra66HFaKzwA24q9uo031RW5VbugeLbTKjL/aqxb1xeo3Ymra1RuXletjY19k5Rl314tYE0fYKs2A+n83wOMsLpMfDuSnmRZ12EQ4Lr6yb12jRpMRjXM1gc5e79wV/zNt5TQLgCM3Qi4zyCoUy6haZNxe+omIrvT0PBhM4kBij1Zc4V+/q1vPvDalmt/+C8Lsya3FLzz6/EZF5jrzLPKy5W69Xurt7wGvsKrvi1VOyJUuK8l311c7NGIpsXuZdFd4fzwD4UEvgmhxxwyRtRQTfV8hqmRGdN9LFnmU5T2q2tUbWtzCRJKaWINODGTFKlHiuO9O4eZ2s8wj1fqvWyz+ZZdoO9Y1D7qPBgORZ23IJSS4lib3ENw8s1ShR799vyNSo0igWUAR7YUyo+IaM2tnGj/tqPsKBiVM8VP++/PvZAJcW+WFrg8BqzczZcY8U+mxfxp5eKpnkmWtzVGlbmpGeeVw8vgkaAqTl5sTHM84hS/NrLflfRET8WDrlmBpxUOWc3suLrJ3hgX0Wxz+ZFnsEz2WI75oTKjA4o7fDQiNcvoVdjH3ZfPDBroJdz0O4OUGd+itxQ14vNWrUgYTcVv7TGvmDrvfxI4z0FhCuwwL6LUvGJIuo+xtm8P9Vpp7RVUJ/92gLQSLF3LRU/WR/F/tE3dqF/NIup7XGcesi0mn62GXQV+2ZPxa/gil0P8zyiFL+m4vNWd50J15RBtVt5nqcnN57i6ydiYXOKPcsojYQEy2OltqOB2qizEUsp1EGmVzX2gDqwr6LYu1BjD8hjvJfp7WqBxap5Hu8UlC9AKpoAcMWeauwJv8IWm2SeRzDYgKxuW+a3INYplfqy8xaAflXsNSqca6n4cWNfAi959l25tv78I6c3pBLDa+yLir0oSkq7u6YN7Ku3u+ugVPy6EVNt7voJN+vrGepe9lmPzdeahSgz6K2yccSynCa1xiz1JwdKzeiA0k3ERrx+pfeZd14OM032ss85bO2oNmFmgb0XHTbUmYZWVXZ2ziVJ2cjgij3V2BN+hdfYW0xzIoILm0zUyqvfglinqNXCsWypAp3h7e78NfBzB9i81hW/mIHg8BrXq8Z+U7+cUnhwd3tNP9csLLBni9TRbB5sr6he7e7qDU/FJ8W+IYlH/ZmK3zckBytuti1kKuB4Nq+k4jfZfOg2cZOKPRsz7ZSKajPU1JuIEYubBLVA3Z6vNop9tVT8Yh97m3X+UZWPChOJvKhbj5f0sbfaElHV9aJYskGKPeF7uCs+mecRRdiihdVKR0JC05kFxSNhHnxoA9WMT30HmGKf1izWeSq+w5oypca+toH95oExAMB+k1tr+rlmYWPrwGgWkiRhaFx+ruKRUNNlwjDYwjqnW2NPgX298WsqvpeKfUmNfQMGhn7CbI09W5922Vifah3PlVZ3gusGbm6gPt6sw/r2Sswwqdi7lYqfLYhcHPFiTE84UOyj4RDCxWeZZWKOZVmNffDnH3+tYAnT8Bp7CuyJIjFN/WuzBh/tBu3beKcAn7UANFLs3XbFr6V5XjpXwI7iYn52g7nhM1hgny+m4PM0/CY1zgPUNfYVzPPizXt+6k3cp6n4vIe9C474DLbhmSLzPNdgam61wJ4p9l02FPu4QY09a7XZaLD5dzST5z3f4x6a5201a57nMLDPFyS+WeuFCl6q2Fs/XwkueMj3yTi1uyP8TF6EbcdRIrhod4n9pky7hVFquVsu8rWmmmIfd7hRwdLKa5mKv2WvvDhpV7XxaTTikTC/l/pHsxhucuM8gFLxGx3uiu9bxT7p2nuq3dV5CzBKxXeE2XZ3vGuTjbE9qXE854F9AxrnAUCiGJSqM96iLre7A4DpxcB+pEov+6zTGnvV5u0Yq7H3YEwvNc+z/v5K14tijT0p9oSfGS0+02EbjqNEcNEO5E4DPr/CW96VpeIHS7FP59wpLTDKcPCSTf3FNPyuloZMr2RMUdXZD1JgrzLPKw/sh6mPfd3hfexzPlXsPTLPY+0ZSbF3Rqw4d1ZV7Is97O2YO2t7lPOa8Qa9dkw5HlYF214ca0sswjdKKtXZZwvu9LHPem2eF7Gfii//fWlmh9LH3l/rOzs05pNAOGKkOH5MtuE4SgQX7UDerIo9m4S0qeWKYu+vgd9Qsc+70+6uHuZ5mwfkhcnsBq2vZ6jr7Ju91R2gMlaqlIpPin3d8GONfb4gYveIh4G9yjyP2t05w2y7u34XFPuMNhW/Qa8dU45ZYB8S4Jm3kZmWd271sVe3u/PGFd9hKr6me4LSxz74809Dr+xvvvlmHHPMMWhvb8fUqVNx/vnnY8OGDSWvkSQJy5cvR29vL5LJJBYvXozXX3+95DWZTAZXXXUVurq60NrainPPPRfbtm2r5VepKaM5eYCz4zhKBJfyVHx/BbBuYRSoMsU77rN0zLiRYp91p8aetSerqWJfNM5r9MBe7YyvBPaNWTpQC5T6y9KFfTYv8mCS2t3VDz+m4u8ZzUCUZGNGN9c06hp7lorfbGaybsOc1qu1u2MtQu0o9urrBqDh/RHYRgQTErw8TjMGek5T8aOqVHxvXfFVqfg21jDa7gmKK37w172N+SQUeeqpp/ClL30J//jHP/Doo48in89j6dKlGBsb46/54Q9/iFtvvRW/+MUvsHr1anR3d2PJkiUYGRnhr7nmmmvwwAMP4J577sGzzz6L0dFRnH322SgU/JWOZpaRYrxCxnmEGm36l1Ml16+0J/RrxpXUdX+dF2PF3p3vw83zUrVX7PdrUOM8hqLYZzA4Too9N88TS1Px1ZtCXtRjEubwo3keq6+f1pHgTtduwAPErNjwwaFfMK3Ys8DehgcUT7EublznRZZa3pjXjs2/bOPXC0d8BjfQ22uciu9UseebNx674pcq9jZq7DVeDEof++DPPw39Df/+97+X/HzHHXdg6tSpePnll3HyySdDkiT85Cc/wTe+8Q1ccMEFAIA777wT06ZNw913343LL78cQ0ND+O1vf4v//d//xWmnnQYA+P3vf4+ZM2fisccew+mnn17z7+U1o6pUfIJgaCc+vwWwbsEmodGMviu+3xR74xp7d1LxmcLK3KNrsYDiin2XPxT7PcX2TUBzB/asXZg2FV9xTw67GpwR1lBq7P2j2Pd50OoOKK2xVwJ7ujedYKbdnSRJjtoxa03RcvnGvnZsfmZeAF6uL+YU58t7V2/F/Omd+KdFM8pek3VYdsLb3an72Hviiq82z7Ov2Gd4uztWNhD8dW9DB/ZahoaGAACTJk0CAGzcuBF9fX1YunQpf008Hscpp5yCVatW4fLLL8fLL7+MXC5X8pre3l7Mnz8fq1atMgzsM5kMMpkM/3l4eBgAkMvlkMvVLiXVKrlcDiNZ+YGd2BJt6GMlrMOup63rquktHQsLTXl/tBQXt0PjWf79JUni6akRQfTVeYmG5AVDKpsv+T4sVTGs+T5W76F4WFFf942mMLHF2w3DTF7EjkE5lXB6R6yhr8WEZNEVfyTNe7i3x0N1O2ZH44MbSPI9J0lAOpPlQfy+UTk4a0tEGvp6+p1q1z9aXMurx4pGZ9teeZNvWru7YwGLFcYzOWSLi/8QpIY+L3V/vqsQNnF/DaVyXGXvsDFWRgSx5DPS2VzxsxtzPcOOlxENezc/LDtsKv5v7SQ8//5efOVPr+K5d3bjxrMPKUmVz+ac3evsGqezeb5hm4i4f09GBGXdEQtZP1a2cTGaktd5zME/Fmrc56caZo/bN4G9JEm49tprcdJJJ2H+/PkAgL6+PgDAtGnTSl47bdo0bN68mb8mFoth4sSJZa9hf6/HzTffjJtuuqns94888ghaWho7PXQkLwcu/dvex4oV79X5aAgvePTRRy3/jdxDVXnk9/XvwooVK9w7KJ+wfYcAIIy33tuMFSs2AgDkzX/53Dz9+Er4KVv4jX75++zYtYdfz7wISFLx+zyxEi0638fKPRQLhZEVBfzl74+hy13hrIxdKUCUIoiHJLz49Eo0sCk+tgzI5/6drbsQC0sAQti44XWs2Lu+rsdlZ3xwA3mdJ99sf13xNzB/zg1D8nkScummHHNqjdH137Rdvg7vblTGvkbn+U0hACGMD+zEihXbXXvf9/rkc7Fx63YMZQUAAl5b8wrEzeUdHRqNej3f1di0VT6n723chBUr3td9za4UAESQDEtY+cjfdV9TiS2j8t/vGxnDihUrsH6f/Jnjo8MNObbsLn5fRi6d8vQ4L5wKTMwJ+NvWEB5YuxOrNuzApfMKmF5MftvVHwYg4K3X12PFrnWW379vu/w8vvHWWxgYCgEQ8OpL/8DAm25+C+D1vfJ1BYAXVz2D9y2uO/b1y8f5yqvrkOh7DbmCfA2ee+px3fWQHxgfNy6xUOObr3fllVfitddew7PPPlv2b9p2SJIkVW2RVO01119/Pa699lr+8/DwMGbOnImlS5eio6PD4tHXjlwuh1+9uRIAcMKihVh21PQ6HxHhJrlcDo8++iiWLFmCaNR6yu+/rX6Up4TNnjUDy5bNd/sQG56Rl7bh/za/gc6uaVi27EgAxfq3F54AAJy97AxP6+DcJv7mbtz5zlq0dkzEsmXHAig68Ba/z7ma72PnHvru+qeweySDRcedhMN6vR3/Ht+wB1i7BnOnduCss4739LOcMnXzPvz326shxloQTUSAoRGcfPzRWHzglLocj9PxwSnpXAFfWy3PPx8+bSkvewm/vgt441X0dE3g9yjhPtWu/65Vm/HXLRswtacXy5YtrMMRWueRP74G7OzDCUccgmUn7Ofa+6bXbMefNr6OzklTkB/LAqMjOP7YY/DBeV2ufYbb1Pv5rsbWpzfi79veQfd047XFi5v2AmtfwrQJrVi27CTLn/HOrlHcsm4VhEgMy5Z9SB5b3noVXZMmYtmyDzj9Cq6zcyiN7659mv88oaMNy5ad6Olnng3g4o17cd2f1mHXSAY/fSOGf192MC46ejru2PoCMDyMo448HGcu6LX83i/99U2s2r0Vc/afh6d2bwZQwOkfXuy6H07bO/347YZXAABnLjkVUywaLT6VXo81Azsw98CDccrRMwzXQ36CZY5XwxeB/VVXXYUHH3wQTz/9NGbMUGpGuru7AciqfE9PD//97t27uYrf3d2NbDaLffv2laj2u3fvxgknnGD4mfF4HPF4+Y0UjUYbckBVM1J0xZ/WmWz4YyXsYfc+jIVDyBWUth/NeH90tsjP9WimwL+/mCqmpwlASyLW0L3TtbQk5NT4bEHi36dg4vtYuYfaExHsHslgPC95fs9sG5RLoOZMaW34+7N7giyDDIxmwXS+SW31H3frNU+FwsqSQgiF+TGMF13HO5Kxup+bZsDo+ifj8u9yBfjmOuwu9jyfPtHd8aA9Kc8DmbzEU8MTscZf3wGNuw5NFGut86Lx/TWYklPTp7THbX2H9uL8nc6JiEajkAQ5SItFwg15TtqTpRkg8WhtjvOkA6dhxdUTcO0fX8VTb+/BNx98Ay9s2ofhNDORs7mGjCrXmBnSTWhLuP6dWuJKyV9HawLRqLVwlZnk5UQgK8rrn1g4hNakf7uFmT3HDb1tIUkSrrzyStx///14/PHHMWfOnJJ/nzNnDrq7u0vSkrLZLJ566iketC9atAjRaLTkNTt37sT69esrBvZ+RjHP8+8NTHhDVLVT2ezmeWpXfLUjvp+CekBlEpNTzPNYfb1b36cjqd9JwAs2F43z9mvwVneAYv40li1g97AcgExoabzFZa0IhwReOpFTeXqw+4Z62NcXP7vid3e6u54pNc8rOqv7VMlrFJgSqjXPVDMwJo+TdtenzAAylStAkiTf9LFn1NK9f3JbHHdcdgy+fubBCIcE/PW1nXi/f8zRcbC/Y11gAK/62DtsdxdRnm/W6q6lCYzzgAZX7L/0pS/h7rvvxv/93/+hvb2d18R3dnYimUxCEARcc801+N73vod58+Zh3rx5+N73voeWlhZcfPHF/LWf/exncd1112Hy5MmYNGkSvvKVr2DBggXcJT9ISJKEERbYU7s7QoN6ME9Em3MRw9vdqVzx0z7tYQ+oF+vKYsrt1n1GLQK9YFOx1d3sBm91BwDt8QhikVBJn/ZmdsUHgGgohGxB5MESoLS7a6ce9nVFb6xoZERRwq5hFtgnXX3vhK4rvv/G/0YipnJMN6K/6Ijf1W5vfaoO8jJ5EfniOKNt59soaNcUtU4DD4UEfOGU/XHM7En48h/WYHvRmNZ2u7viBsq+cfk6RkKCJ+sm9p7xSMhWJxVF8BB5ZoEX7v2NSEN/y//4j/8AACxevLjk93fccQcuu+wyAMBXv/pVpFIpXHHFFdi3bx+OPfZYPPLII2hvb+evv+222xCJRHDhhRcilUrh1FNPxe9+9zuEw8HbvRlJ51GQ5IeAtWIiCIZ68mM7ms1GB2t3pwpSMz7tYQ8ox5xWKfZutbpjKFkO3rvJ+kmxFwQBXa0x7CiqigAF9tGwgGwByBfKFfsOUuzrCusB7pfAfmAsi1xBgiAAUy3W2FZD6WNfQF5s7JZpfiFmYuOI9bC3q9ir5+h0rsDbtzWqYi8IAhLREN9sr5d4sGi/iXjoyyfhm39eh7Xv7cQh3e3V/0gHtvnFAvvWeMSTLMdpHQmEQwJmTLS3oae0RSzwVnctNtrm+ZGGnmUlqbo7qSAIWL58OZYvX274mkQigZ///Of4+c9/7uLRNSYDY+xhC/sySCG8JUap+GhTpeIzE02m2PvxnLCFQlonFT/uUlZGh075ghfkCiK27ZMVhdk+COwBoKs9zgP71li46VW/SDgEoGCg2Df0kiPw8D72PknFZz3sp7TFXX+ukqoNUXanNqrq6xeiJhT7gWJg32UzozQaDiESEpAX5ZaueR7YN+61S0TDPLCv5z02oSWGWz+2ECtWbCtpgWcFVq6yr5iK70UaPiALk3++4kRMbLW3Ua5eF41nmK9Ac8w/jfskELZggf3kVkrDJ8pRKxLNnoqfFyU+2bKg2I+p+DzlrCQVv7hR4VJWBjtnwylvFftt+1IoiBIS0ZDrCp1XqMfaZlfrAWWMyekp9nR+6gpPxc/5Q7HfOSRv8vV0ut9jk6l349kCcvnGDw79gJkae56K7yCjVNmUUUp+GnlTRp055/eNX6XGXr6OXgX2ALBgRidmTLRXkqcutWGKfWuTKPb+vsOIMgZGKbAnjFFPKnEfqtNu0BoLc4MvpiSyha4fzwlbrOdFiasXbMNCa9xjl1op9puKafizJ7ciZKOurh6oF6gUuCpjTL5EsSfzvEbAb6n4fby+3v3AXr3wzxQoFd8NWGCfrWSex1LxHQT2bJ5OZQvcpDPSwPOFOhPQr63WGEqNfVGxb9AxPaHa/BnPKp2gmgF/32FEGaTYE5WgVHy5fIftMo9k5IDDz+Z5CY2ZEKBS7F3KytAzHPSCzf2svr7xjfMY6gUqKfZKrWupK34xFT9O56ee+M0Vnzni97hsnAeUbnqy1PFGVn39QNxUKj5T7O2vUZOxYpp1voBcvvE7GgQpsGcbt4Vii0i7Kf1eoy61GSuu81qbxBXf33cYUQZX7MkRn9ChxBXf5xOMEzo0Lu9+Ns9Tb0awgN79VPxaKfbMEd8f9fVA6QK1mVvdMaKhYjpuvjwVnxT7+pLgNfY+UeyHPFTsdeY/v6dJ15soT8XX98dK5wp8M92JYs/mtbTa+LCBFfukaoPd7/eYtlylvUEDezbWpfOk2BM+R1Hs/VGfStSWEld8HwaxbqF1eefmeT7c7AiFBH5dyxR7l1LxeY29x4G9nxzxGV2k2JfAU/FFZXE/zAN7Oj/1hKfiU409IuFQmULfyKqvH6jW7o6tT2PhkKMOGdzxPK+YdDZywKxea/kxK1CNtlylUVVwnoqfVRT7tgY9Vrfx9x1GlMEDe1LsCR1KzfOaY5DTo13T8i7t4xp7oNwZP11cWLml2PMae4/N8zb7qIc9Qz3WUmCvSsUv6KTik2JfV9Sp+Ga6DtUbrth3uB/YA+WlSlRj74xq7e6U+vqYoxZpbF5LZUU+zjSy8WEyQKn42s2wtgYtr1IUe3W7u+aYf/x9hxFlUI09UYnSGvvmffx5jT1LxfexYg8oGxJsQZXKelNj76Viny+I2LpPDuz36/KnYj+hhcZdtsBmSlo2L/L7soMU+7rCFHtRqmxw1ghIkuRpjT1QvtBnZSSEPZR2d/oeDv2qwN4JCVWPcmYYG2vgTZmSGvsG3oAwgzYzolFV8ISqxp61u2vU7AK38fcdRpRBrvhEJaKUig9AHagWU/F9XGMP6Cn2LLB3u8beO8V+x2AauYKEWCSEHo8UOi9QL1LJFV+pdWULbvU906gOys1CeyLC1cMdg+k6H01lBsdzfENoaoc3pYVqA71wSPBNJ45GJV6lxr5/1J1SUVaznsoVkC1+ViMr9okgtbvTiB+NOqarXfFJsSd8zV5S7IkKlNTYu5Sm7Ue0ZnAZH/exB8pNsVgNbdKlwJ4prZm8WNHx2Ams1d1+k1p8tcCe1BLj7RMpFV9ZuOaKNfbsGWuNhRH20XUNIqGQgNnFbJiN/aN1PprKMLV+cmvMsw3X0oCL7k2nVGt3xxR7Jz3sgVI1Ns9bFTbu3K3OnPN7Kr72OWncVHylnSUzzyPFnvAduYKIwWIN7CSqsSd0KFXsm/fxZ4r9aIal4vtbsVcvdAD3U/HVu/JeqfZ+NM4DZKVoYjEFnwJ7pcZeUezJOK+RmFsM7N/fM1bnI6lM37BsnOeFIz4jSG7ljUBM1QqtIJar9m60ugNKW5nleGDfuBszQa6xb9RgmZVVZvMin4NIsSd8ye2fOAIXzi1gAi0wCR3Uk4pfjeLcoMwV3+W+77UmrjEtcjsVPxwSuC+BV3X2m3xonMdYOKMT0bCAA6e11ftQ6g5X7DWp+GSc1xjM4Yp9Ywf2q94dAADMneLdM6VOxfd77XMjoE7Tzumo9gMuK/apXIFnBkUaOBuo9D5r3OM0g3YDrFHHdfU53zcubyi1Nklg3xzfskmIhkNYcuhU5DZJlPJI6EKKvYw2FT/NU/H9udmhVeyVjQr3vk97IoLRTN57xd5HxnmM//zU0RhO5xwvWINAlLviywvuYeph31D4IbDPF0T8ee0OAMC5h/d69jlqJTXi84CrEVBvjmTyYtn8w2vsnZrnqeqnc8XN7EZuVZgIkGKvfU4aNVhWl5ruLd53LQ2aXeA2/r7DCIKwRDQiD8qC0NwKRVmNPU/F9+c50Sr2KQ/MALXnzG38rNjHIiEK6oswEyuteR6l4jcGc6Y0fmD/zLv96B/NYFJrDKccOMWzz0mqghJKxXeOOh1ez4tFccV3qtgr5nn5omLfyB0NghTYl7W7a9AN21BI4Mc6kmE+L415rG7j7zuMIAhLsIEuEQk76iPrd5jhCxvwuWLv0/IEtnDIlCn27g3xLDDzQrEviBK28MDef4o9ocBc8ZliP0KKfUPBaux3DqUxnvWufaUT7n9lOwBZrfcyEFLX2DfzRrdbCIISTOkZ6LF2zJ7U2Ecadz2TCJCXQ3m7u8Yd1+Oa9U9LzJ/rO6v4+w4jCMISPLD3qTLtFuU19vLiwK+u+FrFngX4brniA8o586LGfudQCtmCiGhYQO8Eb3pWE7VBccUn87xGZEJLDBNb5GuxqX+8zkdTznA6h0de7wMAXHDUdE8/KxmgNmSNAtuIyWkUe1GUeNcmN13xWWAfaWDFvsQ8z+f3WVm7uwYO7LXrn9YGPlY38fcdRhCEJdig7Ff3d7coT8V3vya9lpTX2Lufis9a3g2n3FfsNxfV+pmTWsgfxOcoqfhMsZfvlw5S7BuGRq6z/9u6ncjkRRwwtQ0Lpnd6+lkJlYLXyIqvnzBqeTeYynGn/EkO2zEnVTX2bJxp5I2ZIKXia7sPNHKwrF3/kGJPEETgiIYpsAeUIDVoij37HilPUvG9q7FnPewpDd//KOZ5WsW+cReAzcacLtlpvhF72d9XTMO/4KjpnpeLkWLvPuz519bYs/r6CS1Rx+eabcikstTurtaoMw6iYaGh10zq9U841NjH6ibN8S0JggCgtFpplgHOCJY+ls6JyBXEwCj27Ht44fKv1Ni7H9gzxX4/HxrnEaUo7e6Kin2GzPMajblFA733G0yx37p3HC9u3AtBAM4/wts0fEAT2DdwKrefMFLsuXGeQ7UeUHqUp3IFPs408sZMIkip+Krjb41HGtqrSX3eW2PN4ytFW+gE0UTEKBUfQKmT62g670nqei3RKvYssE+6mHqm9SVwk039pNgHBdYOKU+KfcPSqKn4f14jq/Un7D+5Jl4bLZSK7zrcPE+j2A+MulNfDyjzWjpX4On9jdyuUK0c+12xV5/nRq6vBzSBfYMfq5v4+w4jCMISUTLPAyCfB6bWjKTzXOn2ayZDvEyx96LG3rtUfFLsgwNTPlmK7DCZ5zUcjRjYS5KE+4uB/QVHzqjJZyYoFd91YsUsMaNUfDcCe7WnDGt318hKuHqD3e+BvTqzxU+BfbPU1wMU2BNEU3Hs3Mk4uLu9JmmOjQ5T7UcyOWQCpNgXRImnQSZcXER0JIvmeS4r9qIoYfNeOcBgAQfhXxRX/FLzPFLsGweWGTM4nsO+olN5vVmzdRAb+8eQjIZxxvzumnymOuCiwN4dYgY19kyxn+yw1R1Qap7HPifSwNcvEQnOfRYKCYgUDW4bPrCPlJYNNAv+vsMIgrDE9AlJ/P2ak/HxD8yq96HUHbUZXDrvvtlcLVHX2DPVHvAqFd9dxX7XSBrpnIhISMB0anXneygVv/FJxsLo7UwAaJw6+/tf2QYAOHN+d80W4UFqQ9Yo8HZ3mhr7gTE3FXulxj4v+sA8Lxas+4xtTjR6sEyKPUEQRBPBUoMHx3PcgMdNs7laolbsWRo+UKoUOKVd00nALVgv7RkTkw2tuhDmUFzxte3uKBW/kZgzpXHS8TP5Av7y6k4AwAVH1SYNHygN7Bu5RttPGJnn7RlxT7Ev7WPvA/M81Tzs13I/NWyMb2vwzdpkiXleYx+rm/j/DiMIgrABqxlntX9AMBR71uouFg4h5GJPeK8U+83FVnf7kXFeIFBc8eWOE2yjiRT7xkKps69/y7sn3tqNoVQO3R0JHL//5Jp9LqXiuw87jxltKr6rij2b71Sp+C7OdW6TjIXBDNnjPi33U8M2b9oaPFhWr+daGjy7wE2a55sSBEGoYPVh6sDer4p9QlVzmPaghz1Q2u5OkiTXWsdsKhrnzSbjvEDAsi7yBalkE6jR6zGbDaWXff0Ve9a7/vwjpyNcwwCNAnv3iYX1U/EV8zz3auwBYCwrjzGNfP1ikRCuP/NgpLIiOpP+z1xi57rRFXttu7tmobGvCkEQhEe0axT7aFio6aLSTVh6XyavDuzdnchYhkO2ICKTF117f1Lsg0U0xFLxRZ6G3xILU5lFgzG3qNi/v6e+gf3esSyeeGs3AOCCo2pr6lpaY+/Psb/R4Kn4RuZ5re4p9gAgyZn4DR3YA8DnT96/3ofgGjywb/DN2nhJjX1jH6ubNPaTQBAE4RFMgd4zIgf2btaj1xqempgreBbYt8YiPJ3QTWd8rth3kWIfBNSu+GSc17iwVPxNA2MQix0M6sFfXt2BvChhwfROHDitvaafnaR2d66jF9iPZ/MYz8rzUle788A+HBLKTOga2TwvaDA/ikYP7Etq7OP+Xd9ZhUYygiCaEkWxl5UEP9e+lSr2rHWfu8N7KCTwidytOntJkrhiP5sU+0CgdsUf5q3u/J9+GjRmTEwiEhKQzonoG067+t6SJOGNHcN8k7ESzA2/1mo9ACRiavM8Wg67AQu41YE9U+vjkZBrKdHa+Y2uX+2I+SYVX1VjT4o9QRBEsGFBKlPs/exWq3YJZovppAcbFR2qOns32DOSwXi2gJAAzJhIin0QUJvnkWLfuETCIcwq+lq4XWf/l9d2YtnPnsHiHz2JP67eioJBRsC7u0fw6rYhREICzjm819VjMAOl4ruPXrs7pb4+7po3izYjLQht5PyCH9vdkWJPEAQRcFiQyhYdfnXEB0oVe+aK70UGguKM704qPkvDnz4xyReEhL9RAnt1Kj4p9o0Ir7N3ObBf9W4/AKBvOI2v3vcazvzp03j8rV2QpNIA//6iad7ig6a44pZulWg4xFO4KRXfHViAnSmUK/ZuGOcxkhrln9oV1o65xVaZ86a21flIKkOKPUEQRBPBglRW++dXR3xAq9iLJb9zE7YZMpyqrNincwWs3TpYtpDXsonS8AMHT8UXFfM8UuwbE97yzmUDvde2DQEAzlrYg85kFG/vGsVnfvcSPv6f/8DarYMAAFGU8MAaObCvZe96LWycjNLGoitEdWrs2eb5ZBc3b7SeOI3c7i5o/OifDsezX/sQDunpqPehVESdkdPWRIo9zbYEQTQl2vqwICj2eVHCeLH9T9KD72NWsb95xZu48/nN+PzJc/H/lh1i+DrFEZ/S8INCNFRU7PMS3wDqoMC+IVFa3rnXyz6dK+DtXSMAgP+37BC0xSK4/al3ccdzm/DCxr04/5fP4ayFPfjgAV3YOZRGRyKCDx881bXPt0oyGsZIOk+KvUvotbsbGHNfsU+UtCoUXEvxJ6oTi4R8UTpHrvgEQRBNhDY92AuFu1aoj31wPFf2O7dQAntjxT6bF/HntTsAAP/59PtYsW6n4WuVHvak2AcFltqcK1HsKRW/EeGKvYup+G/1jSAvSpjcGkNvZwKdLVFcf+YheOIri/HRo2ZAEICHXtuJr9+/DgBw9uG9dR17WUo31di7g54rPvOxcVexV8IX2pQh9FBndVCNPUEQRMDRpgf72TxPfew8sPegtKCdm+cZK/bPvdePoZTy71/9/17De3v0FUHqYR88mDt1Xl1j3+AmS80Kq5Xdui9V1nfcLuu2DQIA5k/vLFFRp09I4pYLD8eKL38Qpxw4hf/+nxbVLw0fUNJ1yVXdHeI6gT1T7Ce3elNjT2n4hB5UY08QBNFEaAN7Pyv2IVVfXxZUa82F3ICds+EKiv1fX5UV+kuOnYVj50zCaCaPL/zvyxjLlP6NJEnY3C8r9nOoh31g4Ip9QcRIhmrsG5mp7XG0xMIoiBK27ht35T3XbZfr6xfO6NT990N6OnDnZz6A/+8Lx+POz3wAR82a6Mrn2oXX2FNg7wpq80zGQLHGfooLPewZJR0NfLwpT3iHeg3USoE9QRBEsGmPBycVH1CUksHxYs9gD2rsO5JF8zwDxT6TL+CRN/oAAOcdMR0/v/hITG2P453do/j6/etKzPQGxrIYyeQhUKu7QEGu+P5BEATXDfSYcd6C6fqBPePo2ZNKlPt6MamoItPmkzvEVB1aGNw8r9XFVPyoWrGnUIYoR5212EKp+ARBEMEmEQ2VpPD5ORUfUIxiBlNepuJXrrF/9p1+jKTzmNoex9H7TcTU9gRuv+QoREIC/vLqDvxu1Sb+WpaG39uZ9P2mCqEQVbnis8wOtiFENB5u1tmncwW8s1suu1lgoNg3Gl894yB87YyDG2KTIQiwzLGsTru7yW6a56kDe/JHIHQo6WNPij1BEESwEQShRKXxe3DJNiZYKr435nmVa+wfek1Ow1+2oAeh4qbJ0bMn4fqiM/53H3oTL2/eCwDYVEzDJ0f8YBHhrvjU7s4PuNnL/o2dwyiIErra4ujuSDh+v1pwcHcHvrh4f9+P/42C0u5ObiObL4jYO85c8d1U7JXwJUZlFIQOE1qi6EhE0NOZ8HXXI6s0zzclCILQoE4R9iJ1vZawiYuZ53nb7q5csU/nCnj0jV0AgLMX9pT822dOnI2zF/YgL0q44q5XsGckQ8Z5ASXCXfHVqfgU2Dcqc6Ywxd55y7t125T6emo/1pzENDX2+8ZzkCRAEICJLe5l7iRJsSeqkIiG8ci/noK/XHVSU41HNNsSBNG0tKncuuMepK7XEnb8QylZHfFCgeqoENg/804/RjJ5dHckygyxBEHADz66EG/1jeDd3aO46g+v8HrL2aTYB4oYd8VXFPsOqrFvWJRe9s4Ve1ZfP79KfT0RXLSu+ANjcn39pJaYq50H1PMbGR8SRnR3+iNzyE3oaSAIomkpTcX393DIjp8pJd4E9sbmeX99Te5df9ZCJQ1fTWs8gl99chFaY2H84/29WLFeTtuf3UWKfZBgi3dRAtI5eXFPin3jMqeYMbNrOFPWucIq65kjPgX2TYu2j33/iPv19YBWsff33E0QbkJPA0EQTYs6Fd8Ls7laog3kva2xz5c43KdzBTxWTMM/S5OGr+aAqW344T8dDgBgfz6bUvEDhV5abBv1sW9YOluivL+4E9V+PJvHO7tHAPjHOI9wH6UrRqli76YjPqCtsW+eNGuCqAYF9gRBNC1qJdHvNfZaV38vMhDY+SqIElK5Av/9kxv2YCxbwPQJSRw5c0LF9zhrYQ8+e9IcAHLd5axJlIofJLRGVi2xMClqDY4bzvhv7BiGKAFT2+OY5hPjPMJ9tO3u+ouO+F0u9rAHqN0dQRhB2+gEQTQtJan4pNhXpSUWRjgkoFA0RmsptpB5aB1zw+82ZVLz9TMPRkGU0N2ZQDLm7/NOlBLRlGFQGn7jM6erFS9t3ucosF+3XTHOI5oXbbs7pYe9y6n4qnkj6vNWtQThJjTjEgTRtARZsU96ENgLgoC2eARDqRxG0jlM60gglS1g5ZssDb/X1PtEwyEsP/cw14+PqD/hssCejPMaHcUZ30FgXzTOWzB9ghuHRPiUWER+/rl5XjGwn+K2Yq/aiI/qeLoQRLPi75UsQRCEA6jG3jodSXkzZCglG209uWE3xotp+IeTWtf0CIJQko5Pin3j40Yv+9eKiv2CGR2uHBPhT2Jhed7JFUpT8T1V7KnUhyA49DQQBNG0qE29vAqEa0UtauwBoD3ODPRkZ/y/vian4Z+9sKepesUSxqgN9Eixb3x4y7s9oyWmmGYZzeTx3p5RANTqrtnRuuIzxX5ym3fmedTHniAUKLAnCKJpCVIqfq0U+3ZVL/vxbB4r35LT8M82mYZPBB91nT0p9o3PfpNbIAjAcDqPvWNZy3//xo5hSBLQ05nA1HYyzmtmWGCfFyWIoqSY57nc7o762BOEPvQ0EATRtHQEKBW/XLH3KrBXWt49/tZupHMiZk1qwfzplIJLyMRU92IHBfYNTyIaRm9nEoC9OvvXtg0CILWeAKIq9TxbELl5Xpfrir06sCfFniAYFNgTBNG0tKld8X2u2MfLFHtvvk8HV+xzeKiYhn8WpeETKtTtpygV3x/MnWK/zp474lNg3/SoN/X2jWd527vJLiv2anNYaqdJEAr0NBAE0bSUpOIHSLEXhPJ+4m7RkZQDtZ1DaTz+1m4AwFkLejz5LMKflNTYx0mx9wNOetmv48Z5FNg3O+p5Z8dgGoDcJpW1RnULtWLv1VxHEH6EngaCIJqWEld8nyv26oVOMhr2TEFnmyF/fW0nMnkRsye34LBeSsMnFMgV33/wwH6PtcB+JJ3D+8W/WUCKfdMjCAJPjd85lALgvloPaBR7andHEBx/r2QJgiAcUGqeFxzF3kuHf3bOWO0kpeETWsgV33/YVezXbx8GAEyfkHTd+ZzwJ2xjb2dRsXe7vh4one+iEQplCIJBW+kEQTQt7fEIzj28FwVR8r3JlzqYT3i40NEGauSGT2gprbH393PVLMxlLe8GxiCKEkImVdD1LA2f1HqiSCwSwli2gB1MsW91P7APhQTEIyFk8iKipNgTBIdmXIIgmhZBEPCzTxxZ78NwhRLFPua9Yg/IhlsHd7d79lmEP1EraKTY+4PpE5OIhgVk8yJ2DKUwY2KLqb97jerrCQ3MQG/HoBzYu93qjpGMheXAnmrsCYJDTwNBEEQAKFXsvQvs1S0Cz15AafhEOVHqY+87wiEB+022no6/rtjqjhR7gsEC7b4h71LxAWWeI1d8glCgp4EgCCIAlNbYe5mKrwRqZ1EaPqGDusa+gxR732C1zn4olcOmgXEAFNgTClyxLwb2XpjnAbJiD1Afe4JQQ1vpBEEQAaBEsffQPG//qW2Y1BrDwd3tOHBam2efQ/iXKLni+5K5xcD+fZPO+K8X0/BnTExiYqs3wRvhP5h53p4R2WDVK1NFtplNqfgEoUAzLkEQRADQtrvzio5EFC/8v1MhSaA0fEIX9UK7jQJ732BVsWf19Qupvp5QEdOYt3pZYw9QYE8QamjGJQiCCAC1ancH0EKKqAzrK52Mhule8RFWA/t13BF/gleHRPiQWFgb2HtdY08bzATBoBmXIAgiAKiD+biHNfYEUQ3mik9p+P5izhQ5sN+2bxyZfKHq69dto1Z3RDnlir03gf0xsyciFgnh0J4OT96fIPwIzboEQRABQK3Ye5mKTxDVYK74FNj7iyltcbTFIxjN5LF17zgOmGrcynJwPIste8k4jyhHHdiHBGBC0hsDzWuXHoQrPnSA5xlqBOEnSNYhCIIIALUyzyOIarD2U9TD3l8IgsDT8asZ6K3fPgwA2G9yCzpb6DoTCurym0mtcYRC3qXK01xHEKVQYE8QBBEAatXujiCqEQ1TKr5fYYH9GzuHK77ute2DAID5pNYTGtSKvVfGeQRB6EOzrosUCgXkcrm6HkMul0MkEkE6nUahUL1GjnBGNBpFOEw7xkT9CYUExMIhZAsiNxUiiHrA+kpTD3v/cfjMCXjw1R342cp3EI+E8YVT5up2v2D19QspsCc0xMPqwN6b+nqCIPShwN4lRkdHsW3bNkiSVNfjkCQJ3d3d2Lp1K7WiqgGCIGDGjBloa6N+3kT9iUfkwJ61ASKIehAJkWLvVz553Cy83TeCe1/aih/8/S2s2z6IH/7T4WiLl15L7ohPre4IDdEwKfYEUS9o1nWBQqGAbdu2oaWlBVOmTKlrQC2KIkZHR9HW1oZQiNJxvUSSJOzZswfbtm3DvHnzSLkn6k48GsZIJo841R0SdWRycTHf05ms85EQVolHwvj+Rxdg4cxOLH/wdaxY14d3do3i159ahLlT5A3svWNZbNuXAkCp+EQ56lT8yaTYE0RNocDeBXK5HCRJwpQpU5BM1nchI4oistksEokEBfY1YMqUKdi0aRNyuRwF9kTdYXX2iQg9+0T9+Ofj90PvhAROPWRavQ+FsIEgCLjk2P1wcHcHrrjrZbyzexTn/eI53HbRETjt0GlcrZ/T1UrlFkQZpYE9KfYEUUto9ecilPrefNA1JxoJZppHqfhEPWlPRPGRI2dQ0OdzFu03EX+56iQcM3siRjJ5fO5/XsKtj76NV7cOAqA2d4Q+UaqxJ4i6QYE9QRBEQGABPfWxJwjCDaa2J3DX547DpcfvBwD42cp38IvH3wUALKT6ekIHcsUniPpBgT1BEERA+OfjZ+PkA6fgA3Mm1ftQCIIICLFICDedNx+3fOxwbtAJUH09oY+69erkVlLsCaKWUGBP1JTZs2fjJz/5Sb0PgyACyYVHz8T/fOYDaKcUaIIgXOaji2bgvi+egFmTWtDbmSDFntAlpk7Fb6fAniBqCQX2TYogCBX/u+yyy6r+/Z///GfXj2v58uU44ogjSn73zDPPYMKECbjqqqvq3k6QIAiCIJqV+dM78cRXFuOJf1uMlhj5LxPlRMOK99DkVkrFJ4haQqNyk7Jz507+/++9917ccMMN2LBhA/9dvd39GQ899BA+9rGP4d/+7d9w00031ftwCIIgCKKpCYcEhEPk40HoE4vI90Z7PIIE+b0QRE1pKsX+9ttvx5w5c5BIJLBo0SI888wznnyOJEkYz+br8p9ZRbu7u5v/19nZCUEQSn539913Y//990csFsNBBx2E//3f/+V/O3v2bADARz7yEQiCwH9+7733cN5552HatGloa2vDMcccg8cee8z2ebz77rtxwQUX4Pvf/35JUP/3v/8dJ510EiZMmIDJkyfj7LPPxnvvvcf/PZvN4sorr0RPTw8SiQRmz56Nm2++GQCwadMmCIKAtWvX8tcPDg5CEAQ8+eSTAIB9+/bhkksu4e0L582bhzvuuMP29yAIgiAIgmgGmHketbojiNrTNIr9vffei2uuuQa33347TjzxRPz617/GmWeeiTfeeAOzZs1y9bNSuQIOveFhV9/TLOuXL3H8Hg888ACuvvpq/OQnP8Fpp52Gv/71r/j0pz+NGTNm4EMf+hBWr16NqVOn4o477sAZZ5zB+7ePjo5i2bJl+M53voNEIoE777wT55xzDjZs2GD5HP/yl7/Etddei9/+9rf45Cc/WfJvY2NjuPbaa7FgwQKMjY3hhhtuwEc+8hGsXbsWoVAIP/vZz/Dggw/ij3/8I2bNmoWtW7di69atpj/7m9/8Jt544w387W9/Q1dXF959912kUilLx08QBEEQBNFssK4s1OqOIGpP0wT2t956Kz772c/ic5/7HADgJz/5CR5++GH8x3/8B1dzCZkf//jHuOyyy3DFFVcAAK699lr84x//wI9//GN86EMfwpQpUwAAEyZMQHd3N/+7ww8/HIcffjj/+Tvf+Q4eeOABPPjgg7jyyitNf/6bb76JK6+8UjeoB4CPfvSjJT//9re/xdSpU/HGG29g/vz52LJlC+bNm4eTTjoJgiBgv/32s/T9t2zZgiOPPBJHH300ACVDgSAIgiAIgjDmpHldOO+IXpx3RG+9D4Ugmo6mCOyz2SxefvllfP3rXy/5/dKlS7Fq1Srdv8lkMshkMvzn4eFhAEAul0Mulyt5bS6XgyRJEEURoigiHhZcUc7tkIiEMArw4zEDex373zfffBOf+9znSv7+hBNOwM9+9rOS37HvyxgbG8O3vvUtPPTQQ9ixYwfy+TxSqRQ2b95c8rpKxyZJEmbMmIEJEybghz/8IU4//XT09PSUvOa9997DDTfcgBdeeAH9/f38vTZt2oRDDz0U//zP/4zTTz8dBx10EE4//XScddZZWLp0adl31X5v9rvLL78cH/vYx/DKK69gyZIlOO+883DCCScYnjtJkpDL5Xjmgpewe097DxKEWegeCi50bZsbuv7Bxi/XtyUC/Pij8wE0/rE2G365h4hyzF6zpgjs+/v7USgUMG3atJLfT5s2DX19fbp/c/PNN+uatT3yyCNoaWkp+V0kEkF3dzdGR0eRzWbdO3AbjBb/d2RkxPTfpNNpSJLENy8kSUImk+E/A0AqlSp5Dfud+ufrrrsOjz/+OL797W9jzpw5SCaTuPTSSzE6OspfJ4oi0ul0yd+pyWQyaGlpwX333YcLLrgAixcvxoMPPlgS3J9zzjmYPn06brvtNnR3d0MURZxwwgkYGhrC8PAwDjjgAKxZswaPPfYYnnrqKVx00UVYvHgx7rzzToyNjcnnSXVMe/fuBQCMj49jeHgYJ554Il577TU88sgjePLJJ7FkyRJ87nOfw7e//e2y481ms0ilUnj66aeRz+dNn3OnPProozX7LCKY0D0UXOjaNjd0/YMNXV/CKXQP+Y/x8XFTr2uKwJ4hCELJz5Iklf2Ocf311+Paa6/lPw8PD2PmzJlYunQpOjo6Sl6bTqexdetWtLW1IZFIuH/gFpAkCSMjI2hvbzf8bloSiQQEQeDf69BDD8XLL7+Mz3/+8/w1r7zyCg499FD+mmg0ilgsVnIuXnzxRXz605/GxRdfDEAOnrdu3VryulAohEQiUXYOGfF4HOFwGLNmzcLKlStx5pln4rzzzsPKlSsxffp0DAwMYMOGDfj1r3+ND37wgwCAZ599FoDs5M/et6OjA5dddhkuu+wyfPzjH8eyZcuQz+cxd+5cAPL1ZK994YUXAAAtLS0lf/+FL3wBX/jCF/DrX/8aX/va1/DTn/607HjT6TSSySROPvnkmlz7XC6HRx99FEuWLEE0Sr3KCevQPRRc6No2N3T9gw1dX8IpdA/5FyNBVEtTBPZdXV0Ih8Nl6vzu3bvLVHxGPB5HPF5u/BGNRssehkKhAEEQEAqFEArVt9EASytnx2MG9jr2v//2b/+GCy+8EIsWLcKpp56Kv/zlL3jggQfw2GOP8dfMnj0bTzzxBD74wQ8iHo9j4sSJOOCAA/DAAw/g3HPPhSAI+OY3vwlRFMuOpdKxsc2IUCiEiRMn4pFHHsEZZ5yBD3/4w3jiiSfQ29uLyZMn47/+678wffp0bNmyhZdYsPN/2223oaenB0cccQRCoRDuu+8+dHd3Y9KkSQiFQjjuuOPwwx/+EHPnzkV/fz9uuOGGkr+/4YYbsGjRIhx22GHIZDJYsWIFDjnkEN1jDoVCEARB977wklp/HhE86B4KLnRtmxu6/sGGri/hFLqH/IfZ69UU7e5isRgWLVpUlnry6KOPGtZONzPnn38+fvrTn+JHP/oRDjvsMPz617/GHXfcgcWLF/PX3HLLLXj00Ucxc+ZMHHnkkQCA2267DRMnTsQJJ5yAc845B6effjqOOuooR8fS0dGBhx9+GNOmTcPixYuxfft23HPPPXj55Zcxf/58/Ou//it+9KMflfxNW1sbfvCDH+Doo4/GMcccg02bNmHFihU8MP/v//5v5HI5HH300bj66qvxne98p+TvY7EYrr/+eixcuBAnn3wywuEw7rnnHkffgyAIgiAIgiAIwisEyWzjc59z77334lOf+hR+9atf4fjjj8d//ud/4je/+Q1ef/11U67pw8PD6OzsxNDQkG4q/saNGzFnzpy6p+KLosjTzOudPdAM1Pra53I5rFixAsuWLaPdVsIWdA8FF7q2zQ1d/2BD15dwCt1D/qVSHKqmKVLxAeCiiy7CwMAAvvWtb2Hnzp2YP38+VqxYYbkVGkEQBEEQBEEQBEE0Ek0T2APAFVdcwXuzEwRBEARBEARBEEQQoFxtgiAIgiAIgiAIgvAxFNgTBEEQBEEQBEEQhI+hwN5FmsSHkFBB15wgCIIgCIIgiHpDgb0LhMNhAEA2m63zkRC1hl1zdg8QBEEQBEEQBEHUmqYyz/OKSCSClpYW7NmzB9FotK5t5kRRRDabRTqdpnZ3HiOKIvbs2YOWlhZEIvQoEQRBEARBEARRHygacQFBENDT04ONGzdi8+bNdT0WSZKQSqWQTCYhCEJdj6UZCIVCmDVrFp1rgiAIgiAIgiDqBgX2LhGLxTBv3ry6p+Pncjk8/fTTOPnkkxGNRut6LM1ALBajzAiCIAiCIAiCIOoKBfYuEgqFkEgk6noM4XAY+XweiUSCAnuCIAiCIAiCIIgmgKRGgiAIgiAIgiAIgvAxFNgTBEEQBEEQBEEQhI+hwJ4gCIIgCIIgCIIgfAzV2JtEkiQAwPDwcJ2PpDK5XA7j4+MYHh6mGvsAQteXcArdQ8GFrm1zQ9c/2ND1JZxC95B/YfEni0eNoMDeJCMjIwCAmTNn1vlICIIgCIIgCIIgiGZiZGQEnZ2dhv8uSNVCfwIAIIoiduzYgfb29obuWT48PIyZM2di69at6OjoqPfhEC5D15dwCt1DwYWubXND1z/Y0PUlnEL3kH+RJAkjIyPo7e2t2GabFHuThEIhzJgxo96HYZqOjg56aAMMXV/CKXQPBRe6ts0NXf9gQ9eXcArdQ/6kklLPIPM8giAIgiAIgiAIgvAxFNgTBEEQBEEQBEEQhI+hwD5gxONx3HjjjYjH4/U+FMID6PoSTqF7KLjQtW1u6PoHG7q+hFPoHgo+ZJ5HEARBEARBEARBED6GFHuCIAiCIAiCIAiC8DEU2BMEQRAEQRAEQRCEj6HAniAIgiAIgiAIgiB8DAX2BEEQBEEQBEEQBOFjKLC3yc0334xjjjkG7e3tmDp1Ks4//3xs2LCh5DWSJGH58uXo7e1FMpnE4sWL8frrr/N/37t3L6666iocdNBBaGlpwaxZs/DlL38ZQ0NDJe+zb98+fOpTn0JnZyc6OzvxqU99CoODg1WPcd26dTjllFOQTCYxffp0fOtb34LaK3Hnzp24+OKLcdBBByEUCuGaa64x/f1vv/12zJkzB4lEAosWLcIzzzxT8u/3338/Tj/9dHR1dUEQBKxdu9b0e9ebZr62Tz/9NM455xz09vZCEAT8+c9/LnvNZZddBkEQSv477rjjTL1/sxCEe+j+++/HkiVLMGXKFHR0dOD444/Hww8/bOr7B3l8AJr7+tIYEYzr/+yzz+LEE0/E5MmTkUwmcfDBB+O2224z9f3p+Q7u9aXn2x2CcA+pee655xCJRHDEEUeY+v5BHyMaGomwxemnny7dcccd0vr166W1a9dKZ511ljRr1ixpdHSUv+b73/++1N7eLt13333SunXrpIsuukjq6emRhoeHJUmSpHXr1kkXXHCB9OCDD0rvvvuutHLlSmnevHnSRz/60ZLPOuOMM6T58+dLq1atklatWiXNnz9fOvvssyse39DQkDRt2jTp4x//uLRu3Trpvvvuk9rb26Uf//jH/DUbN26UvvzlL0t33nmndMQRR0hXX321qe9+zz33SNFoVPrNb34jvfHGG9LVV18ttba2Sps3b+av+Z//+R/ppptukn7zm99IAKQ1a9aYeu9GoJmv7YoVK6RvfOMb0n333ScBkB544IGy11x66aXSGWecIe3cuZP/NzAwYOr9m4Ug3ENXX3219IMf/EB68cUXpbffflu6/vrrpWg0Kr3yyisV3zvo44MkNff1pTEiGNf/lVdeke6++25p/fr10saNG6X//d//lVpaWqRf//rXFd+bnm+ZoF5fer7dIQj3EGNwcFCaO3eutHTpUunwww+v+t2bYYxoZCiwd4ndu3dLAKSnnnpKkiRJEkVR6u7ulr7//e/z16TTaamzs1P61a9+Zfg+f/zjH6VYLCblcjlJkiTpjTfekABI//jHP/hrnn/+eQmA9NZbbxm+z+233y51dnZK6XSa/+7mm2+Went7JVEUy15/yimnmA7+PvCBD0hf+MIXSn538MEHS1//+tfLXrtx40bfP7TNdG3VVJrUzzvvPMvv18z4/R5iHHroodJNN91U8bs22/ggSc11fdXQGCETlOv/kY98RPrkJz9Z8bvS8x3s66uGnm/38PM9dNFFF0n//u//Lt14442mAvtmHCMaCUrFdwmWGjNp0iQAwMaNG9HX14elS5fy18TjcZxyyilYtWpVxffp6OhAJBIBADz//PPo7OzEsccey19z3HHHobOzs+L7PP/88zjllFMQj8f5704//XTs2LEDmzZtsvUdASCbzeLll18u+V4AsHTp0orH42ea5dpa4cknn8TUqVNx4IEH4l/+5V+we/fumnyuXwnCPSSKIkZGRvh30KMZxwegea6vFZppjAjC9V+zZg1WrVqFU045xfB96fkO9vW1QjM9327g13vojjvuwHvvvYcbb7zR1Pds1jGikaDA3gUkScK1116Lk046CfPnzwcA9PX1AQCmTZtW8tpp06bxf9MyMDCAb3/727j88sv57/r6+jB16tSy106dOtXwfdjf6X22+tjs0N/fj0KhYOl7+ZlmurZmOfPMM3HXXXfh8ccfxy233ILVq1fjwx/+MDKZjOef7UeCcg/dcsstGBsbw4UXXmj4vs02PgDNdX3N0kxjhN+v/4wZMxCPx3H00UfjS1/6Ej73uc8Zvi8938G+vmZppufbDfx6D73zzjv4+te/jrvuuotvJFSjGceIRoMCexe48sor8dprr+EPf/hD2b8JglDysyRJZb8DgOHhYZx11lk49NBDy3bG9F6vfp/DDjsMbW1taGtrw5lnnlnxs43eT49nnnmGv29bWxvuuusuy9/L7zTjta3GRRddhLPOOgvz58/HOeecg7/97W94++238dBDD5l+j2YiCPfQH/7wByxfvhz33nsvX0TQ+CDTjNe3Gs00Rvj9+j/zzDN46aWX8Ktf/Qo/+clP+Peg51umGa9vNZrp+XYDP95DhUIBF198MW666SYceOCBut+LxojGxNwWDGHIVVddhQcffBBPP/00ZsyYwX/f3d0NQN756unp4b/fvXt32U7WyMgIzjjjDLS1teGBBx5ANBoteZ9du3aVfe6ePXv4+6xYsQK5XA4AkEwm+d9pd8dYqpT28404+uijS5wqp02bhng8jnA4rPveZt/XLzTbtbVLT08P9ttvP7zzzju23yOoBOEeuvfee/HZz34Wf/rTn3Daaafx3zf7+AA03/W1S1DHiCBc/zlz5gAAFixYgF27dmH58uX4xCc+Qc83mu/62iWoz7cb+PUeGhkZwUsvvYQ1a9bgyiuvBCCXa0mShEgkgkceeQTHH398048RDYnnVfwBRRRF6Utf+pLU29srvf3227r/3t3dLf3gBz/gv8tkMmXGGENDQ9Jxxx0nnXLKKdLY2FjZ+zBjjBdeeIH/7h//+IcpY4wJEyZImUyG/+773/++a+Z5X/ziF0t+d8ghhwTGGKOZr60aGBjnaOnv75fi8bh05513Wv6MoBKUe+juu++WEomEqfuAEfTxQZKa+/qqadYxIijXX8u3vvUtab/99jP8d0mi55v9e1Cvr5pmfb7dwO/3UKFQkNatW1fy3xe/+EXpoIMOktatW1fi7q+lGcaIRoYCe5t88YtflDo7O6Unn3yypOXH+Pg4f833v/99qbOzU7r//vuldevWSZ/4xCdKWlkMDw9Lxx57rLRgwQLp3XffLXmffD7P3+eMM86QFi5cKD3//PPS888/Ly1YsKBqK4vBwUFp2rRp0ic+8Qlp3bp10v333y91dHSUtbJYs2aNtGbNGmnRokXSxRdfLK1Zs0Z6/fXXK743a2Xx29/+VnrjjTeka665RmptbZU2bdrEXzMwMCCtWbNGeuihhyQA0j333COtWbNG2rlzp+lzXC+a+dqOjIzwvwMg3XrrrdKaNWt4m5KRkRHpuuuuk1atWiVt3LhReuKJJ6Tjjz9emj59Ov/uRDDuobvvvluKRCLSL3/5y5LPHhwcrPjeQR8fJKm5ry+NEcG4/r/4xS+kBx98UHr77belt99+W/rv//5vqaOjQ/rGN75R8b3p+ZYJ6vWl59sdgnAPaTHrit8MY0QjQ4G9TQDo/nfHHXfw14iiKN14441Sd3e3FI/HpZNPPllat24d//cnnnjC8H02btzIXzcwMCBdcsklUnt7u9Te3i5dcskl0r59+6oe42uvvSZ98IMflOLxuNTd3S0tX768bDdX77PN7Oj+8pe/lPbbbz8pFotJRx11FG/hwbjjjjt03/vGG2+s+t71ppmvrdFxX3rppZIkSdL4+Li0dOlSacqUKVI0GpVmzZolXXrppdKWLVuqHnMzEYR76JRTTql4L1QiyOODJDX39aUxIhjX/2c/+5l02GGHSS0tLVJHR4d05JFHSrfffrtUKBSqvjc938G9vvR8u0MQ7iEtZgN7SQr+GNHICJJUdEsgCIIgCIIgCIIgCMJ3kCs+QRAEQRAEQRAEQfgYCuwJgiAIgiAIgiAIwsdQYE8QBEEQBEEQBEEQPoYCe4IgCIIgCIIgCILwMRTYEwRBEARBEARBEISPocCeIAiCIAiCIAiCIHwMBfYEQRAEQRAEQRAE4WMosCcIgiAIgiAIgiAIH0OBPUEQBEEQvueyyy7D+eefX+/DIAiCIIi6QIE9QRAEQTQpgiBU/O+yyy6r9yESBEEQBGGCSL0PgCAIgiCI+rBz507+/++9917ccMMN2LBhA/9dMpmsx2ERBEEQBGERUuwJgiAIoknp7u7m/3V2dkIQBP5zNBrFF77wBcyYMQMtLS1YsGAB/vCHP5T8/eLFi/HlL38ZX/3qVzFp0iR0d3dj+fLlJa956623cNJJJyGRSODQQw/FY489BkEQ8Oc//5m/ZtWqVTjiiCOQSCRw9NFH489//jMEQcDatWsBAIVCAZ/97GcxZ84cJJNJHHTQQfjpT3/q8dkhCIIgCP9Aij1BEARBEGWk02ksWrQIX/va19DR0YGHHnoIn/rUpzB37lwce+yx/HV33nknrr32Wrzwwgt4/vnncdlll+HEE0/EkiVLIIoizj//fMyaNQsvvPACRkZGcN1115V8zsjICM455xwsW7YMd999NzZv3oxrrrmm5DWiKGLGjBn44x//iK6uLqxatQqf//zn0dPTgwsvvLAWp4MgCIIgGhoK7AmCIAiCKGP69On4yle+wn++6qqr8Pe//x1/+tOfSgL7hQsX4sYbbwQAzJs3D7/4xS+wcuVKLFmyBI888gjee+89PPnkk+ju7gYAfPe738WSJUv43991110QBAG/+c1vuKq/fft2/Mu//At/TTQaxU033cR/njNnDlatWoU//vGPFNgTBEEQBCiwJwiCIAhCh0KhgO9///u49957sX37dmQyGWQyGbS2tpa8buHChSU/9/T0YPfu3QCADRs2YObMmTyoB4APfOADJa/fsGEDFi5ciEQiYfgaAPjVr36F//qv/8LmzZuRSqWQzWZxxBFHOP2aBEEQBBEIqMaeIAiCIIgybrnlFtx222346le/iscffxxr167F6aefjmw2W/K6aDRa8rMgCBBFEQAgSRIEQaj4OXqvkSSp5Oc//vGP+Nd//Vd85jOfwSOPPIK1a9fi05/+dNmxEARBEESzQoo9QRAEQRBlPPPMMzjvvPPwyU9+EoBc5/7OO+/gkEMOMf0eBx98MLZs2YJdu3Zh2rRpAIDVq1eXveauu+5CJpNBPB4HALz00ktlx3LCCSfgiiuu4L977733bH0vgiAIgggipNgTBEEQBFHGAQccgEcffRSrVq3Cm2++icsvvxx9fX2W3mPJkiXYf//9cemll+K1117Dc889h2984xsAwFX6iy++GKIo4vOf/zzefPNNPPzww/jxj39c8poDDjgAL730Eh5++GG8/fbb+OY3v1m2QUAQBEEQzQwF9gRBEARBlPHNb34TRx11FE4//XQsXrwY3d3dOP/88y29Rzgcxp///GeMjo7imGOOwec+9zn8+7//OwDwmvqOjg785S9/wdq1a3HEEUfgG9/4Bm644YaS13zhC1/ABRdcgIsuugjHHnssBgYGStR7giAIgmh2BElbyEYQBEEQBOERzz33HE466SS8++672H///XVfc9ddd+HTn/40hoaGkEwma3yEBEEQBOE/qMaeIAiCIAjPeOCBB9DW1oZ58+bh3XffxdVXX40TTzyxJKj/n//5H8ydOxfTp0/Hq6++iq997Wu48MILKagnCIIgCJNQYE8QBEEQhGeMjIzgq1/9KrZu3Yquri6cdtppuOWWW0pe09fXhxtuuAF9fX3o6enBxz72MXz3u9+t0xETBEEQhP+gVHyCIAiCIAiCIAiC8DFknkcQBEEQBEEQBEEQPoYCe4IgCIIgCIIgCILwMRTYEwRBEARBEARBEISPocCeIAiCIAiCIAiCIHwMBfYEQRAEQRAEQRAE4WMosCcIgiAIgiAIgiAIH0OBPUEQBEEQBEEQBEH4GArsCYIgCIIgCIIgCMLH/P9nf2Nk0mlo9AAAAABJRU5ErkJggg==", | |
"text/plain": [ | |
"<Figure size 1200x600 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAIhCAYAAADkVCF3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7gkVZn/v9W5+8a5d/IwzAw5B0VJwoDkAROyqCzBFVdWXBVB3fUnKqg7rKDACqbdVWFlUQwrpiGDBBkyQ4YBJs/cO+Hm1Ll+f1SfU6erq7pOxe6+9/08j4/MvXW7T1dVnzrv+b7v91VUVVVBEARBEARBEARBEERLEmn0AAiCIAiCIAiCIAiCcA8F9gRBEARBEARBEATRwlBgTxAEQRAEQRAEQRAtDAX2BEEQBEEQBEEQBNHCUGBPEARBEARBEARBEC0MBfYEQRAEQRAEQRAE0cJQYE8QBEEQBEEQBEEQLQwF9gRBEARBEARBEATRwlBgTxAEQRAEQRAEQRAtDAX2BEEQRA2Kokj9769//avta61cuRJ33nmn5/FcddVVUsf98z//c83Pv/GNb0BRFHz6059GuVz2NJZm4eMf/zja29stf9/e3o6Pf/zjvr+v7LUIi1tuuQWKomDDhg2NHkpDuPvuu3HmmWdizpw5SCaTWLx4MS666CK8+uqrrl9zcnISV111len32+x8f/zjH8fSpUtdvx9BEAThnVijB0AQBEE0H6tXr67697e+9S089NBDePDBB6t+fsABB9i+1sqVK3HOOefggx/8oJ9DlEJVVXz+85/HTTfdhH/913/FNddcE/oYphurV6/Gbrvt1uhhEAC+/OUv47rrrsPpp5+OH/7wh5g3bx7Wrl2L66+/Hu94xztw++234+yzz3b8upOTk7j66qsBACeccILt8V/72tfw+c9/3vH7EARBEP5BgT1BEARRw1FHHVX17zlz5iASidT8vJkpFov4xCc+gV/84he47rrr8MUvfrHRQ2pZVFVFNptFOp1uqXtgOvPLX/4S1113HT796U/jhz/8If/58ccfj4997GNYvnw5LrjgAhx22GHYY489Ah3Lnnvu6evrTU5OIpPJ+PqaBEEQ0x1KxScIgiBcMTg4iEsvvRSLFi1CIpHAHnvsga9+9avI5XL8GEVRMDExgVtvvZWn7zMFcOfOnbj00ktxwAEHoL29HXPnzsV73/tePProo57Hls1m8eEPfxi33347/vu//7smqH/rrbfwD//wD9h7772RyWSwaNEivO9978NLL71UdVy5XMa3v/1t7Lvvvkin0+ju7sYhhxyC//iP/+DHWKUhX3XVVVAUpepnv/nNb3DkkUeiq6sLmUwGe+yxBz7xiU94/rwyZLNZXHHFFTjssMPQ1dWFnp4eHH300fjDH/5Qcywrafjxj3+M/fffH8lkErfeeiv/nZiKL3sdN2zYAEVR8N3vfhfXX389li1bhvb2dhx99NF44oknpD7DE088gWOPPRapVAoLFy7EV77yFRQKBdNj77jjDhx99NFoa2tDe3s7TjvtNDz//PNVx7ByhrfeegsrVqxAe3s7Fi9ejCuuuKLqPgaALVu24JxzzkFHRwe6u7vx93//93j66aehKApuueUWftwzzzyDj370o1i6dCnS6TSWLl2Kj33sY9i4cWPV67GU9oceegif/vSnMXv2bPT29uLss8/Gtm3bbM/Fv/3bv2HWrFn47ne/W/O7trY23HTTTZicnMQNN9zAf37CCSeYKvDiPbxhwwbMmTMHAHD11Vfz7229sg6z74CqqvjhD3+Iww47DOl0GrNmzcI555yDdevWVR13wgkn4KCDDsIjjzyCY445BplMhn8nHnzwQZxwwgno7e1FOp3G7rvvjg9/+MOYnJy0PT8EQRAzDVLsCYIgCMdks1mceOKJePvtt3H11VfjkEMOwaOPPoprrrkGa9aswV/+8hcAWtr2e9/7Xpx44on42te+BgDo7OwEoG0MAFr9+/z58zE+Po7f//73OOGEE/DAAw9IpQCbMTY2hjPOOAOPP/447rjjDnz4wx+uOWbbtm3o7e3Fv//7v2POnDkYHBzErbfeiiOPPBLPP/889t13XwDAtddei6uuugpXXnkljj/+eBQKBbz++usYHh52PK7Vq1fjIx/5CD7ykY/gqquuQiqVwsaNG2vKG5xSLBaljsvlchgcHMQXv/hFLFq0CPl8Hvfffz/OPvts/PznP8eFF15Ydfydd96JRx99FF//+tcxf/58zJ071/R1nV7HH/zgB9hvv/1w4403AtDSuFesWIH169ejq6vLcvyvvvoqTjrpJCxduhS33HILMpkMfvjDH+L222+vOXblypW48sor8Q//8A+48sorkc/ncd111+G4447DU089VVVCUigU8P73vx8XX3wxrrjiCjzyyCP41re+ha6uLnz9618HAExMTODEE0/E4OAgvvOd72CvvfbC3XffjY985CM1771hwwbsu++++OhHP4qenh709fXhRz/6Ed71rnfh1VdfxezZs6uO/+QnP4kzzzwTt99+OzZv3owvfelLOP/88+veF319fXjllVfwkY98xFLZPvroozF37lzcd999lq9jxoIFC3D33Xfj9NNPx8UXX4xPfvKTAMCDfVkuueQS3HLLLfjc5z6H73znOxgcHMQ3v/lNHHPMMXjhhRcwb968qs9z/vnn48tf/jJWrlyJSCSCDRs24Mwzz8Rxxx2Hn/3sZ+ju7sbWrVtx9913I5/Pk6JPEARhRCUIgiAIGy666CK1ra2N//vHP/6xCkD99a9/XXXcd77zHRWAeu+99/KftbW1qRdddJHtexSLRbVQKKgnnXSS+qEPfajqdwDUb3zjG7avAYD/7z//8z9tjxffO5/Pq3vvvbf6hS98gf/8rLPOUg877LC6f3vRRRepS5Ysqfn5N77xDVV8zH73u99VAajDw8PS47J7X/Hzmv2v3nln5/viiy9WDz/88KrfAVC7urrUwcHBmr+zuxZW13H9+vUqAPXggw9Wi8Ui//lTTz2lAlB/+ctf1v28H/nIR9R0Oq329/dXvdd+++2nAlDXr1+vqqqqbtq0SY3FYupnP/vZqr8fGxtT58+fr5577rn8Z+wcGu/jFStWqPvuuy//9w9+8AMVgHrXXXdVHXfJJZeoANSf//zndc/H+Pi42tbWpv7Hf/wH//nPf/5zFYB66aWXVh1/7bXXqgDUvr4+y9d84oknVADqv/7rv1oeo6qqeuSRR6rpdJr/e/ny5ery5ctrjjPewzt37rS8zmzc7Hyb/f3q1atVAOr3vve9qr/dvHmzmk6n1S9/+ctVYwKgPvDAA1XH/va3v1UBqGvWrKn7GQmCIAgNSsUnCIIgHPPggw+ira0N55xzTtXPWbruAw88IPU6P/7xj/GOd7wDqVQKsVgM8XgcDzzwAF577TXXYzvuuOPQ3d2Nq6++Gm+99ZbpMcViEStXrsQBBxyARCKBWCyGRCKBN998s+q93/3ud+OFF17ApZdeinvuuQejo6Oux/Wud70LAHDuuefi17/+NbZu3er6tRjpdBpPP/206f/S6XTN8b/5zW9w7LHHor29nZ/vn/70p6bn+73vfS9mzZolNQ4n1/HMM89ENBrl/z7kkEMAoCZV3chDDz2Ek046qUrpjUajNar5Pffcg2KxiAsvvBDFYpH/L5VKYfny5TVO74qi4H3ve1/Vzw455JCq8Tz88MPo6OjA6aefXnXcxz72sZpxjo+P41/+5V+w1157IRaLIRaLob29HRMTE6bn4/3vf3/NewP250MGVVVrykHC4M9//jMURcH5559fdQ3mz5+PQw89tOYazJo1C+9973urfnbYYYchkUjgU5/6FG699daaFH6CIAiiGgrsCYIgCMcMDAxg/vz5NUHD3LlzEYvFMDAwYPsa119/PT796U/jyCOPxO9+9zs88cQTePrpp3H66adjamrK9dgOOeQQ3H///ZicnMTy5cuxdu3ammMuv/xyfO1rX8MHP/hB/OlPf8KTTz6Jp59+GoceemjVe3/lK1/Bd7/7XTzxxBM444wz0Nvbi5NOOgnPPPOM43Edf/zxuPPOO3nQudtuu+Gggw7CL3/5S9efNRKJ4IgjjjD9XyRS/Yj/v//7P5x77rlYtGgRbrvtNqxevRpPP/00PvGJTyCbzda89oIFC6TG4PQ69vb2Vv07mUwCgO01Z/ecEePPtm/fDkDbSInH41X/u+OOO7Br166q4zOZDFKpVM2YxHMyMDBQtaHAMPvZeeedh5tvvhmf/OQncc899+Cpp57C008/jTlz5vh2PnbffXcAwPr16y2PAbTNgcWLF9c9Jgi2b98OVVUxb968mmvwxBNP1FwDs3ttzz33xP3334+5c+fiM5/5DPbcc0/sueeeVf4WBEEQhA7V2BMEQRCO6e3txZNPPlmjCO7YsQPFYrGmjtiM2267DSeccAJ+9KMfVf18bGzM8/je+c534v7778cpp5yCE088EQ8++CCvm2fvfeGFF2LlypVVf7dr1y50d3fzf8diMVx++eW4/PLLMTw8jPvvvx//7//9P5x22mnYvHkzDwqNRmvstYx84AMfwAc+8AHkcjk88cQTuOaaa3Deeedh6dKlOProoz1/7nrcdtttWLZsGe64446qa2Y2dgDSSm+Q11Gkt7cX/f39NT83/ozde7/97W+xZMkS3977qaeesn3vkZER/PnPf8Y3vvEN/Ou//iv/OfM38IsFCxbgwAMPxL333mvpIL969Wps374df/d3f8d/lkqlMDIyUnOs2b3qhdmzZ0NRFDz66KN8o0LE+DOre+24447Dcccdh1KphGeeeQY33XQTLrvsMsybNw8f/ehHfR0zQRBEq0OKPUEQBOGYk046CePj47jzzjurfv4///M//PeMZDJpqj4qilKzwH/xxRexevVqX8b4jne8Aw888AByuRxOPPFEvP7663Xf+y9/+Uvd9Pju7m6cc845+MxnPoPBwUFs2LABALB06VLs2LGDK8UAkM/ncc8991i+VjKZxPLly/Gd73wHAGrc2oNAURQkEomqIKq/v9/UFd/p6wZ5HRknnngiHnjggarzXCqVcMcdd1Qdd9pppyEWi+Htt9+2zGZwyvLlyzE2Noa77rqr6ue/+tWvqv6tKApUVa05H//93/+NUqnk+H3r8dWvfhVDQ0OmbRwnJibwuc99DplMBl/4whf4z5cuXYq1a9dWbeYMDAzg8ccfr/p72SwKK8466yyoqoqtW7eanv+DDz7Y0etFo1EceeSR+MEPfgAAeO6551yNiyAIYjpDij1BEAThmAsvvBA/+MEPcNFFF2HDhg04+OCD8dhjj2HlypVYsWIFTj75ZH7swQcfjL/+9a/405/+hAULFqCjowP77rsvzjrrLHzrW9/CN77xDSxfvhxvvPEGvvnNb2LZsmXSTu92HHbYYXjggQdw0kknceV+//33x1lnnYVbbrkF++23Hw455BA8++yzuO6667DbbrtV/f373vc+HHTQQTjiiCMwZ84cbNy4ETfeeCOWLFmCvffeGwDwkY98BF//+tfx0Y9+FF/60peQzWbx/e9/vyaQ+/rXv44tW7bgpJNOwm677Ybh4WH8x3/8B+LxOJYvX+7L563HWWedhf/7v//DpZdeinPOOQebN2/Gt771LSxYsABvvvmmp9cN+joCwJVXXok//vGPeO9734uvf/3ryGQy+MEPfoCJiYmq45YuXYpvfvOb+OpXv4p169bh9NNPx6xZs7B9+3Y89dRTaGtrw9VXX+3ovS+66CLccMMNOP/88/Htb38be+21F+666y6+ecPKHjo7O3H88cfjuuuuw+zZs7F06VI8/PDD+OlPf1qVCeIHH/vYx/Dcc8/hu9/9LjZs2IBPfOITmDdvHt544w3ccMMNePvtt3H77bdX9bC/4IIL8JOf/ATnn38+/vEf/xEDAwO49tpreacKRkdHB5YsWYI//OEPOOmkk9DT08M/jwzHHnssPvWpT+Ef/uEf8Mwzz+D4449HW1sb+vr68Nhjj+Hggw/Gpz/96bqv8eMf/xgPPvggzjzzTOy+++7IZrP42c9+BgBV8wtBEARRoaHWfQRBEERLYHTFV1VVHRgYUP/pn/5JXbBggRqLxdQlS5aoX/nKV9RsNlt13Jo1a9Rjjz1WzWQyKgDuyp3L5dQvfvGL6qJFi9RUKqW+4x3vUO+8805Tl3k4cMX/zGc+U/PzF154QZ09e7Y6b9489ZVXXlGHhobUiy++WJ07d66ayWTU97znPeqjjz5a4xr+ve99Tz3mmGPU2bNnq4lEQt19993Viy++WN2wYUPV669atUo97LDD1HQ6re6xxx7qzTffXOOK/+c//1k944wz1EWLFqmJREKdO3euumLFCvXRRx+1/VxmmF0TEbNuBP/+7/+uLl26VE0mk+r++++v/td//VfNOFXV+jyy34nXQvY6Mlf86667zvY1rfjb3/6mHnXUUWoymVTnz5+vfulLX1L/8z//s8alXVVV9c4771RPPPFEtbOzU00mk+qSJUvUc845R73//vv5MVbn0OycbNq0ST377LPV9vZ2taOjQ/3whz+srlq1SgWg/uEPf+DHbdmyRf3whz+szpo1S+3o6FBPP/109eWXX1aXLFlSdT2Yu/zTTz9d9T4PPfSQCkB96KGHbM+Hqmr33ooVK9Te3l41Ho+rixYtUi+44AL1lVdeMT3+1ltvVffff381lUqpBxxwgHrHHXeYfufuv/9+9fDDD1eTyWRVhwUZV3zGz372M/XII49U29ra1HQ6re65557qhRdeqD7zzDP8mOXLl6sHHnhgzd+uXr1a/dCHPqQuWbJETSaTam9vr7p8+XL1j3/8o9R5IQiCmGkoqqqq4W8nEARBEARBtDYrV67ElVdeiU2bNtVkexAEQRBEmFAqPkEQBEEQhA0333wzAGC//fZDoVDAgw8+iO9///s4//zzKagnCIIgGg4F9gRBEARBEDZkMhnccMMN2LBhA3K5HHbffXf8y7/8C6688spGD40gCIIgQKn4BEEQBEEQBEEQBNHCULs7giAIgiAIgiAIgmhhKLAnCIIgCIIgCIIgiBaGAnuCIAiCIAiCIAiCaGHIPE+ScrmMbdu2oaOjA4qiNHo4BEEQBEEQBEEQxDRHVVWMjY1h4cKFiESsdXkK7CXZtm0bFi9e3OhhEARBEARBEARBEDOMzZs3122vSoG9JB0dHQC0E9rZ2dng0VhTKBRw77334tRTT0U8Hm/0cAifoetLeIXuoekLXduZDV3/6Q1dX8IrdA+1LqOjo1i8eDGPR62gwF4Sln7f2dnZ9IF9JpNBZ2cnfWmnIXR9Ca/QPTR9oWs7s6HrP72h60t4he6h1seuHJzM8wiCIAiCIAiCIAiihaHAniAIgiAIgiAIgiBaGArsCYIgCIIgCIIgCKKFocCeIAiCIAiCIAiCIFoYCuwJgiAIgiAIgiAIooWhwJ4gCIIgCIIgCIIgWhgK7AmCIAiCIAiCIAiihaHAniAIgiAIgiAIgiBaGArsCYIgCIIgCIIgCKKFocCeIAiCIAiCIAiCIFoYCuwJgiAIgiAIgiAIooWhwJ4gCIIgCIIgCIIgWhgK7AmCIAiCIAiCIAiihWloYP/II4/gfe97HxYuXAhFUXDnnXdW/V5VVVx11VVYuHAh0uk0TjjhBLzyyitVx+RyOXz2s5/F7Nmz0dbWhve///3YsmVL1TFDQ0O44IIL0NXVha6uLlxwwQUYHh4O+NMRBEEQBEEQBEEQRPA0NLCfmJjAoYceiptvvtn099deey2uv/563HzzzXj66acxf/58nHLKKRgbG+PHXHbZZfj973+PX/3qV3jssccwPj6Os846C6VSiR9z3nnnYc2aNbj77rtx9913Y82aNbjgggsC/3wEQRAEQRAEQRAEETSxRr75GWecgTPOOMP0d6qq4sYbb8RXv/pVnH322QCAW2+9FfPmzcPtt9+OSy65BCMjI/jpT3+KX/ziFzj55JMBALfddhsWL16M+++/H6eddhpee+013H333XjiiSdw5JFHAgD+67/+C0cffTTeeOMN7LvvvuF8WIIgCIIgCIIgCIIIgIYG9vVYv349+vv7ceqpp/KfJZNJLF++HI8//jguueQSPPvssygUClXHLFy4EAcddBAef/xxnHbaaVi9ejW6urp4UA8ARx11FLq6uvD4449bBva5XA65XI7/e3R0FABQKBRQKBT8/ri+wcbWzGMk3EPXl/AK3UPTl7Cu7cbBScQjChZ2pwN9H8IZ9N2e3tD1JbxC91DrInvNmjaw7+/vBwDMmzev6ufz5s3Dxo0b+TGJRAKzZs2qOYb9fX9/P+bOnVvz+nPnzuXHmHHNNdfg6quvrvn5vffei0wm4+zDNID77ruv0UMgAoSuL+EVuoemL0Fe23wJ+NqzUSQiwDffWYKiBPZWLUVZBSJNci7ouz29oetLeKXePdRMcxmhMzk5KXVc0wb2DMWwalBVteZnRozHmB1v9zpf+cpXcPnll/N/j46OYvHixTj11FPR2dkpO/zQKRQKuO+++3DKKacgHo83ejiEz9D1JbxC99D0JYxr2zeSRfapR5AtAaecdjoSMWquc+MDb+EXT2zC7/7pSCztbWvYOOi7Pb2h60t4xe4e2jI0hbN//ATOe/diXHbSXg0YIWEFyxy3o2kD+/nz5wPQFPcFCxbwn+/YsYOr+PPnz0c+n8fQ0FCVar9jxw4cc8wx/Jjt27fXvP7OnTtrsgFEkskkkslkzc/j8XhLTKitMk7CHXR9Ca/QPTR9CfLalpDn/61Eo4jHm3YZERoPvL4To9kinlg/jL3ndzd6OPTdnubQ9SW8YnUPvdq/C0OTBTy+bhBfOp3usWZC9jvftFvty5Ytw/z586vSRfL5PB5++GEetL/zne9EPB6vOqavrw8vv/wyP+boo4/GyMgInnrqKX7Mk08+iZGREX4MQRAEQRD2TOX1jjOFotrAkTQPfSNZAMC6XRMNHgkRBH9YsxUvbhlu9DAIF/zxhW1Ys3m40cNoGfKVjmKFUrnBIyHc0tCt9vHxcbz11lv83+vXr8eaNWvQ09OD3XffHZdddhlWrlyJvffeG3vvvTdWrlyJTCaD8847DwDQ1dWFiy++GFdccQV6e3vR09ODL37xizj44IO5S/7++++P008/Hf/4j/+In/zkJwCAT33qUzjrrLPIEZ8gCIIgHDBVEAL7Mi3+JvNFjExppkbrdlJgP91Yt3Mcn//VGuw5pw0PXHFCo4dDOGDz4CQ+98vnsbQ3g79+6cRGD6clYJu1xRJt2rYqDQ3sn3nmGZx4ov5lYzXtF110EW655RZ8+ctfxtTUFC699FIMDQ3hyCOPxL333ouOjg7+NzfccANisRjOPfdcTE1N4aSTTsItt9yCaDTKj/nf//1ffO5zn+Pu+e9///tx8803h/QpCYIgCGJ6kBMCe1r8Af0VtR4A1pNiP+0Yrmza7BzL2RxJNBvDk9q1GxjP2xxJMPIVpT5Pin3L0tDA/oQTToCqWi8MFEXBVVddhauuusrymFQqhZtuugk33XST5TE9PT247bbbvAyVIAiCIGY8VYo9Lf6qAvstQ5PIFUtIxqJ1/oJoJQpF7R4X73uiNWDBabZI106WfOV+p7m9dWnaGnuCIAiCIJoLCuyr2SYE9mUV2DQg15KIaA0KlayUQknlQQ/RGhRLLEhV+X8T9WFzOvmntC4U2BMEQRAEIYVonlcs0+Kvf2Sq6t9koDe9EDevJvPFBo6EcEpBKBXK0qaMFKTYtz4U2BMznv99ciMeeK22JSJBEARRjbhAJgVTd8RnUJ399CJfFdhTSncrIZp7ZqmUQooC1di3PBTYEzOa/pEsvvr7l/HPtz9PO5QEQRA2ZEmxr4LV2M/vTAEA1pMz/rRCNIgkxb61EK/dFG3KSJHnpSe0Hm5VKLAnZjSjWc01dapQwls7xhs8GoIgiOZmqsoVnxZ/rMb+mL16AQDrdtFzZDohBjgTOQoOWwnx2uXIQE8KPRWfNm1bFQrsiRmNmJ710taRBo6EIAii+RHnTErX1Gvsj9lzNgBKxZ9uiPf4BCn2LYUY2GcLNFfJwM5ZqayiTBlZLQkF9sSMJifUiL48DQL7vpEprNk83OhhEAQxTZmiPvacbKGEoUqv7KP31BT7XeN5jFR6nxOtjxgcUjp3a1Flnkc19lKIvimiRwHROlBgT8xocoXpFdj/4/88gw/98G/YNjxlfzBBEIRDxAVycYYv/Fh9fToexcKuFOZ1JgGQaj+dKBRFxZ6Cw1ZCLBWaosBeCnEji9LxWxMK7IkZjVh39WrfaMvXjG4bzkJVgR1juUYPhSCIaYioWuZneK/jbZU0/AXdKSiKgmWz2wAA66nOftogBjeTOUrFbyUoFd85YulJgbqetCQU2BMzGjEVP1so4+0WdzTOVXalydGUIIggEBfIpNhriv2CLs0Rf9nsdgDkjD+dENORSbFvLSgV3zlVqfi0jmxJKLAnZjRGp9RWT8dnGxW000oQRBBQjb1OH291lwYA7DlHU+zfplT8aUOhKLZMI8W+lahW7Cmwl0E8Z2SO2ppQYE/MaHKG9KxWdsYvlVXeVzpHEzJBEAEwRa74nFrFvpKKT4r9tKGq3R0p9i1FsUyKvVPyVGPf8lBgT8xo2GQfjSgAGqvYv7x1BKvfHnD991UpVKTYEwQRADlS7Dl9Qo09IAT2uyagqjP73EwXxMCeauxbi3yRauydImaoUCp+a0KBPdHSjEwVPBnesdT1AxZ0AtAM9EoN6N2pqiou/NlTuOCnT2Jk0l2rJLGsgHZaCYIIgilyxef0GRT7xT0ZxCIKpgolbB8lA9PpgKhgTpJi31KI8xMp9nLkSlRj3+pQYE+0LNtHszhq5QP41C+edf0aYmCfjkcxmS81xNF413gegxN5FMsqhqfyrl4jR6YnBEEETFUq/gzPDOo31NjHoxHs3pMBAKzbSc740wExK4UC+9aiyjyvSNdOhkKRUvFbHQrsiZbl+U1DmCqU8Oq2UdevwVTudCKKAxZqqn0j6uy3Cn3ncy4Xy+Iie6YvuAmCCIapvOiKP3MXftlCCQMT2iYsU+wBPR1/HRnoTQuqa+wpFb+VEK+dOG8R1hRIsW95KLAnWhbWms7LTiwzz0vGIzh4URcA4OWt7jcK3LJNDOxd1oKJqfgz3dSKIIhgqK6xn7nzzPZRTa1PxSPozsT5z8U6e6L1qUrFz5Hq20oUSbF3DPWxb31ijR4AQbhlXSWwdxsIA7o6noxFsdccrQdxQxT7IVGxd/cAEs1haKeVIIggqHbFn7mKvV5fn4aiKPznyyot7ygVf3ogpiNPFkixbyWo3Z1zxGCeBKLWhBR7omVZV6mFzxZLrh2I2WSfjEVw8G6aYv/qtlGUQ04x9SMVn2rsCYIIkkKpXJV+P5MVe72+PlX18z1maxvEpNhPD8RAhxT71kLclPEiAM0kqN1d60OBPdGSqKrKFXtVdT8BsWA4FdcU+2QsgvFcERsGwl2UiYG92/p4qrEnCCJIjKrXTK6x54p9tyGwryj2m4emaB6eBojO6lRj31pU1diTYi9FngSilocCe6IlGZzIY2RKbwvntn6Kpb0nYxHEohHsv6AxBnp+pOJX19jP3AU3QRDBYFwcz+TAlfew76oO7Od2JNGWiKJUVrFpcLIRQyN8JE+u+C0LtbtzjiiSUWDfmlBgT7QkRsdht5O2XmOvfRV0A71wA/ttI5SKTxBEc5M1OEvP5D72TLGf35Wu+rmiKLzOntLxW5+qVPy8+7I/InzyRcE8jwJ7KSgVv/WhwJ5oSYzGRK6d5LkrfhQAGuKMP5ErYnhSzz5w74pPbqYEQQSHUbEvzuCFH6uxX2CosQeAZbzOngz0Wh1xk7xUVl1vvBPhI248TlGNvS2lsopSmRT7VocCe6IlMSr2XtPXmWJ/4CItFf/lbSOh7cyLre7EMTklT26mBEEEiFH1msmKjlWNPUAt76YTxuCG0vFbB/Ha5Uixt8V4r1Ng35pQYE+0JMw4j5H1qHKzwH6feR1IxCIYyxaxcSCc+sgtNYG99z72NCETBOE3RsV+ps4zuWIJu8ZzALR2d0b2qAT2b++kwL7VMfrVTJKBXssgbjxSKr49RkFoJnuotDIU2BMtSU0qvuve79rfpSqp+PFoBPvP7wCgqfZhUKvYeysrAKprywiCIPygJhV/htbY7xjVgvpELIJZmXjN7/egGvtpg7GlIyn2rUNVH3sKUm0xlnDO5IysVoYCe6LlKJbK3G24IxkD4L0unSn2AHBgpc4+LGd80REfcJ8yRuZ5BEEEiXFumqkLP56G35WCoig1v19aUex3juUwli3U/J5oHYzP0okcKfatgugBMkUbMrYYFXtaR7YmFNgTLcfmoSkUSipS8QiWzM4A8NLujgX2Uf6zsJ3xWQ/7aESpGpNTKBWfIIggoVR8DatWd4zOVByz25MASLVvdYybVxQgtg7Vij11NLCjYMj0nKnze6tDgT3RcrA0/GWz25GupNC7d8WvmOfF9a+C6IwfxoOApeLv3qNtUrgN7KvM8yjtjCAIn5kytrub8Yp9bX09Yw8y0JsWMBUzVVkjTFBg3zKIgamqkqmwHflSyfBvOl+tCAX2RMvBjPP2mN3GlXbvir3+VdhnXgfiUQUjUwVsMaTJBwFLxWdOyu4d/skVnyCI4GCKPcsumqmKTj/vYW+u2AN6nb3R6JVoLdg93pXWvBTIPK91KJarNx7dmizPFIzeTDN147bVocCeaDnWVXoD7zGnje+iu1HsVVU1TcVPxCLYt2KgF3SdfbFURv+otkhkCo97vwBKxScIIjiY2WhHSvM2manzjF0qPqBv1BpbsxKtBQtuWGA/kSPFvlUwmsGRM359qMZ+ekCBPdFycMV+jqDYu5iwxUlMTMUHwquz7x/NoqwCiWgEi2ZpaZ05l5OpuCEwU02tCIIIDmNgb1TEZgr9Eqn4ei/7cctjiOaHrRO60wkApNi3EoUaxZ4C+3pQH/vpAQX2RMvBFJA9ZrfzgNxNXbqYlpUSFHsAOCgkZ3yWhr+gO+XZL0DcqKAae4Ig/IYZh3UkNfVypm4gbhNc8a3gLe92TpBpV4uiqqqeip9hqfgUHLYKxsCUUvHrY8xwoLbJrQkF9kRLMZYtYOeY1kO4WrF3PmGz1HVFAeLR6pZFBy3UFfsgF2XbKimdC7vSwiaFyxr7KsWeHmAEQfgL8zKZyan4+WIZu8a1Z1C9Gvvde9oQUTSzNfbMIlqLUlkFe/zzVHxS7FsGY404Kfb1MWaLzsT5fTpAgT3RUrA0/DkdSXSk4nqNvYtgmAXCyVikphfxvvM7EIsoGJoscHUmCJhiv2hWmm9S+NHujszzCILwG+aK35HSgpziDJxndoxloVbKp3oyCcvjErEIFlc6nbxNBnotiZiRws3zqMa+ZWDrIJYNaWzX2Ww0OrPHqNhTYN+aUGBPtBTcOK9Sv+hNsa81zmOk4lHsM69ioLcluHT8rcPapsGi7jR35ncf2JNiTxBEcDDFqzPNFPuZl6opOuJHIkrdY5dRy7uWplDWn6PdaUrFbzXYxmN7JcOomRX7J9cN4B3fug9/WLO1YWMg87zpAQX2REuhG+e1A4A3xb7yN2KrO5GDFnUCCNZAb2ulh70W2LMae3cPH+pjTxBEkPDAPsVq7GfePLNNotUdY4/Z2nOKDPRaE1HB1GvsKRW/FSiVVTDvvA4e2DfvfPXEukEMTRbwyNpdDRuDcT7Pz8CN2+kABfZESyH2sAc0ZR3wqNjHzb8G3Bl/W3CB/bZhIRW/Mg63QXm1Yk8TMkEQ/sJSWduTzeGK/9KWEdz9cn+o79kv0eqOsYx62bc07DkaiyhoS2j3/AQp9i2BGKSy0iG3/kVhkC9pY8s2cIyFmj72zbsRQlhDgT3RUry9U+9hD0BIX3c+GTL1yeiIzzhoUbAGeqqq8hr7hd1pJKJeU/GFPvak2BME4TNTNan4jZ1nPnP7c/in257lmU9h0OdIsadU/FaG3d/xaARtyUqdNin2LYG46dhZUeynmnhThgk62QaOkZnnMcupRs/vhDsosCdahnJZxYYBYyp+cIr9/gs6EY0o2DWeR/+o/wZ6Q5MFvlBe0JXy7oovpuLThEwQhM/wdndNkoq/Y0ybl4cm8qG9J6uxX1inhz2D1dhvGpxs+LkinMOeo7GoggxT7Mk8ryUQxQ2WYdTMNfYsO6SRBn/snGUq62pKxW9NKLAnWoa+0SyyhTLiUQWLZ2mLKi+Kve6Kb67Yp+JR7D1X20B4eeuomyHXhaXhz25PIhWPCjX2LvvYGwL7RjusEgQxvWCbhzwVv4ELv3JZ5Ru6XlJsVVV19PdOauznd6aQjkdRLKvYPDjpeoxEY2CbMYloBJmE9nymGvvWgBkfKgr4pky2iTMZ2dzayM0HtpHVVpnfKfOzNaHAnmgZ1lXS8HfvySBWSVtnir2bYNjOPA/Q0/FfCsBAb4vQ6k4chx+u+KqqmccQBEH4BVPsOysO4cWy2rANRFHZcrsZCgBf/M2LOOJb92PLkFzg7aTGPhJRsJTS8VsWtnEVj0Z0xb6J07kJHaaAxyMRpBPa2qoVUvGnGmjwxwJ5HthTllFLQoE90TIYHfEBj4o9b3dn/TU4WKiz9xum2O/WXR3Y50tllF0E5UY3fTLQIwjCT1gwzVymgcbNM2LbMbeboQDw3KYhjOWKUiZ8hVIZO8ZyAOQUe4Dq7FsZpmDGY4pQY9+8wSGhU+T+CAr3UWqkMZ0d7F5rpGLPAnmWnUKBfWtCgT3RMqwzGOcBPtXYW6TiA8G2vGOGTwu7tQViMq6Pw02NvHFxS3X2BEH4id7uTg/si+XGzDNTVYG9+8Uw2xB9eO1O22N3juWgqlqwMLstKfX6rM5+HQX2LQdTMOPRCNKVYGciX6QytxagwP0RIp4yO8OC3WuN3Dhi5nmsAwSJQ60JBfZEy8AWRkwBAbzW2FdS8S3M8wDggAVdiCjAjrEcdvhsoLdN6GEPVGcOOFWgSmW1pvUU9bInCMIvymWVz0vMPA9ooGJf0GudvSj27G+fXD9ou6juq6Thz+tMIRJRpF5/D97yjnrZtxrs3k5EIzzYUdXm7odOaBSEMopUZY3XzOZ5XLFvgnZ3mSQzz6P7vBWhwJ5oGcxS8f1Q7K3a3QFAOhHFXhUDPb/r7HXFXgvsYxEFbK3odKPCLIinNCqCIPxCXHAy8zygcfNMVSq+h0CLPQfyxTKeWD9Q91jW6k6mvp6xjFLxW5aC4IqfFjLqyECv+SmIqfiVa9dIx3k78k2g2OdL2nu3cXNUWkO2IhTYEy3BVL7EA+EwFXsAOHChVmf/ev+Y4/eox1aDeZ6iKK6d8cXPz3anKbAnCMIvxAVnOh5FrLIL2ShnfN9S8YW/ffiN+un4/dwR377VHWOP2drG8PbRHCZyFBC2EmIf+0hEEZzxmzdAJDSqFXsmADXvdWPqeK7ozmPJD5hi38Zr7CkVvxWhwJ5oCVj/+q50HD1tCf5zf2rs638NZmW09xv3cVGWLZQwUOm9zFLxAQi97J0G9trxEQVcWaDAniAIv2CtohIxLciJRxu7geiHeV6prFYtXh+xqbPv4z3s5RX7rkwcvZVnFqn2rYUYHAK6qdgEKfZNj5ht4WWdGBZi1qWX0iJPYzC0u6NU/NaEAnuiJdDT8NugKHpto6jYOzW0kTHPAxBIqxSWfdCWiKIrrderus1AyAufhS1CGvVwIAhi+sHmP7ZxGItq83DjAnvvNfbiYlpRNB+Xev3mWY29rCM+gwz0WhOxjz2g90OfyDWv8ktoFAV/hHQrKPbCXNSokoF8jXlemYwiWxAK7ImWgDviz26v+jlzki+rztOGZPrYAwjkocCN82alDRsVlVR8x4q9XlagK2k0IRME4Q9s/mPzIZtnjKadYVGViu9ybhY3UN+x+ywA9d3x3dTYA0Kd/U4K7FuJvFCnDeiKPbW8a36qFfvWMc8DGhfYM2d+Zp6nqlpWE9FaUGBPtATcEV9odQcYneSdTYasjt2uxj4I4xVWX7+wu7pWkyv2DlPGWIpZMhbhr0Gp+ARB+AVbFLNFcrzhir33VPxcUQ/c3rvfXAD1A3s3NfYAsIw54+8iZ/xWQmyZBlAqfish+iO0Qiq+OI82agPCqNgDJBC1IhTYEy2BrthbB/ZOJ23uih+3S8X3f5d+q6HVHSPhMhU/J9S/csWeUvEJgvCJKR7YV1LxI43NDBI3Wt0G9mwBnYxFsXyfOQCAx9/aZdplpFgqY8dYDoCzGntAzzRbR4p9SyGmcwN67TG54jc/LJMoHhHa3TWwlZwdVan4DcoIYZsLbAMLoDr7VoQCe6LpUVXVtNUdwJzk3QXD+qJOLhXfV8V+2Eaxd7hQraqxj2lKWo4mZIIgfILX2CdYKj5zxW/dGnvRQPWABZ3obUtgIl/CsxuHao7dOZ5DqawiFlHQ25509D67VTqf7BjLuhon0RgKFqn4VGPf/Jib5zXvdRMD+4Yp9sVq8zyAMj9bEQrsiaZn53gOY7kiFAVY0pup+b3bNCtp87wAHgosFZ8t+Biea+xDUuwfemMH35wgCGL6wxX7GDPPa6xiP+lDu7ucUMIUiSg4vqLam6Xjs/r6eZ0pRCNKze/r0ZHSFspjWVJ6W4m8kM4N6CnKVGPf/Ji1u2vm69YMNfZ5IUNF37ilVPxWgwJ7oulhav1us9KmafNM5XYaeMua56US/iv220bMU/F5uzvHn0VfoCYCXnA/t2kI//Dzp/Gl37wQyOsTBNF8sCBYV+wb6+Ux5UuNPTMd1T4TS8c3a3vX79I4DwA6U1rnk8l8iRSwFoL19Y5X1gjpGVBj/8q2ERy18gH875MbGz0UT4jZFlz8aeLyxGrFvjHjZGJQXBSIaL5qOSiwJ5oe1vvX6IjPYJO2297vduZ5aZ+NV0plFX3DlX7IFqn4TuuaxBr7RMDmea9uGwWgL3QJgpj+TNW44lcUnXITmOe5nJvFDVEAOG7v2VAU4NW+UewYrZ7f+rhxnvPAvj2lp7aOk2rfMhjb3ek19s2r/HrlsTd3oX80i1+sbu3Aviia57F1VbGMchO6vKuq2iSKvX6/s8CeauxbDwrsiaaHG+cZHPEZupO8S1d8yVR8v9K4do7lUCyriEYUzOusXiTyVHyHC1WzPvZmBlB+sHFA22iZzqoFQRDV1JrnMVf8Fk7FN2Rt9bYncfCiLgDAI2/uqjq2r1J65Eaxjwu9tEezBVdjJcKH12lHqmvsp7N53uBkHgDwev8YBsZzDR6Ne1haeSwa4ZkWQHMa6JXKKsR28dkGm+clYgop9i0MBfZE02NlnMdwr9hLmucl/K2x3zo8CQCYb1Kr6dY8r7rGXnvNoHZaNwxo459sAgOhsWyhqQ1xCGK6UNvursGp+AUfzPNMNneXW9TZ9426a3XH6ExTnX2rweu0Y9U19s3w7AuKoYk8/+8n1g02cCTeKIqp+ML3uxlb3hnXao3afGBiUCIaRYK1My02X4YDUR8K7Immh/ewn11fsXca4LEJ3rbdnc+u+FsqxnmLZtUuEHmNvdN2d2yBGo8iUXmIBbXgZor9ZKEEVW3cpD+eK+L4ax/Ch374eMPGQBAzhdpUfG2uapS5kp997MVyLGag9+ibO1ES0nZZ6ZHTVneMjkqdPSn2rUPBYJ43E2rsByf0+/Nvb++qc2Rzw69dRDPGZOUUzSgEGLMrG93uLh5TuDkqpeK3HhTYE01NvljGpkFNIbZKxQ9asU8Jgb0fgey2Sn290ThPG4s3vwDRzTSIwL5cVrGxotiXyqrrBbUfvLx1BEOTBbzWN9qUdXMEMZ3IGtrdxQKcZ2SoMs9zuVg3ewYcvrgbHakYhicLeGnrCP95v4caewDorNTZj05N36BwuqHX2Gv3eluSpeI3X3DoF0OTumK/+u2BBo7EG3q2hXbt2OZdSwT2DRpjWOtIIlgosCeamk2DkyiVVWQSUczvNF9QuXfFl6uxZ6mnqupeGRJhqfjmgT3zC3BZYx8P1hV/x1iu6hw0sn3M632j+jia8GFNENMJY409V+wbtKkmBldu/UTMngGxaATv2Ws2AODhN7R0/FJZRf8oc8V3l4rPFPsxUuxbBmO7u0xi+pvnian463dNYFuLtrXV/REq2RY+Z176SU0qfqNc8YX7vdGlVoR7KLAnmhpmnLdsdhsUxbx3cNCu+GKqvh+7vVyxN0vF54q9+9Z9bEIOQk3fUEnDZzQyJfGN7WNNMQ6CmAkYS5carej4koov9LEX0evsdwAAdo3nUKoYns7pSLp6L9bLfpRq7FuGgmDABujmeRO56XsNmXleV1rbiHq8RVV7tuHIugSlfO5u5CfGjclGZRWw+13srkR97FsPCuyJpobX11sY5wHuFPtiqczrJ+1S8eNCWpIfu71bKzX2xlZ3gFhj73KTIhYNtN3dRkNg30jl4vV+PbCfzmZGBNEMGGvsmRLWKFf8qbxonucxFd+wucvq7NdsHsbwZJ63upvXkawxPJWlM02KfatRNKTiT3fFvlgqY2RKuz9PO3AeAODxFq2zN3Y0YJmXbst2gsSo2DciE7JUVvmamNrdtTYU2BNNzfqd9Y3zAM0wDnAWDIvH2qXiA0KdvQ8TLkttM0vFT7hU29kCNSEo9oVAFPvJqn83aoFTLqt4Qwzsp+lCiyCaBbZxmk5Uu+IXG7DwU1UVk8IC3Xsf++pnwMLuNPae246yCjz21i70j2hzttv6ekBX7MkVv3UwmudN9xr7kakCb7t2xsELAGh19o00yXWL8dpxxb4J290ZnecbUS4gCkHxGNXYtzIU2BMNQVVVPPDadmzYNVH3uHW76vewB9wp9tWBvf3XwK/6rJGpAsYqaXwLu2sXiUmXu8p6H/uI3qYkDMW+QSmJW4amqhZX07mvMEE0A7zdXazxqfi5Yrmq77NnV3yTZwBLx39k7U5ePuW2vh4AOpkr/hQp9q0C64XOA3uu2E/P5w0zzutMxXDUsl4kohH0jWRrNvRbgSK/dkyxZ+JM8wWq+VL1eq8RqfjiHJqgGvuWhgJ7oiE8u3EIF9/6DE694RF8/4E3Lc2PeA/72dap+G5q7NnEmYhqrVDs8KuXPUvD72lL8LQ+Ea+u+GKNfRApVBt2VT/gJxqkXLzeP1r170aNgyBmCtw8r8YVP3w1z6iY5ktlV6oi20A1Dez31fvZ9/mg2HeSYt9ysKw31seerQMm86Vp2YmFtbrraUsgnYjiHUu6AQB/e6v10vHZ+idmVOybMBXfuN5ruGIf1dsDUh/71oMCe6IhsBZ2+VIZ19+3Fu+/+TGs2TxcdczIZAEDFYfWZQEp9jJqPSAo9h53e1kavplaL47HSx97tgjJ+zwhq6rKFft5nZqBVKOUC7G+Hmhc5gBBzBRYGVJNH/ty+IqO2bzjRrXXDVRry7HetbQHqXgE20dzeHit5o6/wFMqfqXGPkeKfatQ0+5O2IxvRnd1rwxW1luz2hIAgGP21LpDtGLbu6Ih2yLF1olNmIrfDOZ5eumCAkVR+MYt1di3HhTYEw2BPUD2nNOGnrYEXu8fw9k//Bu+9edX+aLt7Uoa/rzOJNqTteo2w41ib2WaZPceXh/mW+vU1wN6YO+0fRP/PFGx3Z2/E/Ku8Twm8iUoCrDv/E4Ajas1fMMQ2JNiTxDBUuuK3zjzPLbJ0JbQA3JPgb3JBm8qHsXRe/QCANZu155FnlLx09THvtUoVFR5ZhSZikfAmvNMxzp7lorfk2GBvXb/r1430HIZCmKgCohZl80XqBrn0EaMka052fqRUvFbFwrsiYYwPKmpFu/Zazbuv3w5PnT4IpRV4KePrcdpNz6CR9/cKZWGD7hU7HmbI3vjPMC/GnvdOC9j+ns3RoCAvquajEe4Yu/3hMzU+oVdaXRXHJ4btbhhqfjMkGq61jwSRLOQrXHFb1yNPZt3utJxHmi5ccYX24SawersGd7M88gVv9UwpuIrioJMnKXjT79nDgvsmWJ/yG7dyCSiGJzI12TJNTuFGsW+eVPxjUJOI1Px2b0elEBEBA8F9kRDYA+Q7kwCPW0J3PCRw/Dzf3gXFnWnsXlwChf89Clcf+8bAOob5wFuFXuHqfhst9djILtFOhXfoWIv9GNmaYNOVX87NlYMdJbOzujuwA1Igc8WSlhfMV08bHE3AGCC2t0RRKAY293prviNq7FPJ6L6nOlC5bLb4D3eENh7S8WnPvathlH1BYBMJXtwOj5zhiqZlD2VwD4Ri+Ddy3oAtF7bO6t2d00Z2FfM89gc0Yh2dzlLxT6Y+f1vb+3CZ3/5PHaN5wJ5/ZkMBfZEQ+A7w5k4/9mJ+87FPV84Hh8/ZikUBdhW6R1cr4c94G7CFtvDyeCXYs/M83abVT8V33GNvdC2KSjzPKbYL+lt48Z/jUiBf2vHOMoq0J2JY1mlDeJ0VE8IollQVVUwz2MLv8Yp9lMF7fueScRcG46Kf2NVkrVsdhsW92hzdUQB5nYk3QwXgO6KP5YtBNY+bGAij8e3KxgnzxFf0Gvs9fujLTF9FXtmnjerkooPCOn4LVZnz7w/2Bqvmc3zmEEdmyPcZB95HoMhwyEeC3Z+/+9H1+FPL2zDg6/tCOT1ZzIU2BMNYYg9QNoSVT9vT8Zw1fsPxG//6RjsPbcdEQU4srJjbIWbhV3OUC9qh18PBd08zyqwj1aNTxZxoyIRUCo+a3mztDeDTIKZCYa/uGEpgfvN70DbNFZPCKJZ0Fzntf9mc2GsgTX2pop9AKn4iqLwdPy5HSn+md3A1LhCSXXdns+O/3p0Pe5YF8Vvn9sayOvPNIzBDgC+qT2ta+zbdMGFGeg9uX4QxRZKy2bBsu6P0Lw19rnKee2slDg2QrFn60U2FwZdYz9cafs5HTfIGg0F9kRD0BX7hOnv37lkFu6+7Hg8e+UpOGhRV93XSrno/Z61WdAZSVdUKi+Kfa5Ywo4xLe3I0jwv7i4VP2/S7s7vBXezKPav92n19fvN75zW6glBNAtZoRtIc7jia/NOJhF1PWeKf1PPa+XUA+YDAPaZ3+H49UXaEjGwzqpB9bLfNa49V5k5LeENvWWakIo/jZ853BVfWJcdsKATXek4xnNFvLh1pFFDc0yhXF1G4ZcBchCw9VtXxWBzqlAKLKvHbgxsXk8EvHE7UpkDg9rknMlQYE80BLvAHgCiEaVG0TfDi2Jv1ubIDD9S8fsrpQWpeITXsBnxIxWfTch+19jrin2boNiH/5B8Y7um2O87v6OhGwwEMVNg814souipmo1MxRcDe5dZTuLf1NvgPX6fOfifT7wb/372wS5GqhOJKLy7S1B19uw6+T33z1SKJqn407rGfrK6xh7Q7lvWHaKV0vFr2t01c4195fvKUvHLavht5vLcPE+b1+MBrSMZrDsIBfb+09SBfbFYxJVXXolly5YhnU5jjz32wDe/+U2UBYVAVVVcddVVWLhwIdLpNE444QS88sorVa+Ty+Xw2c9+FrNnz0ZbWxve//73Y8uWLWF/HKKCqqoYmmSp+HGbo+1xV2Pvro+9F/M8Vl+/sDsNRVFMjxE3KZzs2Iq1okGkUA1P5vkO6+49eir+RMNT8RtXEkAQMwVeXy9shLIU14am4sdj/qTi27Q9PX6fOZblU05gzvijATnjs2cgLZb9wSwVn2eJNWGA6BVjH3vGMXtpgX0rGejpxofNn4rPxtqV1tfDYY/T2O4uFvDGLZsDm3GjpdVp6sD+O9/5Dn784x/j5ptvxmuvvYZrr70W1113HW666SZ+zLXXXovrr78eN998M55++mnMnz8fp5xyCsbG9NYcl112GX7/+9/jV7/6FR577DGMj4/jrLPOQqlEN1QjmMyX+CRST7GXxZVi7zAVP5Xwrtjb9bAHdKMXVXW2YGZlCImoXmPv544vU+vndSaRTkR5bftkyKrFwHgOOyvlDPvMExT7aaieEESzkDUJ7Jli34i6W7aRl6mqsQ8mFd9PWA3tWGCKvfZ5KLD3h7yhBRigd8hpREeYICmUyvy+7DGsy5iB3jMbhlomECsYyijSTWyex9bDbckYopV6nbDHadwICbLGPlvQYwCaq/wn1ugB1GP16tX4wAc+gDPPPBMAsHTpUvzyl7/EM888A0BTfm+88UZ89atfxdlnnw0AuPXWWzFv3jzcfvvtuOSSSzAyMoKf/vSn+MUvfoGTTz4ZAHDbbbdh8eLFuP/++3HaaaeZvncul0Mup7dhGB3V6noLhQIKhebtQ8vG1sxj3DmqBbjxqIK4UvY81qiiTQzZQkn6tSZzBT4Gmb9hgs5Eruh6vJsrNeoLOpOWrxFV9cl8fCrHDZcYVteXLUAiKENR9XRMv+6Dt7dr9//uPRkUCgUkItqmw0Q+3O/DK1uHAACLZ6WRiKioCPaYyDX397KZaIU5gnBHUNd2bEp7FqbiEf7aCrQ5IFeUn3f9Yryi9iRjCm/vOZnNOx4HWzxH4N9cWY/2yoQ1PJ4N5P3YhsdU3v1zitBQVZUHNUpZv8fTlSB/bMr5/eaVIOdutmEeUYB0rPo9du9OYm5HEjvGcnh63S4ctUd9Q+NmgAWOiqp9t2OKNl8143djKq+NJ6qoSMUjmMiVMDaZQ0/a/w1Hq3toyrAmjlbOV87BulqWwTE9tpoKeQ3Zysiep6YO7N/znvfgxz/+MdauXYt99tkHL7zwAh577DHceOONAID169ejv78fp556Kv+bZDKJ5cuX4/HHH8cll1yCZ599FoVCoeqYhQsX4qCDDsLjjz9uGdhfc801uPrqq2t+fu+99yKTyfj7QQPgvvvua/QQLNk8DgAxZCJl3HXXXZ5fb1dWe72JbB6rVq2S+puXNysAotixbQtWrdpke/xb27XjN27ZhlWr3JVxPPlWBEAE4zs2YdWqjabHaNn32tdy1T33osOiUkG8vmUVKJS0v3n0rw9iOK+9xtj4pPT5sOP+yvmKTAxg1apVeHtUe4+dg6O+vYcMf+3TxtGNCaxatQpvjWjj2D44Euo4pgPNPEcQ3vD72q4d0b53xaw+p7y8qzKH7hwI/bv3+jptLt2y4W2MjCsAInj6uTWIbHne0etMZqMAFKx+7BG86b5FvTRTI9q4H3/meWCz/yUMu4a0z7N5ax9WrSJnfC+UVEBVtefqXx98AKxqsH+Ldg1ffuMtrMqtbcjYgpi7t00CQAzpqIp77q5dly1ORrBjLIJf3PsUBndvfpV1bEL7Ljz1xOPofxl4dUibr7YPDDXdWuHN9do9tWnDeihlBYCC+x78Kxa2Bfeexnvo2coad2hgJ1atWoU3K2utTVu2YtWqzb6+9/YpgK1z316/CatWbfD19acrk5OTUsc1dWD/L//yLxgZGcF+++2HaDSKUqmEf/u3f8PHPvYxAEB/fz8AYN68eVV/N2/ePGzcuJEfk0gkMGvWrJpj2N+b8ZWvfAWXX345//fo6CgWL16MU089FZ2dnb58viAoFAq47777cMoppyAe916/HgSPvrULeOk5zO/pwIoVx3h+vR1jOXzr+YdRVBWcccYZlvXrIq/e+yawZT323mMpVqzYz/b4wgt9uGPdS+jsmY0VK45wNc47fv4MsHMQJ7zrUKw4fKHlcV9+5n7ki2Uct/zEmrpOs+s7lS8BTzwAADjz9FOxbTiL6158HJF4AitWnOhqrEYe+u1LwJY+vOfQfbBi+R54Zdsovv/KE1DiKaxYsdyX95Dh0d+/AmzYiuMP3QsrTtoLL28dxU2vPoFIIo0VK44PbRytTCvMEYQ7grq26Td2Aq8+jzk9XVix4igAQPzVHbjlzTXo7J6FFSve7dt7yfDgb18Ctvfh0AP3R2nTMF4b3oF9DzgIK9692NHrXPHkfQBUnHbyezGvM/jI/qHJl/DyUB+W7L0fVrxnme+vf+1rjwBTWXT3zsGKFe/0/fVnEtmC/lw94/RTufHhuofexgPb3sb83XbHihUH+PZ+O8dyePjNXTjjwHm81M1IkHP3k+sHgReewbzudqxYcWzN7yee3Ypn73wFu6I9oX/f3fCtl/4K5PNYftxx2H9BB3rXD+Inrz+DZMb88zWS1X98Fejfgv333RuvTWzF+HAWRxx1DA5b3O37e1ndQ0NPbQbWvYZFC+ZjxYrDMPL0Zvxuw2uYPVf7t588v3kYWPMUAGDO/IVYseIQX19/usIyx+1o6sD+jjvuwG233Ybbb78dBx54INasWYPLLrsMCxcuxEUXXcSPMwZyqqraBnd2xySTSSSTyZqfx+PxllgMN/M4x3KV+vq2hC9jbK+sx8oqoERjVUY3VjBfknRS7jy1p7Sas1xRdT3mbRVX/N1nt9d9jWQsgnyxjLIStTxOvL4TBV35aUsnkclqH65Ycj9WI5uHtbHvMbcT8XgcnRntuzFZKIV6n725YxwAcMDCbsTjcXSwceTDHcd0oJnnCMIbfl/bQrlSp5qI8ddNVYKPYtm/eUaWbCXNtj2dQKris1FSFUfjKJbKKJbVyuskQ/kMXZXa5cl8MOeMGW4VfJz7ZypTQolzJpVAvOLD0JHWrmG2UPbtHK96qQ9f/f1LGJosoG8kh8tP3bfu8UHM3aOVdVlvu/m67Ph95wJ4BS9uGUGurHd4aFbYdzuT0s5Ve1pbK/h53fyClZmnE3GkK/NZweF85hTjPVRSWVtAbY5PJeKVn8P3cYhr1jzNVdLInqemNs/70pe+hH/913/FRz/6URx88MG44IIL8IUvfAHXXHMNAGD+fK2/rFF537FjB1fx58+fj3w+j6GhIctjiHAZrjjiW7V8c4roaCxrOOLUPC/tsb1buazywL6eeZ42JmYGKPderJYsolTaUQVgnqf3sNfKULh5Xj68fqulsoq127XAfr8FHZVxTN+ewgTRLDDT0HSTueJn4u7N88T5MWzzPHLFb34KwjmMR4R2dz62WB3NFnD5HWtw6f8+xzsFPfjGDs+v6wazHvYiu83KYPeeDIplFU+vHwxzaK5g14/NU6x7kpvuGUGj95BXuEGpm/adXjCa5yUCNM8bndLnP5qr/KepA/vJyUlEItVDjEajvN3dsmXLMH/+/KpakXw+j4cffhjHHKOleL/zne9EPB6vOqavrw8vv/wyP4YIF/YA6fbBER+oDs5lJwmnbsheHVV3TeSQL5YRUYD5XfVTPvlCVXJiFz+LoijcrTpfctYyz4qxbAG7xrVrxgJ7ttFRKquh9VvdNDiJqUIJyVgES3u14jO2yCqUVOrdTBABYRrYN9QVX+xj727BLs6vCckNXq8wM9QgXPFVVeXXiRbL3mEbVrGIgkhEz+7UW6x6CxAff3sXTr/hEfzf81sRUYCPH7MUAPDy1lEMjOfq/3EADE3U9rA3wtzxW6HtXaGi2DOhIxVr/nZ3yViEz7FeOjC5gbe7i1W3uwtiXTUqzH/NuNHS6jR1Ls373vc+/Nu//Rt23313HHjggXj++edx/fXX4xOf+AQALQX/sssuw8qVK7H33ntj7733xsqVK5HJZHDeeecBALq6unDxxRfjiiuuQG9vL3p6evDFL34RBx98MHfJJ8JleJLtDPuTfqMoCpKxCHLFsgPF3l0fe7eT7bZKKvu8zpRtqUAy7kyBMvZiZjutqqoF3myCdsvGSqu72e0J3oc5IyzwJ3OlUBSvN/q1+qK957XzljCZhDCOfBGJmD+bRQRB6OR4uzt97gpS0bGD97FPRF21OxWPj0cVPp8EDe9jP+W/Yp8vlVGJZWix7ANGBZOhK/buNmeyhRKuu+cN/PSx9QC0TjPXn3sojljag6fWD+LVvlE89tYufOCwRR5G75zBSfMe9iJH79mLXz29GX97ayCsYbmGX78ISzFv/nZ3iVhEb63sQ0aIE9j5Yl1Ggmx3R4p9sDR1YH/TTTfha1/7Gi699FLs2LEDCxcuxCWXXIKvf/3r/Jgvf/nLmJqawqWXXoqhoSEceeSRuPfee9HR0cGPueGGGxCLxXDuuediamoKJ510Em655RZEo+Gk3xHVsJQzP3rYM1hgLx0MF6qDYTvSCe04t4H91iGtxZ/RDM8Mp6n4bAeaLbRF9alQUuE15maB/ZJe3aI1Fo3wcz6RL9ZdDPjF6/1jAID95uvmlfFoBImKJ8FEvoTu5m9YQRAtx5QQSDNi0cal4rN5OJOI6RuhDpU4vRwrvHVAZyq4PvbZvP75abHsnbyhDzojw/vYO18LvLx1BJf/eg0vKfvYuxfjyjMP4KVtx+0zG6/2jeLhtTtDD+y5Yl9nXXbMnrMBAK/2jWJoIh/Kc98NpbIKlqzIAlQmzhTLWhtDGS+msGD3WiIWQSrmba3pdQy1qfj+z+9iKVIzZlC0Ok0d2Hd0dODGG2/k7e3MUBQFV111Fa666irLY1KpFG666SbcdNNN/g+ScMzQZP1aLjek4lGMZouOFfuU5KKO7fa63UXdOqwFx3b19YDzVHw2IbMFrvjAypfKSMPbwnUDq6/vqY6aM4kocsVyaDvLr/exwL6j6udtiSjyxTImc1RnTxBBMMUVe7HGvpKKX26EYq991z2l4jvM2vIDloofRI29GAhQYO+dYiWgSdQo9tp3wKli//O/rcfKVa+hUFIxuz2J73z4YJy0f7XP0/K95+AnD6/Do2/ukjKB9pPBiuDSXSeTck5HEvvMa8fa7eN4Yt0Azjh4QVjDc4SoMrONGaMXU1MF9kU9qGabp2FnFhhT8YNV7CkVP0ia584mZgwssPfLPA/QJ23Z3b+sU8U+rqd7lsvOdzAHKrvhczpqOy0YcWoGxTYAmPIUE9JK/aiP0o3zqpuq+mkiJMMb27XAfl9DYM/GMRly6hpBzBTYvCoG9mwB2EjzPE+p+IXwA3tmnheEYi8aiJLfiHesUvGZuu5kQ3vHWBbf+vOrKJRUnHbgPNxz2XE1QT0AvHPpLKTjUewcy+G1ykZ2WMjU2AO6av/4282bji8Go+z6JWMRsH2SZlOJuWIfjXj2c3KL8X5nXk2BBPbCxmbYJoEzAQrsidAZmrDfGXZKymH6umPzPCEFNetih5Gl7Vn1pxVJxp1+lmqHf0VRfK1/3VBJxV86u1axBxCKUj6VL/HMATEVH9DNjNzWPBIEUR9zV/zgFn624zE1z3OZih8PLxWfFPvWgacmx6pVc/YdcPK86RvOoqwC8ztT+PH570Rvu/kGfzIWxdEVg7pH3tzpZtiu4a74toG9Nr6/NbGBXlHYbGSBqqIogoFec4kAVTX2TWKeFw9w45Zq7IOFAnsidIJIxXdaZ+k0DVNM2XeTes4WAW0J+0UkC8qdOvyLtfW6mhagYp8MTylfu30Mqgr0tiVqsh64Yu+i5pEgCHuyJoE9WzAXQ1bs80W9/3wmLtbYt04q/niu6Crzqx5ZCux9pVCsr9hnC2WUJK/hwITmcj+nI2mbXn/83poi/mjIgT3PpLRZlx25Ry8iCrBu5wS2j2bDGJpj2LonoqDKGDPFMzuba63Ag+poRDD5C7vdXXXpSXjt7prrWkwHKLAnQiVbKPFA0E/jFeeKvbM+9pGIwo/Nulg0saAzI6XYO1uo5k0WqH6lUU3lS9g+qi1KlvZWK/ZtLmsN3fAGM85b0FHzO1LsCSJY2GZmKlEb2Iet2Isbq95c8cNX7Jl5nqoC4z7PV1OCeV6prDakDeF0ggU6cUPLZbETi6yqytrF9rbbr3mO22cOAODp9UNV5RVB4mRd1pWOcxPgrcNTgY/NDazVXcywKdOooNmOgmCe17B2dyWDYh9kYC+2u2uyazEdoMCeCJXhikFLNKKgM+Wfd6PTGnteX+lgUZf20IbEiWLvuMbepKyATcr5ojdVaNOglobflY6j27CTnwmxLQtzxN93XmfN76jGniCChZUfpYTNQ97HvqxCVcNT7ScL2lwaiyhIxCKuzfOyDaixT8WjXAnzu87eGAiQau+NQtk8FT8Zi3AVWLYMbYAF9m32Hjt7zG7Dou408qUynlw36GTIrnG6LmPfmWb1cuDZFoY2ljywbzKVWEyDZx2YsiGvZ/KGDJVA+9gLin2+5M63irCGAnsiVFi6V3c67qvjq9sa+5SkeR4AT6Ymk7wmVOah6UyBMss+4IG9x91WVtduVOuBcM3zXq/0sDc64mvjqCj25IpPEIFg1u5OVDKLIS7MJg1j8VxjH2JgDwh19j73sqfA3l+sUvEVRUGG19nLPfsGxrWst9kSir2iKDi+oto/vDacdHxeX59JSK3LEpU1SrMG9kW+KWOl2DdZYC+2u2vQ5oNunqdd/6Da3amqWuMx4nWdSlRDgT0RKry+3uf+p84Ve+c9jL2kSLGgk6WN18PpbjjLPhBr7JM+1dhb1dcD+mcJwzyvXio+KfYEESymNfaCkhlmOr5onAcIZqNO+9gXajOdwiAoZ3yjwke1q97gqfgmbdEySWebybt4YG+v2APA8n20OvuwDPT0TkVyhsaJAB3T/YBlKsYixsC+0iO+ydYKolrutbWy1zEEnYqfLZRrNgsoHd9fKLAnQoU54s/y0REf8OKKL/8VSHqYcB0p9nFnqaW8j71JKn7B4446d8Q3UezT8UpAHfDu986xHAYm8lAUYO+5JjX2Idb6E8RMxKzdnbhoDrPlnXEu9dzH3kHWlh8wxX7MZ2f8GsWeFsueKAgtyIy0Ve492U1+1u5WpsYeAI7eczaiEQXrdk5gy9Ck1N94QVTsZUg0eSo+U+zZBgSDu+I32bjN2t2FXWNvvN/jAZVajUzpZR+sUoI2If2FAnsiVHgqvo+O+IAzxb5cVoVg2EkqfmW311UqvhPF3mEqfqF2gcrUNK8pTkyx372Bij1Lw1/a21aVCszg7vzkik8QgcDmvFSVK76+aA7TqI3NpWwBnGixVHxmoOd3yztKxfeXvCE1WSTtsPxLN8+TU+y70nEctrgbAPDom8G3ldMVe4eBfZMq9ixIrTXPa25X/GRVu7twz61VuzvA341bNu91pmJNa2bY6lBgT4TKsGRLFackHSj24sPIjXmem4fCBOtjL1Vj77R1X50ae6+K/a46ij3rYx9wyhhPwzeprwdIsSeIoDHrY68oitDLPjzFviYV36V62KhUfF2x99sVn1Lx/YS1cTQGh4D+HJd99rEa+14HJYjH763V2T8SQp29bA97RsKn9UVQ6GUU1ZsyXtZwQVEslcEsSuKCYu+0fadX8obSEzFTxc90fOYt0pmOu862IupDgT0RKoOVVPxuyVouWZwo9mLA7Eyxd5eKXyqrfGGcceSK76ysoKqPvQ/GJ7liCdtGtHY2pjX2IdW2c0d8i8CeFHuCCJasiXkeoDsnh1lrW2ue57bdXfiu+EBw5nnGYIUUe2/US8V3UmNfLqs8cJatsQeA4yt19o+9tSvwjJihCWeCi1/mvEGhG8EZFPtY8wX24hpNdMVvVCp+nKfiBxTYc8U+zhV7mqv8hQJ7IlSYYi9byyWLkxp7dkxEAVecpN7DZe2TeHybVB97Z5OdnsalL7oTPpjnbR6cgqpqiriZm28mJKW8niM+oCv2Qdf6E8RMhbe7M9SjM2f8UF3xC+aKvfMae9bHvjGp+IG3u6P0Vk8YXcJFnNTYj0wV+PdDNtUdAA7ZrRtd6TjGskW8sGVY+u/cMFhpdyet2Dd7jb2F8WGyCVO/xXMouuI32jxPrIH3cwNndEqb9zrTMVLsA4ICeyJUhoJKxXei2PNWd1FHLffcmpqwGvSIIqcOOe9jH0y7u02DuiO+2XkKw42+VFbx5vZxAMB+82t72FeNg9rdEYTvFEq6i3HaULrE6jDDrLGfqmwkcvO8uD5fOjF5yplsiIZBB6+xp1T8ZiZvofoCYo29/TkemNDS8LvS8aqsOjuiEQXv2UtT7R9eG2ydPVfsZV3xmzyw12vsjX3sm6/GPlfSxqJUhKZGteQzy1CJBdDyTlTsk7Hm22iZDlBgT4QK2xnuDswV336CyBZqA2EZeH2Ww0CW9bptS8SkNhLcpuJXB/YV8zwPD15eXz+7tr4e0NMRJwNU7DcMTCBXLCMdj2L3HvNxMBM/2Z7CBEHIIy4wU4bAnmU8hZmSa5WKr6rOFqB6jX3Iin26korvs3meMWOJ0lu9Uai0TDP2QgeELDGJZ59unOdczGDp+I8G3PbOsSt+QK3Q/MKqVWGjHOfrIY5VURQ+xrCDXaNiDwjX2ce5hNfYp+KOO0ARclBgT4TKsEP3VVmSDnZi3So1bh8KrA4vI+GIr43LoXmeyQLVjx6k9XrYA0Amzlzxg5uUX+/T6uv3mdeOiEXZhJ45QIo9QfgNW2AqJhlHbJ4pNsI8L16dig84WyA2yhW/I6BUfOpj7y88Fd/kucN9XSQ2kwcqgf3sNvn6esbx+2gGei9sHsbIpL8bQSKuXfGbdPOItbszllE0ows7L6WszKVsnZkvlVEKscTJrAtEPAAPFdburisTd7zWJeSgwJ4IFZby5Xe7OyeKvdvaSrc19pOCYi+DUzMosz72ftTY1+thD+h+AUGm4r/B6+vN0/C1ccinRRIE4Qy2WZqK1ZYu6b2Ow1fsjTX2gDOVWu9j3yhXfOpj38wUeHDoTbFnqfhuFPsFXWnsPbcdZVUz0QsCVVVdK/a5JlXsWbBcY57HFOImUuyNSrmYFRVmOr6Z4WA8iFR8VmMvtLuj7CJ/ocCeCI1iqczrCmf5nIrvSLF3mYLJUj+n8s4mIWYu51ixl07Fr92o8MMV31axD8E8z84RHwAycVLsCSIoeKs7k44eMd72KkTzPJ6Kr33vFUVx1cu+Ua74vI+9z6747DpFFe1a0GLZG/VS8dm9J7OZvGvMfWAP6Kp9UG3vpgolfq/IKvbsnBRC/N47gZkVxiLGwL6i2DdRNotxE0Kcj8IsGciblnT6X3LBa+yp3V1gUGBPhMZwZSGjKJqRjJ84U+y9peI73UVlqeoZWcU+7myRWi8V3+3irlAqY8sQa3VnUWPPnIHzJUemVU543aaHPSDW+pdQDjF1jSBmAiz13WicB+g19mEq9lMFZp6nj0dP6WyFVPxg+9i3VR4ztFj2hlXLNMBhjb2LVncix+2t1dk/8ubOQJ6zTK1PxCJS7XgBoY99qTnvMauOBo1ynK8Hy7hkm5ORiMIzC8IaZ6msgi2dxPvdj8xPI2SeFzwU2BOhwdLwO1NxrvT4BU/pkaqxN2/dZIfXGvs2yYcmm+xk69fM+th73WndNjyFYllFMhbBvI6U6TEsoC6W1UDMsyZyRWwa1MoB6in2YolDM5niEMR0gJuNmsyXbM4Js8beaJ4HuOtlr2+IhpuKzxV7n1Px2XXKsMCeFsue0F3CvdbYM8XeXWB/5LJeJGIR9I1k8fbOCVevUY+hCe0+7MkkpLsENXuNvZV5XjPX2Ivrt7Cd8Y0t9xjchJna3bUUFNgToTHEeqX6nIYPOFO53Sr2qYS7yVZPxZetsXemttftY+/ywcvq65f0ZqxN6wQFLwgDvbXbNbV+Tkey7qIoFY+ArUeCLAsgiJkIT8Wvo9g3whXfVLF3VWPfGFf8bKHsqxLGrpOu2DdP8NKK1Gt3x559Mp1YdPM8d6n46UQURy7rAQA8+taAq9eox2DFOE+2hz2gf9+aN7C3aHdXGXdTpeKbtJkL2xlfnL8Dr7EXFXsuyDXnfdSqUGBPhMaQiweILKmYfNDtut2dZ/M8Z4q9bFqpWUppwqObqV19PaDV17INBGOrJT+QScMHtBrbNt7Lvnke2AQxHcjWC+wb6YovBvYuTLEalYrfLmzw+pmOz89LjNXY01zoBXZPm2UX8vKvnIx5Hmt3506xB4Dj99bq7IMw0HPawx4IJuDzk6JJsAw0p2LPxBfRyyHstnyFqsBe3wyJBdnurqrGvnmux3SAAnsiNIYcOq86wZVi7zYV32kfe5aKL6vYO62xN1Hs47wGzm1gX98Rn8FrDSUWOE55QzKwB8Ix8iOImQhbBBt72AP6wjlcV3ztO56O6/Opq1R8l5lbXolFI3ze9NNAj12nDCn2vlAvFZ9vJEusBbya5wHAcZV+9k9tGILfMemgi05FbswqwyTPN2Wqr13aZdZlkPCuRsImhNsOTK7HUNQ3QsRyDK8CkRFVVbmBdlc67sj0mpCHAnsiNFgqfncAqfhOFHu3tZXphLtJyHm7O7ZYVvnOcz1Ma+x5qpy7HXUZxR7QDfRkUhKd0j+SBQDs3lN/cwHQN02ayRSHIKYDbHFpFtizhXOYKblmir0rV3yX3VH8wO9e9sVSmQcIVGPvD3XN87hha/3rly2UMFbZ9HbTx56x77wOzOtMIlso4+1RuTp4WXgPeyeBvUfhIGiKFtfOyToxLMxr7MMNeK3MBr0KREYm8iWUKi59onles24QtSoU2BOhMeziASKLM8XeXQqm211UptjLt7vTj5OZUM3alCQ8mufpPeztAnt5d2CnMPVdJtNBV+yb54FNENOBKROzOgZrJ1UMsRsFK/sxq7F3ssHg1kTVD5gzvl8Gelnhc1Mqvj/kLQzYAKHdnc3zhqnh8ajCvRXcoCgKjquk478+HExg76REMu7Rwydo2Hxk1ce+qQJ7k6A67MwCs80FbUz+llqxDKV4VHP+J/O8YKDAnggN9pALssa+VFZtg1m3/YvdtkpxqtiLk6uM6mLWx54/eF0E9qWyik2CeV49uDtwALXtTkoY9Bp7SsUnCD9hRlNpU1f8Sru7BpjnpU3N85zU2DcmFR/Q6ksBYMynwF58JqUpFd8XzGqfGayUIl8s1733mXFeb1tS2nHeCtbP/vURnwN77oovn0nZ7Iq93hvevN1dM9XYmwXVbss+XY/BIsPB7z72onGeoih6Nyuaq3yFAnsiNIJMxReDWrtJgv3eLLW0Hm6dSrkrvqR5XjSi8AeS3WfRNjK03dQqV3wPKbL9o1nkS2XEowoWdqfrHsvcgYMwz3OyIcKyIUixJwh/yebrpOJH2AI/HMW+VFb5nJZJ+FVj30jF3p+NSN3gMAL2KKTFsjeYb0TcpCuMeO/Ve/btmvBeX884bq/ZUBSgb1LB1uEpz6/HcCO4NLsrPrt2bH5iiFmXqtocxn96YC+agTaHYs82bn0L7HmrOy0G4BuyTbTRMh2gwJ4IjUBT8YUJyW4y9OqKny/V36U3wtRsWfM8QN8Rt1OgrPuPut9R37hLq69fPCuDqEWrO0abA3dgp+htAu03RHQzI1LsCcJP6ra7i4ar2Ivfby+u+MVSmdd6NkSxZ73sfTLPE7MY9MCeNjm9UC8VPxGL8FaP9bLVuGLvwRGfMastgXctmQUAuPuV7Z5fj8Fr7B0E9gkPGYFhUKh4CxkD1ZQDASgs6rW7mwop4GXikLGLgL6O9DcVv7OyscnW4M3UfnA6QIE9ERqsX6oT91VZFEWRNlDipklOFXthIZl18FBwqtgD+tjsPosY2FfV2Ht48G6QTMMHgjXP4xsiEoo9uzYT1O6OIHylnnlePOQae5aaqijV853TtknicWH3sQd0xd4v8zxx86UispEK5pF6qfiAXCeWXeOaYu+2h72R0w+cB8DfwH7QRbciHvA1SXBspMAVe/NUfKB5vh8FrpYLNfYNancXdCr+iNDqDgD1sQ8ICuyJ0BiupOI72Rl2Qort/tlMhm7N88TjndQ+8ZRyB4q9bIoS+ywRpfoh5qXPrKwjPqAvbqYCNM+T2RBpC9DEjyBmMvXa3cVj4bris7k0E49W1Sw7TcUXjzOqVGHgtyv+lFAuQan4/mDlFM5ok/CXGWCBfYd3xR4ATjtwHhSoWLN5BNt8SMdXVdWTYt+s91iBt7urDVTZOimsoNkOM8U+5TADyfMYLM3zKqn4Pl1nXmNvTMUnxd5XKLAnQqFcVnkq/qwAauwB+d0/t7WViqIIdfbyExF3xXei2EtOeKIBVHX/Ufc76hsqgb1dD3sgOMW+WCrzgELKFb9yDCn2BOEvU0L9thHdFT/cwD5tyOJxukBkxyWiEURsyo2CgDmk++aKLyj2lIrvDwWTgEtEpiOMbp7nj5gxtyOJPTq0/171Up/n1xvPFXkQ7ESxb3bzvCK/drXf7VTI9et21DXPCyuwt2l353uNfWVjk8zzgoECeyIURrMFsGzNIFLxAaGViYNg2Cks5dvJhOvUFR/Qx2YXmPMFqkWbEjcT8pYhTQlYLNE/Xlfs/X0AiYZEbVI19qTYE0QQZOu0u4vzGvuQUvEL5pukeo29pGLfwB72gKjY++SKz8slIohFWLs7Wix7oVCnxh7QN7Un6zz7dk34V2PPOKxXu65+BPbMET8dj5p+v63w21TNb9i4jIo9IL9ODAszR/pUQOsqyzHYtLvzrcaeK/bVNfY0V/kLBfZEKDBH/PZkrGby8AsWDEun4ruorXTahkRVVUcmcAy+UJV0+DcuUNk5drOjzhYqbPFZD+5G77N5HktvjEUUqVTZIGv9CWImk+X93s0C+3CVO56KbwzsXabiN6K+HtDNo5iC5RX2PKpS7Klu1RN6cGie0SFTY89S8f1wxWcc2qsFWc9tGkbfiLd0/EEXafgAkIjKCQ+Not6mjL5ObI6xN4Nib1dj75c5qm6eV52K3yzZE9MFCuyJUGAGLUG0umOkZIPhgnvFnr2H7ISbLZTBuqo4U+wdpuLHjROy+x31rKD+2NEmoVq4Qayvl+n/G6Q7P0E0C9kGtGmaqtfuji/8whmTWQ97wH0qfiMc8QF9YTuW81uxF8zzmkSRbFXsUvF5jX09xZ6b5/mn2HclgHfu3g0AuOulfk+vNcRb3Tlbl3HhoGkDe2t/hHTIargdZoF9ymVrZbew81UjEHlYR5pRW2NPqfhBQIE9EQp6fX0wafiAMEnYtbvzotg7TMUXd/PN2kVZITvhWW1SeHGtzdZxwTaSDigF3mmLQJm0SIJoZXaMZnHEt+/H5361JtT3ZS2XzOYv1uM7rBr7KUvF3p0rfuNS8f11xTevsafFshfsUvH5s89iM1lVVaHdnb/rntMP0tzxvabju3HEB/QgtFhWUQ6pI4YTinWuXbOm4pu1uwu7j72VYu9fuzvtu9KVZjX24ZoEzhQosCdCgaXizwrIER9wo9i7T8XPSgaQLEDNJKKOTJqcuuIbVQW93Z3zCZm7YEuoWW0BpcCPOzQc5Io91dgT05RXto1iPFfEcxuHQn1fHjSa1dhz5S5kxT5uMM9z2DaJHRdUWZgdTLHyq489T8VPRBCjwN4XeO2zxT3SxlPxzZ99o1NF3gbS78D+tAO0wP6ZjUPoH8m6fh03jvhAtRLejAZ6bEzGdneAvq5plmCSZ4aYKPbhmeeZb4TE+TrS53Z3rI89mecFAgX2RCjwlK8AU/Hla+y9pOJX3kNyt1dPKZdPwwfEGvv675O3SMVngb7TNiWqqgo1tTK17QEp9pXXa3eo2FONPTFdGajMoWG3aeIZPCbzZSxkxX7SogWm61R8B1lUfiIq9n6UVoip+GzaLpVV32pjZyJ27e70LDHzZ9+uCS0NvyMV873kY0FXCu9cMgsAcPfL7lV7r4o90JyBPZuPzDZlwk5zt4On4pu0uwtbsffThNkM63Z35dBLzKYzFNgToTAUQiq+tGLvso89IJrnyU107KEv4+wuIp2Kb5FSGndpnpcv6Z4AMotePbD3u8aeZTrIBfa81p9q7IlpymAlUAg7K4W3u0vUzpfxkGvsp08qvrawLZZVXzZqpoRU/JgQh5IS5o5SWeXPwXjEqsa+/rOPpeHP9tERX+SMg+YDAFZ5qLN3q9iLQWgz1tnzVHyTaxe2Gm5HrqnN83yusbcwzwNorvITCuyJUOCp+CHU2Msq9jKKtBHHNfY5ZwEqQ3ahapV94HZCFnexpczzmIGQz/3jWYAuuyHC3flJsSemKUyxzxbKKIVY11rPPC90V3yLsgDngb37zV0/aEtEwbKE/aizF31RxI9Ei2V3iM9Nq1R8rthbPPuYcZ5fPeyNrDh4AQDg6Y2D2DHqLh2fK/YOx6goiu9Bn59Y9WUHwlfD7TALqtn8Jlvy6dcYagQi7tXk/XlTLqsYq6zr9HZ3+jxOc5V/UGBPhIJb91UnpCR7GXtxxXdqasLawLU56BELiDX2cq37jClUbEe9rDprVcLeT1Gs3YBFgjLPc6rYB1USQBDNwmBFAQTCU3LKZZUvuMzM82K8j32jzfOctd/y8gzwA0VRfO1lr7e7iyCi6AENOeO7Q9yosk7Fr9/uLohWdyILu9M4fPduqCpw9yvuVHvWx77HheCS8GDQGzRMsTfvY9+kqfhmrvghnVvdPK/6XvczFX88X+RZMEyxj0cVvsFJc5V/UGBPhAJL+eoOQ7GvM0Goquqpj33KYR97HqBK1oozEpIKVN4ipVR8SDgx0BON86TazAlu9H7WSE04Vewr4yiU1KZcaBCEV5i6BoS3gSXOP+aKPauxD8s8z9yzxHmNfWP72AO6ajXiQy97YxtAvUMMzYVuEL1pLFPxK/eg1VpgV8Cp+ABwZkW1/8uL7ursWR97N4JLM7e8q9eqsNkU+7yJeV7a4TrTrzFYpeL74aHC0vATsQh/liiKQnNVAFBgT4TC8KT7nWFZkhKKfaGkgq1BvZjnySpmvMbesWLvtMbevN0d4CxN1olxHqCnwBfLqq/puBP8vDlT7AFS7YnpyYAY2Ptc+mKFOM/VTcUPaXGvu+IbFHtJfxUG2wCQ6fwRFB1JHxX7QvV5cVqaQFTDNsNjEcWym41e/mWh2E8wxT64wP70Sp39UxsGsWPMeTo+y6R0WmMPCIF9E6bi8+tn1sc+5FZydnBxJlqr2E8V/BVM7MZglflZ8CEV39jqjiFrFE3IQ4E9EQqDXLEPwRW/zgQhTh6ezPMc1tjL9mNnyCpQPKXUEIiLbV6cpFE56WEPABnhOD93l3mbQMnzFo9G+EOJ6uyJ6Ui1Yh9uYJ+IRRA1CXBiEb2fdSjjsUnFd9rurpGKvZ+97I3zNnt+NEvw0mqwZ6ZZYMiwM47VzfOCEzN2m5XBoYu1dPx7XnaWjl8uq7p5ngvBJexNPSfU62iQarLAnm1CiF4OoodIGJtz1uZ5/m3eGFvdMfS5qvnuo1aFAnsicFRVxfCkO5MWJ8jU2IuTpKvAvuIMLd3H3q1i79Dh35hypiiKqxo4noovGdjHAgqoJ1ycN3YsOeMT0xExsJ8qhHOP663uzOfKeMg19saUc4brVPwGmecBQi97XxV77fOQYu8Nq0BHhLdYtXje6OZ5wSn2AHDmwe7c8UezBZ696KZEsplT8Yt1rl/T1tiLir0wL4WxAWFV0ulnH3tjqzuGbHYqIQ8F9kTgjOeKfFcy0FR8rtjbB/aJWESqhtyIW8XeaY297GRn1ccecOeMzx4iTha8mQACaqeKvTYO6mVPTE9yxRLGhe9XaIq9RSDN0BWdkGrsC+ammk4Xh/o818BUfB8Ve2PnAqcbHUQ1bL1Sz0DWrsaeKfZBmecxzjhIq7N/cv0A30yQgW0UdiRjNSnYMiRC7ojhhIKMeV6TfDfM2t3FohG+fgvDKJVnDQTY7s7Y6o6RolR836HAnggcVl+fjEUsF4h+oCv2dVLxbRQo+/cIq8Ze0uHfosYe0B8UQabiA9UGen7hSrHnfYVJsSemF6JaD+gbhkGTNdRuGwnfFZ+Z53mtsW8Cxb6ywGULXi8w9ZFdp4RkhxjCHBnFPs1d8eu3uwsyFR8AFvdkcMhuXSirwN0O0vFZC+Jul52K3KwvwkBVVRTK9u3uwjKms8PqXnNq1OwFa/M8do19qLHPslZ3Foo9zVW+QYE9ETi8jivANHzAmWKfdBC4ivA+9k5d8Z32sZfcxazXj9lND1J27mTN8wD7tj9uYOmNTs6bXV9hgmhVBsarA/vwUvHrl+awOSY8V/z6qfilsiq1yeClM4pfdPqp2NeY51F6qxd4oBOzzuqrt5GcL5Z5IBOkKz6D9bRf9ZK8Oz43znOZRdms7e5KZZW3VTPraJCSWCeGiVUafJglA1bmeX76KIza1NiTYu8fFNgTNax+ewC/fmazb6/H1KYgW90Bcoq9m1RzEaeOqpMO27YxnLvi1wnsA1bsMw43O2RgC/h2B6n4bTYuxQTRqhgV+7DN8+wC+7BUuyxPxTc3zwPkgtl6mU5hEUQf+1TCWGNPi2U3sHZ3MjX2Zi1W2fc1FlFqUo+DgLW9e2LdAAYk0/EHPfoeybbkDRtxkzFusi5qNvM8s3Z3gPOyTy9YmQ36mopfmeesXfGb6z5qZSiwJ2q44tdr8OXfvogn1w348nosFX9WgI74gEPF3mNgL11jb9F32Q5Z8yOr3V7AXaqcXqrgJLD3v7adnzcHGyKZAEoCCKIZMAb2YaWRGpVgI6z7RliBPftuZ+LV86m4KJYK7AvengN+wPrYj3pU7FVVpXZ3PsOCQ6se9kD15pLx+8jS8HvaEpbt8vxkcU8GBy/S0vHveWW71N94Vuz5+iKcbB1ZxLkoZnLuuQGyjwHz2u1j+PyvnsfbO8cd/V2prKJUNq9vD7Mtn9U6MuFjRhZ3xTcE9ilKxfcdCuyJKsplFf2jWj9UJ2ld9RgKwREfkKyx96jUpBLOAnu2EHWt2Nu8T90ae96D1I0rfnOY58n2sdeOrSj25IpPTDMGGlVjL2meVwxhcV8VwBrGE40oXF2SUanrlTCFhV+KvRi815jnNYkq2WrIpOLHoxH+jDVmiXFH/BDS8BlO0/G9KvbN2u5O3GgwdcWP+R8w/+qpzfjDmm343bNbHP2duAlhVOzZGiyMwN6u3Z2TNaQVrI+9MYOF+tj7DwX2RBViC5S7Xu5H2YedOrYzHJZiX0+lYAsdt7WVXLHPy010bmrFAX18dg/NerWibFESeCp+MjjzPGPKbT3SpNgT05TBier02smwauyLbD6o3+4uDMU+Wyjz2lmzecGJCZNXrxU/YK74bMHrFlEtZqawpNh7QyYVH9Azyox19mH0sDeyotL2bvW6gZoMHzO4Yu8xFT/fZAEZ89iIKNqGn5FkALXrbHPOqaggfj+NHRicGjV7gXU1qamxZ9fY13Z35h1NmqX94HSAAnuiCuaUCgA7xnJ4ZuOQb685qwlq7P1KxZeusc87V54B+YUZW8SateVxs6OuL+Rd9I/3qba9WCrzSb7NSY19ACZ+BNEMsIU6W6iGloqfrz8f+OmabIc4v5iVBjip+W0mV3yvij1b+CeiEd7eK0HmeZ6wav9lxKojzMAE62EfXmC/pLcNBy7sRKms4t5X7N3xBye8rcuSTdruzsrhnRGEEs6uv9PgVFybGevbnRo1e4FtzjSi3R35gfgPBfZEFcOT1Tu9fqTj81T8wAN7+Rp7J4GrCJtsZR8KXLF3mIqfkJzs2EPMvI+980U3ezA5yWhI88Den4l5Uji3TkoYeOZAAGnKzZZuSMwsmAI4vzMFIHzzPNt2d+Xgvx+TeT17wKxu2ckCsTlS8f1xxRfPC4MWy95ggUy9PvaA0PLO8MzRFfvwUvEBPR3/HonAXu9W5C6TMsxNPScUbTZlgjClY2KC09cU7zNFMQT2IdbYW/axr3hMlFVwLwC3jFm2u6PsIr+hwJ6oghndsXXTXS/3eU7H12vsg07Fl1HsvS3o2IZAsaza7mKqqupBsZdLK9VNoMxSUz30sXfgQeB3H3sWmMciiu3CqnocwSj2D72+Awd94x78+mn/OkUQhBOYYr+4Jw3Av+wYO4z90Y2Ii3tVDXaBP8Ud8c3n0mRMPkOp3rwZFmyBO5Yrelo0Z018B/RnIS2W3cCemTGTPugiVtlquyqBfZg19gBw8v7zAAB/e3vAdo7QSySnlyu+lcM7g63h/PxusDWL0yDcqs0c0Jh2d8Z1sdhVwKtqzxR7oys+vx4u7qNyWcWGXROBP3taDQrsiSpYEH7Ekh60J2PYPprDc5u8peMPVVK+gm93Z6/YZz0u6MQFrt3ubL5U5m6iThV76VR8mT72jgJ75xkN7LP5ZVon1tcbd7HrjyMYxf7ZjUPIl8p47K1dvr4uQcjCAvvdZmUAhKfY23luiK7hQfey5z3sLcbipHe7XmPfeMUeAMY9zJ1mGx6kgnlDNhXfqiOMbp4XXio+AOwzrx2Le9LIF8t47M36z6vBSb9q7JvrHmPXLmaZiq/NE/lS2bMKzXCr2Fu1ugPCrbG3Ns/T119eSi5KZRVjOWaeZ9HH3sXnvPmht3DCd/+Kv/hk9D1doMCeqILVw8/tTOLk/ecCgOcvDU/5CjiwZxNEqaxyAxUjXhX7eFThda5Zm8W1GGBmHKb+JwXTknq7kbk6O75sUnZXY+/AFb/y2SZ9egBxR3wH9fWAoJ74/CBk98yOsayvr0sQsgzwwJ4p9uHW2Fu54ouKZtDO+JM2hppO3JWbIRU/GYvyedtLnb2ZDwKl4ntDNhWflYpNGc3zKjX2YZrnAYCiKDhpP021f+C1HZbHFUtl3n7Max/7sFpdysKDVIs2g+Laxq/vB5uPnWYB5IvW2QVh9rG32mAQN269OOOL81tHjSu++8yEN3do7QXf3jHhemzTEQrsiSqGhXp4Vq91t0d3/LBr7AFr1T7nooZcRFEU6QmX7eImYxHL3WMrRLfmeqqLnkJVu9jV02Rd9LF344rvk2I/nnPuiK8d7+84GOyBs2MsZ3MkQfhPQViEM8U+7D72VvOBGNgXAq6zZ5/ZMrB3kH7ute2pXzAjKS/O+LoPglBj7yG9lbBP52awTixWNfa9beGm4gN6Ov4Dr++wXLeNTBV4h4nutLca+2ZT7JnfR9xi004sM/RrHmVrFn8V+/Da3VltMEQiCmIR5qPiPgZg81s6Hq35rF42IdmGWpY2MKugwJ6oYpg72Mdx/D5z0J6MoW8ki+c3D7t6val8iQdG3QHX2Iu761ZpPX4s6NiEazeJ6z3snSnPQLWSVLd9Xx13Zzc76vpC3nkfe2M6oluYMtfuVLFP+jsOBnuw7hylwJ4IH7YxqijAwm7NPC+szg9Zm/nAL0VHhkmb7AFHqfgF63kzTDq5gZ57xd6sxj5BNfaesHNWZ5jV2KuqqpvndYQf2L97WQ86kjHsGs/hxa0jpsewOaUrHXcsOjCceFqESb5YScW3UOwjEYV/P+qVbTph0m1gzzIuTa5BuOZ5/nZXMmLV6g7wtgmpdyOgwF6EAnuiCj7hZxJIxaM4qZKO79Ydn71eLKKgw0WA6wSZCduPFExe+2QTQE64VJ4B7Xyx51K9ncx6fewTHlzx3Zjn+bX7PcGVOWf3C1fsfQ562ANnLFcMTSklCMagYHLFNrvCVuyt6tojEb00Kega+ymbeUFW+VFVte68GSa8l70HZ/wpE+8BSsX3BndWt1knZEyMY8dyRb4xEGa7O0YiFsHx+8wBANz/6nbTY1irO7f19YC+vmi2dndcsa+zYZGK+aeGl8sqL/9zb55XO7+G1e6uWCqDTd31Sjq9lFxYtboDvPmBuG0zON2hwJ6oQlTsAeCMg7R0/Lte6nPlPMkC++5MwpERmlvsjDi8trsD5GufWHqeU0d8QEv5t3PGL5dVHrTX22l1MmHamWWZkfHZjZ7tfjtpdSceb0yL9Ir4sN5J6fhEyAzytN4E/66FbZ5nFdgDujIWdK0t27CzVOzjcvNdsazyhWzDU/HT3nvZm5VLkHmeN+zqtBlm38ddlWdEezLmaZ3hBSbI3P+aVWDPNgvdZ1FyD59mC+wljA9TPqrh2WKJlzU4fT1dKTdp3xmSK74o/JidMz3z00MqftbcER/Q5yo312KKFHtTKLAnqjDWw5+w7xy0JaLYNpLFGhfp+GyjwG2vVKfYtQjxIwVTtpc9d3d3GKAy7Baq4gM1abKAcFNj7y6wbw7Fvi0gxV7M/iADPSJsmHFeT1vC9++aHTyDp07WkZvMIDcwVczKiFS6RajwfW50Kr4fvezNsioosPeGbCq+WUcY9n0N2xFf5MR95yKiAK/3j2HL0GTN74c8OuIDusrcdKn4Ev4Isms4GUQhwWkQXq/dXVjmeeL1MxtHLOLdJJHV2Bt72APOSqiMsDU2BfbVUGBPVMEC8e7KTm4qHsV7K2YsbtLx2c5w0K3uGHYpiFlfU/HrT0QswHSj2AP2n0VcwNatsXek2LOMBgc19j63u3Or2KcF9cSL2aMRMfuDDPSIsBkUAgWmEOZL5VDcqLkaXEfZZgZ6Vp1IfBuLrHmeTfq5+H1udGCvm+d5qLE38R6gVHxvFIpyqfhtJqn4A6zVXQPS8Bmz2hI4YkkPAODB12vd8Qc99rAHmrfdXdGm3R2gz2d+qOGikOCneV5ogb0wb5v5EsRj3jMzeI19yqzG3ot5Hin2ZlBgT1QxbOJgf+bB8wEAq17qd5yOr79ekyn2Yabiu1XsbXYy2UQYUcwn5ISL2qhc0Y1i72968LjLDRHxeD8fhlWK/Sgp9kS4iIq9GLyFkY5v1+4O0BfQgSv2fCx2NfZyin0iFgmlPKweXLH3oY99tWIvl71AmGPV19tIxsQ8bxcrnWkP3zhPRE/Hrw3shyb8UOybu91dvVaFfjrOi4p9qaw6XG9Z32fpRDiu+OL5MpsPeeanhw0c1tXFTLFPeZirqMbeHArsCU6+WOZp0N1CIH7CvnORSUSxdXgKL24xd1m1YmjSu0mLE3i9jpXK7YNiLxvY+6bYW21S2CxQ4y7MbXTF3nkqfrGs+rJ7z/rYZxyaLabiEbDT4KdrOCn2RCMZrPTE7mlLIhGN8E28MNLxZWrsEy5KftwwaafYS7or1+skEjaspzPV2DcX9WqfRdizb6JKsa844jc8sNcyLZ94e4C3Y2MMMsHFk3leRcltsnuMXbtYnWuX8lENN5b+OXnNepsQelZBOKn4ZlkDgD+lVnXN8yS9UYyUyyo/10FnNbQajX+yEU0DU9cjSvUXMBWP4sT93Lnjh52KzyZsu2DYi2kSr8+ydcVnAaq790rYpeLbfJY4T5Vz4orvvt0d4E99+wTfEHF23hRF0VMjfTTQy1XV2FNgT4QLT8Vv0wxI0z6bVdZDyjyPpeIH3se+fpcRO+NUhr6521jjPEBPTfXUx75SEmba7o5S8V1RkEjnBvRne7Virz0jZjewxh4A9pzThqW9GeRLZTy6dmfV77hi70cqftMp9k7M87yP3bhpYrcuFKkXVDNfk6CD1oKNJwFX7D3M76zrh2m7O5fmeaJ4R6n41VBgT3CYut6VjiNiSO0+82DNHf8vDt3xw07Ft61L5674PtTYh6XYu2zd51RJK5bKvGWVk3Z38WiEv5cfPeTdKvaA/w79ALniE42FKYAs6ykTUhskVVUFNdh6vtRd8cNKxTefmxKSXUCapYc9oCv2o54U+0q3AFLsfUM2Fd+0xn6i8TX2gLbRzVR7Yzo+W+t5U+yb0zxPb3dXT7H3L83dWBLlZLNAyjzPxsvJKzkbxZ63u/PSx75uuzt35nniead5rprGP9mIpsGsvp5x4r5zkY5HsWVoCi9vHZV+Tf4AaRbFvuBdrZGusXfp7s5I2rjOcsXeYtEdd1gDJ9aSO23Tw5SLqQYq9gDQFkCf72yTpOIXSmX896Pr8Eb/WMPGQISPqNgD5r2zgyAv9Deu54rvpvuGG9h8a52K76zGvtE97AG95tT3PvbsXFDtqSvkU/Erir2QIdYsNfaAXmf/0Bs7UBIMZXVX/OnX7o6tl5ibuxl+trszmgb7lorP17JhKfZWgX047e6cZheJazxS7Ktp/JONaBqGDI74IulEFO+tpOP/xUE6vrF9XtDY19h7X9QxUxO74NGtuzvDbqHKFm1WJjFOa+DEydGpmsWUCz96yLMHpZsNEV2xDyYVf2cD2909+PoOfPsvr+Gau15r2BiI8GGBfU97tWLvd1tHI6LyVC8Vny38imEp9nEr8zw5BbGZUvH1dnfea+yrXfGZClZybHhLODfPEzPEuCt+g1PxAeBdS3vQkYphcCKPNZuH+M/9KJFsWlf8sn0qftrHwL5WsfcnFT8sV3wWsFvW2Ptgkliv3V1K8EZxMleJ551q7KuhwJ7gMMXearI/g7vjy6fj88A+5D729oq9d/M8+z72XhX7+juZbKfcssbeoXke+zyJWKSmFMOOtI/O+Ow12l2k4us19v4EPaqqVl3ngYl84G29rNg0oPUjZhtwxPSnXFZrek773YXCCnbfRyNK3UVyzEX3DTfYmudJt7trplR8P/rYV2rsTVLxy6oe6BDy5CXqtAE9Q2wyr2+gsC4Wc5pAsY9HIzhx32p3/EKpzO83X2rsmyywZynj9VPx/auxN5b9OQkyc3UUe/Z9Ljp02ncK31ywuNdZqZWXzIwRCfM8VXX2HuLGNin21TT+yUY0DfUUewB4735zkYpHsGlwEq9sk0vHH5oINxXfzojDD/M82TQuXmPvtd2d3SaFRfaB051W7ojvYsHb5qOKyB6UbkwH2d/4pdgXSirEdbGq6qmWYdNfabUXdGoe0TwMTxX4/cfm0HRIqfhmKd5m+JGqKTceG/M8p6n4TRDYB93HHqD6UzewzVu7PvbsXiyVVeRLZRRKZQxX1lHNkIoP6On4D7y2HYAutkQUcwVVlrC6YTilIKHYJ/2ssc+5V+wLFWNjs/tMXNcFGbjKp+L70Me+jnke4Gyuqk7Fd6b2T3ca/2QjmoZ6NfaApjyz3V8Zd/x8scwdQ0OvsberS/ei2Eu6lXJX/MDM8+p/FqcLbt0R33lAnfYxBZ49KN2YDupmRv4o9qL6xza8djQoHZ8H9rRQnzGwVndd6Tj/Pme4qVKwqfhmbdTMiIfkim9nnifbu52n4ruY5/yGBfa5Ytm1g73ZdRLVN9oIdA4Pdmwy18Rn+2SuxFPcIwrQ7SFo9pMT9pmLaETB2u3j2DQwycWW7kwCUYeZeSJNq9jLtLtjreR86BphVOwdpeKXKlmSJkF1Mqa37w0y1dzWPI8JRC6vc6FU5nO3mWKfiOqf04kniHFjm9ZFOhTYE5xhbnRn/UBaUXHHl0nHH57SHnKKx51hJ9gr9vVVbhn02qf6E8mkBxM4QFSg6mcfJCyyD5zuqLP3cRPYs4DaT/M8K2WuHrzm0ad2d2Kq3qLuNABgx2hjDPS2j5BiP9Ngjviiw7beYiucVHzmKWIFM6kKXrGvv1EqnYrfRIp9e0r/LG7T8XmNvTBvRyKKdJcAohbZVPxoROH30US+yFvd9bQlHZezBUVXJo53LZ0FALj/te1888Frp6JmbXdXrJPezuDijA+O80bF3kkQXq/GXlEUvewzQGd8u3Z3XvvYi/NaR6p27lYUxZWB3qThPFM6vk7jn2xE08BStLrqqOvv3W8ukrEINgxM4rW++u7cfGc4Hfe0M+yEZB3FvlRW+eTkpJ2bEX2yle1j780V32phlpdU7OXN89y3AmSf0WtAXSyV+TjaPLS781uxT8YimNeZAgDsHG9MYM8U+ywt1GcM3DhPDOw9Zsf85yNv455X+m2P40qwzVwZhiu+qqp8IWddYy/XNskPnxW/iEYU7iXiNrA3S8UHqOWdF3idtsQ9ItbZs424RvewN3Jype3dA69vr/HscIsY8JWbyMeBrfHqK/b1TZadMF6j2Dtvd2c1F4VhoMed+S29mioeKi4zsliZUXsyhpjFZoublndGEckPv4TpQuOfbETTIKPYtyVjOGHfOQDs0/HDdsQH6iv2YoDrRbF33sfebY19/ZZFdn3snbaj8ZKKn/HpASTuwrrxJvBrg4Ghb3ZEMbdDq5lshGKvqip/X1LsZw4DpoG9++yYDbsmsHLV6/jib16wzbjSFXvJVPwgDZ5KZd6uyzIV33GNfeNT8QHvzvhmij1gn/E1U3hq/SB2OmxTaqdiiohmlryHfZMF9qyf/ZPrBrGxYsLqdV0mbnq4DfqCQKajgZ+t5IxGvU5a7RZsMkP8bMtnhW6eZ36v843borvNG15fb6LWM+wybc3w0o1gutP0gf3WrVtx/vnno7e3F5lMBocddhieffZZ/ntVVXHVVVdh4cKFSKfTOOGEE/DKK69UvUYul8NnP/tZzJ49G21tbXj/+9+PLVu2hP1Rmh7ZQPysQxYCAH733Ja6izndZT+8WrN6NfbiF79empbse0j3sfes2LszAnRvnufBtM6jGz1La4sJqaRO8NPEDxA3OyJ6YN+AGvvBiTzfoCHFfubAe9gLgQIL4Nyk4g9W5uSxbNHWBFLc1KpHLATzPHGxnLEYj74RKpmK3wR97AHRQM/5nFUolbnrfU1gL+k5MJ15eesIzv3Jalz+6zWO/q5ef3Ejei/7oqDYN4dxHmPZ7DbsMacNxbKKP6zZCsA/xR5orjr7okQZhb+u+MwTyHndvl19O8ueDEOxD8o8r16rO4bspqxITWA/wzcwRZrjyWbB0NAQjj32WMTjcdx111149dVX8b3vfQ/d3d38mGuvvRbXX389br75Zjz99NOYP38+TjnlFIyN6Wnil112GX7/+9/jV7/6FR577DGMj4/jrLPOQqlEN4KInSs+49QD56G3LYG+kSzurzitmjFYScX3+gBxQr2dPzZpxCKKZUqQDHp9lvX9UyiV+cPOe429TR97O/M8yZ1Wds7cLHjbfHLqFuvrFcV5+QZTM/1yxRc3T+ZUUvF3OFR//ICl4QNaSUmjWu4R4TLAa3b1OZRlsjhRhhjjQrr3psGJusey15c1zwsyFZ/NK4loxHM6p12mU9h4UezFBX/K4IVAqfjAul3aPb5teMrR3+np3DKBvf7MYWVavW3NFdgDwCkV1f71fm1tPGuaBvYy2Ray4owMTERgXRDsSjRF8jYbSLJGzV6w21zw2se+Xqs7hptNSKN44+Z5OF1pjiebBd/5znewePFi/PznP8e73/1uLF26FCeddBL23HNPAJpaf+ONN+KrX/0qzj77bBx00EG49dZbMTk5idtvvx0AMDIygp/+9Kf43ve+h5NPPhmHH344brvtNrz00ku4//77G/nxmgpVVTEyJafYJ2NRfOzduwMAbn18o+VxQ1yxDy+wr6fY+7Wgk+ljLwa4bl3x7cyPmKOq1edxam6T9WCel/ZJKeeO+C6zHFjQ41cf+5ypYh9+YL99tDpLgFT7mYGeiq8HCmkeSDi/x8eF78WGXZN1j9VTvOvPl/GKeV6Q/dLtHPEB+UBW72PfbKn4zq8nCyIiSm1wkHBhSDXdGKp8f5wu+p2k4vNnTl5X7JstFR/Q0/EZXnrYA5pBI+txHrRxphNYuztm6mlGKoB2d2zz1cmz2c7LIcUD3iAV+/oZDl772NdrdcdIuSgbqk3FpzURw93qOST++Mc/4rTTTsPf/d3f4eGHH8aiRYtw6aWX4h//8R8BAOvXr0d/fz9OPfVU/jfJZBLLly/H448/jksuuQTPPvssCoVC1TELFy7EQQcdhMcffxynnXaa6XvncjnkcvoCfnRU69teKBRQKLjvORs0bGxOxzieK/IveFvc/u/PfedC/PCvb2H1ugG8umUIe89rrzlmcFwLRrpS0dDOWUzRPsNUvljznhOVjYtELOJpPDFFm0CmCiXL1xmZ0D57PKpAUUsouJiYYxHts2SFzyL+/1RlkR6PmF8vRdXeM18sS33eicoEnIgqjs9PKqZN/uNZb9+PkUntvKXj7u6ZZGUhNpHz53s6ntXumWQsgp609pDdMZoNfQ7YNlQdhI1P5ZCMuFtMuZ0jiPBhir04hyYr66+JXO0cZ3dthyf0Z9q6nWN174EJdu9H68+XkcqcmzOZc/1ibFIbdzpuPZYItHk5V7SelwHdmyAeUZviO9BeCQyHJpzPK6NT7LxEUSxWPycSlTl5Iptvis/ZCHaNaUp9vWe1GSywV1T7ZyczYhubymNnpUxrVjqYNY+XufvgBW3oTscxzBVUb+sgQFtLFfMlTGRzKGSaY6MsV9C+3xHF+vutrxOd3RdmsPLDnkqm64SDNRALZKMwv8/YZuX4lH/fYeM9NJXX/j9msY6Msvm94G5+H6qshdsT1t8Jtik56eDcTRgynCayuWk/z8l+vqYO7NetW4cf/ehHuPzyy/H//t//w1NPPYXPfe5zSCaTuPDCC9Hfrzn7zptXvRM5b948bNyoKcn9/f1IJBKYNWtWzTHs78245pprcPXVV9f8/N5770Umk/H60QLnvvvuc3T8QBYAYogpKh66717IZEEfNCuCFwcjWPmbx/B3e9Tulr30VgRABNs3r8OqVW87Go9bXh5UAESxfdcgVq1aVfW7zeMAEINazNf8zgmjee11pvJF/OUvq0zP1fYp7Zg4yq7f640d2mfZ0tdf8xr33Xcf1q7Tzu+mDeuwatVbNX8/mNPGkMsXpMbw4lbt/Xb1b8OqVc48KN6qjHXDlj6sWrXV0d+KvDykvU5xatzVeXu18vfbdtRefzesGdBeb2J0BC8/8ziAGHaMTlle96B4bLN2rRl33Xs/ejxmezqdI4jw2dAfBaDg7VfWYNXW5wEAr1fuya3bd1ne41bX9uk+7W8B4ImX38Kq3FrL935xi3bszv6tWLVqs+VxWyv35mtr38Sq7BsSn8o5b40CQAzlfNbyM48XtGMKJRV//ssqWDVieWu9Nt4Nb7+JVVnrzx8Wg9u18Tz38uuYP/Kqo7/dOgEAMShqseq83HfffZgY0e6dJ55+Frl1zaOohsmayrUezzp75k/mtHP3+KOP4M10/WOHd2nv8cyal7BuVwSAgvWvvYRV21/0MPL6uJ2792qL4Jkp7Tny9qsvYlXfC94GUtbO0/0P/hXzm2RZvK1Pux6vv/IyVu16yfSYjWMAEMPwmLt1hsjIpHYOJga3A4jgzfUbsWrVeqm/3Tmg/e0Lzz+H4oba7+jooPZZnn7+BcS3rfE0TiPsHnp9k/Ye2zZvwqpVG2qOW1d5DqzbYP57O56vvP7gduvnyNiwdswTzzyLgsl5MOOtDdVroseffAYTb03veW5ysn6WHaOpA/tyuYwjjjgCK1euBAAcfvjheOWVV/CjH/0IF154IT/OWIurqqptfa7dMV/5yldw+eWX83+Pjo5i8eLFOPXUU9HZ2enm44RCoVDAfffdh1NOOQXxuLxp3ctbR4Hnn0Bvewpnnrlc6m969hvEBT9/Bs8NxfH99x6PDkMNzZ23PQfs3IWjDj8YK47YzdHncEvHW7vw3288h3RbB1asOKbqd89uHAJeehrdHW1YseI9rt9jLFvE1559ECoUnHzqabzFnsiLW0aANU+iqz2NFSuOd/U+6kv9+N+3X0TXrF6sWPEuANXX99E/rwW2b8WB++2DFcv3qPn7nWM5XP3cwyhBwYoVK2zfb+0DbwGb1mGvZUuwYsX+zgb7Uj9++faLaO/Wx+qG8ot9wOsvYeHcHlev07t+EP/5+jOIZ9qxYsWxrsfBKKzZBqx9GQvmzsbfve9wXP3c/SipCo458eRQuz387c5XgC36hskx71mOPea0uXott3MEET7ffumvAPI47YRjceBC7bnT8eYu/Gztc0i1dWLFiqOrjre7tm8/9DawQdtkLaS6sWLFUZbv/fp9bwKb12PvPZZixYr9LI978e438Ej/RixZtgdWnLaP488ow8NrdwKvPI85PbWfmTGeK+KrzzwIADjplNMs0/bv/82LwM5+HHLQAVhx9JJAxuuE1+57E3/bvh7zdqt/ns14fvMw8OJT6G7TnjPi9f/Nzhfx9tgADjz4UKw4bGEwg29y7v31i0B/PwplBaeffoZ0b/kvPX0/gDJOOelELOyuH9k//odX8eyuLViy5z54angrgCxOO+EYHLpbl/cPYMDz3P1SP575tbbhcMrxR+Owxd2exvNvLz+MybEcjjr2PThgQXOsi3+781lgaACHH3YIVhy+yPSYtdvHcP3Lq4FYAitWnOj6vVRVxRee0ALkw/bbE0/uXI858xZixYpDpP7+B28/DkyM49ij3o1j9uyt+f294y/ipaF+7LWff3OV8R566Z61wNYN2HvPZVhx+r41x297bAP+snkt5i9YhBUrDnb8fk/96TVg62Ycst9eWHHSXqbH/N/Ac3hzdBf2P+gQrHiH+TUz8seh54GBnfzfB8yAeY5ljtvR1IH9ggULcMABB1T9bP/998fvfvc7AMD8+fMBaKr8ggUL+DE7duzgKv78+fORz+cxNDRUpdrv2LEDxxxTHfiJJJNJJJO1klg8Hm+JxbDTcY7lNcV9VltC+u/es89c7D23HW/uGMcfX9yOjx+7rOr3wxU3zNkd6dDOWXtKu2b5klrznkVV291LxaOextMR0ReMRUTQbvJauUoCQ1sy5vq9Mknt78w+Szwe5zWtmaT5tc6ktN+XVUCJRG2NgFiJUsbFmDsz2nmfKpQ9nVvWpa495e571pXRDO6m8iVf7rmCqi0E04kY2tNJdGfiGJ4sYGiqjLld4c0DOwwO5iVEPH++VpnLZiqqqnJD03ndGX6tOvh3zfoet7q2U0Id4qbBqbrXn30X22y+i4m4towoq0pg91O+rH0P2xLWY2kX5uWyYv39YFVRVvNm2HRVrudE3vncWaycF+OcHY/Hkapcl2KA16XZGRE6DZSVqOkmvBnMnDSdtF8PMUEjW1Kxq1LTP68rE+g5dzt3n3jAfMSjL6FQUrGwp937M6SyplAVb2sqP2Hl/ql6c0Va+87lPK5XpvIlMGuRuV3aBlCuJP+avKOFxX3GvIbyJfh+ftk9xCwBUgnzdV+q4ulSgrt5ZLxSC9/dlrT8+7SLucroZVCYAfOc7OdravO8Y489Fm+8UZ3at3btWixZou1cLVu2DPPnz69KS8rn83j44Yd50P7Od74T8Xi86pi+vj68/PLLdQP7mQaru3LSmk5RFFxY2UX8nyc21vRFHq4sSmeF2O6uviu+P+Z58WiEm+pYuZVyEziXjvgA+CLE0hWfO7bXd8UH5MxtvPSx98s8j7cIdGk4yNvu+eWKb+gU0KiWd/0jRvO8mWuINVMYnSryhZ/oiu+l3Z1onjc8WcDIpHXNHrvHjG3UjHhthySDjHleLKLw9Pt6Bnr6c6A5aoL9cMU3u0a8q8oM7u/MDHwBeWfxUlnlwVq9lmkM1u5u52iOu8M3o3keoDmT33zeO7DyQwdjkU0mggxs7dGcrvgS7e6K5Zp1qxNEA9OetsoGjwMTNztHehmjZq9It7tzeY1HmadDnXZ3KRdzFe+UUmfNP1Np6sD+C1/4Ap544gmsXLkSb731Fm6//Xb853/+Jz7zmc8A0ALLyy67DCtXrsTvf/97vPzyy/j4xz+OTCaD8847DwDQ1dWFiy++GFdccQUeeOABPP/88zj//PNx8MEH4+STT27kx2sqeM/5tLMH0ofesRvakzGs2zmBv701UPU79lD12lbFCfVd8f1zQ+btUiwW12zCd+vuDti7PMv2sQfkHE29BPZ+tbtjbvbMadj9OHzqY185x8yddm5HpeXdaLjO+MwVnwcu5AA77RmoGN21J2NV33E2p7hp72N0Xt9Yp+Vdlre7s3PF127KYjm4e3JKaINphaIo/DzVCzSyhfobomHDFryjHgJ7szmb2t3prviA/DNB3KCycisXyVS+j5sGtfrXTCLqemM6DE47cD7OO3J3X14r0ZSBvXwf+1JZ9eTozwScTCLKVWcnrens2t2lJForeyVv1+7O48ato3Z3Du4jdk56WTcCWhNxHD/Zbr31VvzlL3/h//7yl7+M7u5uHHPMMdywzi/e9a534fe//z1++ctf4qCDDsK3vvUt3Hjjjfj7v//7qve/7LLLcOmll+KII47A1q1bce+996Kjo4Mfc8MNN+CDH/wgzj33XBx77LHIZDL405/+hGi0OXbsm4GhSs/5WW3O1PX2ZAwfrtTE3Lp6A/95qazyL3SYtchSir2LPu1G0jZ9UCc9Ks+AuDAzfw/2c6sJOSbUE8pMyl4WvExJm/DYZm6cL+C9KfaFkurLYiNbqA5uGtHyLlso8ZRsVu9Jiv30Z5C3uqueP1lwO1koOVabxg3fzw0D1mY89dRgkRhf+DW23R0gqNR1vh/N28fe+dw5Vee8uFksTzcGBcVeVtETN8Gl2t1Vzv3mSueSZlXrgyCMbB2nsA3GWN0+9vp338uzdEJYr7hpocfOG+tgYYQJCkE+7ws2mwvxmNd2d9o5qtfuzk12EXsmsPjCyYbKdMfxk23lypVIp7XF5erVq3HzzTfj2muvxezZs/GFL3zB9wGeddZZeOmll5DNZvHaa6/xVncMRVFw1VVXoa+vD9lsFg8//DAOOuigqmNSqRRuuukmDAwMYHJyEn/605+wePFi38faynjpOX/B0UsBAA+8th1bKg+3kakC2JrTSXq/V+oq9j4qNWwhZTWJT3hUngFhYWaxE5m3ScVXFIVP1jJBrifFPll/o0MWr33sM8LY/VDtjVkRczrDT8Vn2QHJWIRvLJBiP/0ZsAjs2dxTKquOg7bxyiKLBZObBqwV+3pqsAgLfoohpOLXU+wBcWO3Xip+5TvtYp4Lgs7KtXCj2GfrpeLP8D72U/lS1X0wlZe7P8WU43idXugMtgm9vTJP97Z5bFfSQiQCzArJFkr459ufw/8956xDT6GoLTytAlX2O+ad7SWFezKvr/PsxB4zuFpuITKmuWIf3NzKNmStBSJvmzcsFb+rTiq+m+wi9kxgG2kzueTIiOMIZ/PmzdhrL83Z8M4778Q555yDT33qU7jmmmvw6KOP+j5AIhxYKr6bevi95rbjPXvNRlkF/vfJTQD0jYKOZEyqTs0v2K5psazWLDT9XNDptU/mE5Evin28/mSnfx7r88sW3VKKPUs7d3F+2Of0qpTzEgaX3gSxaIQ/oPyoszcq9nPatUXbzhAV+/5KGv78rpSwcUUPsekOU+x7jYq98P10mqLJFHvmsF9PsedBo813MR6CYs8Wy3bzqYxKbedNEjYsRdWVYi9VYz8zNwHF+npAPuBivhaxiCLlom/cbJrdPoMCeyYcBLCp9/SGQfz5xT786K/OWiUXmGJf59opisLVcC/fj4mcPi/xun0Hc7JdGnwYNfZsPrStsXc5v7MNy3qp+PUEOStYeRZT7KnGXsfxk629vR0DA1ot9b333svr1FOpFKampvwdHREaunmeuzSyCyomer96apOWOjwRfn09UF1vbpwk/EzBlK6x92KeZ5eKzzMQrN+DPTDkUvHlamrNEBc3XpRyXrPmwZuAnfNJj2UBQK1iP7ezUmPfgMB+XqcQ2M/QxfpMwioVX9y8mnS4mGHB44ELtVZcG+sq9tX+ElbEHGweuoXNKXZlATIqdfOl4uuBvdPSCqbkpSgVv4bBCXeBPQu26qVyixifVbNnUCp+kDX2o5WOBk59e7gZnM33m6vhfij2iaiexSl5LspllW8iWQX2btL7nWJnnsfKBNzM77minjVTzzzPaXaRqqr82ddDNfY1OF49n3LKKfjkJz+Jww8/HGvXrsWZZ54JAHjllVewdOlSv8dHhASr4e2u8+Wrx0n7zcWi7jS2Dk/hzy/28bSbMB3xgerFWrZQqkrpzkoEwrLY1tj7EKCKCzNVVaEo1QsNuxp7QJ+s80X7BSNLZbJbyFu9TyIaQb5UxmS+hO6M45cA4M+GSCYRw9BkIRDFnqXCh6nYb6844s/vTPGHq5eau0ff2oXBcL3/CBcMVFoc9pgECplEFPlimasWsjDF/qBFmmK/sZ5iL1nXztKV2SI1CKRT8W2ynAC5DdEwYbWnpbKKyXzJURlSXcV+hqfiDxs6Pshmt8i4qosYn1VUY+8PrEuE06C2yMzzbMooUj64qY8LpYNpG7HHiIyXQ8pFer9T7LIG4g7KOY2wjWRF0bJ3rWBzsWxwrq2Jtf+mGvtaHG9Z/+AHP8DRRx+NnTt34ne/+x16e3sBAM8++yw+9rGP+T5AIhyGPTrYx6IR/P1RmtPqL1Zv8FSz74VIRK8rD1Kxt9vt9SNAZROtqpqnQdnV2APCpOzAPM9NKj6gG9d5UeyZN4GXEoY2H8bByBnOCTfPGw2vxl5X7JOeFftXt43iE7c+h/95szmCGsKawQlWs2sS2MeZWaX8YkZVVSEVX1Psd4zlLL8nbPPItsbeg6Ijy5R0jb3990OmhClM0vEoopW0Yafp+HI19jNTyRqsScWXdcW3r9EWMW58zaQa+yDb3bHvgtPAW1fs62dcpGzKKWUQa+zZfJItypmaimsyu1T8IINW3TzP/HyxNaSbjVtmoN2ejNUta5ExPRURszj0NoMU2DMcr567u7tx88031/z86quv9mVARGPgqfMeFPaPHLEYN973Jl7YMoJFb+wAUJtGGgbJuKYcG7/oXKnxYUFnlyLlj2KvjzNXLNVM/jLt+xyl4her1WmnZOJRDKPgqeUd+9t2D+eNbQpMOgh6rDBuBrFU/Il8CRO5oqd2hrKIqfhuFzsM1jZvu7VQSzQJunlebaDAggkn37VsoYxSZXG2qDuN7kwcw5MFbByYxP4LOmuOn5Jsd+fVXEkG3RXfrsa+9VLxFUVBRyqG4ckCxrIFzO9KSf9tXVf8GV62M2wM7GXN8xwr9tX35ExS7INMxWeK/VSl+4cxY9EKtjETs1Hskz7Ur4s19iwIV1VtbWa3ISqeM8t2dz5sPtihO/Pb1dg7H8OoRKs7QJi3JT8n21BJxCJ8vSdbAjETcLwqfeSRR+r+/vjjj3c9GKIxFEtl3pLCi8Le257EWYcuwP89txWrXuqvvF64qfiAFuiOoWii2Degj70PNfaA+YNTxgSK9yAN2BUf0DcxnKiIRnj7GA/dBJhiP+GDYm/MYmhPxpBJRDGZL2HHWA7LQgjsdwjmeVuGNB8Ttyoc2/mfLCmYypcQj4f//STksDLPA4Re9pIqJACM5bRFlqJoyveS3jYMTw5bB/aS7e50V/wAzfMcuuJbfT9UVfX1OeAXnSltk8WpM75cH/uZqWS5rrGXVHwZxmfVTDLPY9/9IMzz2Jq0XMlYtGoJZ8SufRsjXdmw9KvGXvwO5gr2gb2+gaRYblrYdV/yAzvzPCdrSCN6q7v66wyn5nliaVYqBIPBVsPxqvSEE06o+Zl4U5ZKdHJbjVEh/c9tjT3joqOX4v+e28r/3RNyKj5grabnPCrSImH0sVcUBYlYBPli2bx9n0yNvYMepHoQ61Kx5yqid/M8owribBwVxT6AGntAS8ffMDCJHaNZLJvd5vk97OCu+J0poZ2Xu88m/t32sSw62+TVQSJcrMzzAH3+cbKJxlrdtSdjUBQFS3oyeGHzsKWBnnNX/AAV+8oGhm0fexvDuEJJ5bWZzZKKD+jtB0cdpuLzTAZKxa9hyBDYy86ZsjXaDOOzaiYF9sEq9vp3YapQm7FoBbt+duaHfgSEE0JmZjwaQSyioFhWMVUooQv119J6qzvrz+W0bt8Ndhkq+hrS+cat3upOLtNK9lrw9XU8inQieIPBVsPxk21oaKjqfzt27MDdd9+Nd73rXbj33nuDGCMRMGJrupjH1nSHLu7Gobt18X93NyIV32JB46dSYxfY+9HHHrD+LOWyylPOpGrsHSj2bs9PxkV6sBGu2HvIdGBZEhMBuOIDwNwOLRjeOR68A52qqrw/8rzOlJ5e63IhJab09Y+Qg16zoqqqZR97QP9+OFnwsYUyMzFa2qs5XJq1vCuWynx+sVPsYyG0uxMXcvXQW7xZdBIR1OtmScUH9FRVthCWRd98qf0sM90VnxkCM90pKPM84/djRqXiV/qvB6HYjwnZK7I9ylVV5WORDey9lKpMGjIznZjd2ZnWOX09t+RtUvG9lFrJtLoDnM9VkzyzM8bNnimw13Esi3V1ddX87JRTTkEymcQXvvAFPPvss74MjAgPVovW3eZPWu6FRy/FFb95AUD4rviA9U6s7obsn3meVc9SPxR7QCwrqH4f8UGarLPYle1BKqaouk3Fb+NKubuAulRWeeDppXadlQT4qdiL6t4cbqAXfGA8NFngC4B5Piv2/SEaABLOmMiX+HU3CxT0e1z+u8aM89or6vCSXi3bZNNgrWIv1ivamudVTJGK5TDM8+rPC1bGqQzx57LmaGHAFHun5nlSfexnaCo+EyzmdiSxfTQn/TxwmoofiShIx6OYKpSgKLpL90wgTMVehpJg8Gb3/U4JZndumTDMS6l4FOO5otTzOScV2IfQ7q5Y3ywy4anGXi4V32nZkFialQzBh6DV8O3JNmfOHLzxxht+vRwRIkMT2q6aXw+kMw9ZwFWmBQ6MgPzCSuXOBtHH3jIV32fFvmCefSAeU+/v7SblXNVC3t35cWPoJSLWxHs5b1yx96PG3sQZnAf2IbS866+0uuttSyARiziuRTMi3q/stYnmY7DS6i4Vj5gGs0y5dtLHfkxIxQeAJUyx31Wr2Ivqpt18GY+Fp9jbpuLbtLsTfUlkzbjCQOxl74SpOqaCTg2pphuslGVhdxqAfHBYsKk5NoM9r3oyCd7hYCbAnNQDaXeX0xV72aBNdG63yz6180mSgWUFsjmVZc7I3GsymSFp4XlfDqidqJ1i76XribRiL9GmVEQsQQpj86PVcCyLvfjii1X/VlUVfX19+Pd//3cceuihvg2MCA+/W9Ol4lH890VHYM2mYbxj91m+vKbT9wfqKPYuFWkRPRXffCKa8KFWHLCe8Ni/FQWI1VlIyLa7E8+Vd8Xe3QTL6utjQstCN6T9dMU3yfKY28kC++AD4+2CI744DrcPMTGlcXsIGxOEOwZ4qzvzel1e9uKkxp4r9toiiyn220amkCuWqspNxDZqdgEwm3+aqt2dhfKTK/i3uesnrJe9U/O8+u3uZnYqPutjv7A7jec3DUvPmWyDyklgzzacZlIaPtB8ir1Mb3iGH47zvD1vZWPHSVq4TCq+uJGZLZY8Z4CaYbeRJWZ9OulOAOjt7jpta+ydlUWIz4MwWgK2Go7vksMOOwyKotT0aTzqqKPws5/9zLeBEeHBvnx+ps2/Y/dZDQnqgXoqdwB97E2C2FLFPAXwVisOWC9U85LKE3ettXnwsodbNKI4WtCIpD3Wtov19V7UNF8VexPXaV5jH4ZiLzjii+NwXWMv/B0p9s1LPeM8QNi8crCJNl4JGlmN/ez2BNoSUUzkS9gyNIU957TzY81MI63gfY4DUuyLpTJfsMu64lvNd3oP++ZxxAdExd6dK35987yZueDlin1l7pRVZllJiZPNZbapPZOM84BgA/txMbCXvXbCHGRnfsiDcA/fDzb/suvvxMU+L+Hen6rabC0jiCoPW8VeGF+xrNpumIjItrtzWhbBa+wTMV+8EqYbjgP79evXV/07Eolgzpw5SKXIXblV4Yq9R0f8ZkEPfoyu+D7W2NdxVBV3Dr32ObdLxbczupN1rOYLeQ/nhqUjelXsvZ4zXn/sg2KfNfEdmBtijT0Lvpli7zXtTFwg9YcwfsId9YzzAH3zykm7u3FD2qiiKNi9tw2v9Y1i48BEVWAv2+oOCN4VXyw38OqK7+czwE86mSv+lMsaexPzvJTD9NbpRLZQ4ufGaSo+C1LtzNdEMlyxn1mBvWxGoBtExV424GNzUDSiIGJTEuFHCrfR7FdX7O3Ph13/eEDzb2CdkYJQpEWzQauAXdx4KJTKjoQf1uWjy7bG3llwPsnnPb3dXb5URqmszqhSGCscr6CXLFlS87Ph4WEK7FsY5h7rVyp+o9HTlc2DYbep5iL1auwnKwvoiOJ9AWnt8C+XfZCQrLE3qyV3SsajeZ4fjviAf4q9qqpVmREMloofhiv+dqHVnTYOpjK4dcUn87xWoF4Pe8Cdn8WYwTwP0JzxX+sbramz560vJb6LsQDrbAF9MyoqUaKju+JbBPbNmorvVrHPW8/bThfL0wkmVsQiCs+wkq6xd5GKzzajrb6v05WgFPtsoVS1WWBlUmyEzUH1yhMZ9cQZWYxiRMpBtxKZdndsnPliOZCWd6Wy3v7TahxiwF8oqoCDW5wr9g7M82TS/cVUfDGrLBdQuUKr4fjp9p3vfAd33HEH//e5556Lnp4eLFq0CC+88IKvgyPCgbniN8LBPgisFftwUvGZMtaWiHk2aEraZB/Y9XZNSLri6z3svQT2LKB2aZ7HWwR6VOwrE7vXB2G1oWBtKv7gRD6QFEQRPRU/WRlH/XZedogbArvGgx8/4Q67VHx2j7vtY8/QnfGrA3tHin0l5bUYkLmT2OrObj61Sz/3s+Wpn7hxxS+X9U4mdqn4xtLJ6Q77/nRnEo5bQxYkUqSNsPM/e6bV2Aek2Bu/B/KKfX2HdxFfauxrFHt58zzZNVyQ5nDidbMaRzSi8JaRTq+zbp5nU2NfuRZlVe45IpqpiuUKQWx+tCKOI5yf/OQnWLx4MQDgvvvuw3333Ye7774bZ5xxBr70pS/5PkAieLgr/jTZbbZS7LMF/xZ19XZ7+ULUoyM+YN2+yUxJNiNu0/6JYdbWzSltHgPqCUO9mutxJL1tMDBEpUs8z93pOFcEdgWs2rNU/LkGxd59H/vqcxKGASDhnIGKK36PRaCQ8ZCK35ESA3vWy7665V09JdiIF9dkGVgGkF0aPuAgFd/DPBcETNFyYp4nBjtm54adC9nF8nSCrWl62uKOe4EXbFKTzThyj14kohG8e1mvw5G2NkEp9sbMlam8pCu+ZA97wHvArKqqXmOfdFFjLxnY+5FZYAVrdQdYZ6goisI3b53O8U7b3QFyaxt9szfGyxUA95mM0w3HK+i+vj4e2P/5z3/Gueeei1NPPRVLly7FkUce6fsAieAZrqTL2NXBtAqWir0PwSuj3mQ7ISj2XklaKLT5wGrsPSj2LKB2aZ43yRV7bxsiXksCGGzhbDQUjEQUzOlIom8kix1jOV7DGQTGVHzPir3h7/pHsthtVsbDCFufV7eNYud4Dsv3mdPooXAGuSt+/cDemXmedWC/ccCYii+v2McielaQU9dkGaYEdcYOq9Ilhp9ZW37iRrEXN1DN5u1kvHqx7NYUtRURO/3Uy64zw00q/sXvWYbzj9q96TJBgsZLj/N61Cj2Dl3xZa5d0uGGj5FcUavpBsxq7GXa3cndZ043ppzAzpd9dyUF+ZKz66yqquNUfEA7d+02WZtTJpkS+WKZWt5VcDzTz5o1C5s3bwYA3H333Tj55JMBaBexVKKT2oroqfjTW7H31TyvTr9S4y6uF7jLc8nis9hsUnA1TdIV320Pe0BUEb0p9l5rpLhi79E8r56hoG6gF5zinS2UuP9FEDX2ANBHzvj4x/95Bh//+VPYOjzV6KFw9FR8q3Z3zrNjeI19Ul9ksVT8LUOTXO0CzLtBWCEqm6UAlGGxZ7EdVhuhjJyPWVt+4qaPPZtnk7GIqVGYmI7sdiOwVWGBfU8m4Vjx5HXaDjdCmu2eCoPgFPvq74HsmqLoYFPGqxIuChiZGld8+/ORr2wy2ir2Dl7TKeJGSN3uSpJeTSK5ot7NxC4VX1F01d2JYs/OjVWL65mK41X82WefjfPOOw+nnHIKBgYGcMYZZwAA1qxZg7322sv3ARLBMzTdAnsTxV5VVV/rK+vtovplAgdYGyDx+iw7MynJHfWcj+Z5jVbs23xS7Ou1xppTqbPfEWDLO9ZOLxGLoLvif+Fdsa/U5Ea1BdBMb3lXLqvYNjIFVQXe2jHe6OFw7Fzx0y4MInmNvbDIWtCZQiIWQaGkVm3yTPHAXr7dHWDv5eGGScEoyY5Wd8UfzxWlN0d4VoXFeYkIZoMzzRlfLC902udar7End207nARjTjCm4ss+7wqOUvG9BczihiNzYneirrOgN2mn2MeCU+wLkutI3v2gKD+/M7U+osBWgQfEDlD2n9PYTtpJCcRMwPHT7YYbbsA///M/44ADDsB9992H9natRU5fXx8uvfRS3wdIBEu2UOITW3fb9EjFN1PsRcXbiyrNSAsPhbJhIeZX2zbAOrU0XyfoFNHb0diZ5/kR2Htrdzcu9Cb1gjgO47VxQl3FvuKMH2Rg3y+k4bPddK+KPXsgzq40MZnpiv1YtshdgY0Gco3EzhXfqSEYUNvuDtCCv917auvsnZjniYvoQtn/AJL5CMjMC9Kp+E3axx6o7t9dD5lMBrvzMV0ZEgyB00ImmYyJoJN07plOUK0u3Sr2TsoovNbYs01VUYhw8pqyY+VBawDGcHY97Bks8C86mN+5cV46LlWepZfQOqixd9FmcCbgeAUdj8fxxS9+sebnl112mR/jIUKGPQCjEQUdPgSizYBZjb04Wfip2LPXFlUTXxV73ovY3BXf1jxPMlXOn1R8ppS7ewD5tSEi/v1UoeT69ep1CmCp+DuDDOxHquvrtbFo16dUVlEslR2ni7IFx5yUis0TCq/hn6mMTOnK0OYmCeyzhRL/DlmZ57W5+K6ZmecBwJKeDN7aMY6NA5M4bm82hkpmh8QcxoyVAD0V1k+MaZf1kHfFb66gLRGLIBWPIFsoYzRbQJdEh5opmcA+HsFYzvp8TFfErhLsvlFV7frbbV4zQ7F4k90jzUjColTQK2M5t4F9eO3uWKmfuOHoJDtE1hXfacaJE9i60M4oMu6ipekIM85LyQmGuiBn/zlZVmi6cu6D7BzQirheQb/66qvYtGkT8vl81c/f//73ex4UER7DrIe95K5aK2Cm2LNUdkVx5nZrhbg4mCqUqhadkz65uwPWqaWyJlCOzfM8KFls59prH/s2jxsiyVgEiqIt5CbyRdeBfa5ODRxrebczQFd5FnTP69IDe3FTKlsso91xYK/dB3Mqfn99I81TV94IxMB+00BzBPYsDT8etd5sFVXIclk1rbE2YtbuDtDr7DcKir0T87xIREE0oqBUVgNxxp9ykIrPU4Mt+9g3Z2APaKp9tpCTdsafkpizZ2ove7G8UMy4msqX7AN7Uuyl4e3uAk7Fl1VimaJsFywDfqTi1wo4Tmq9ZV3xkwEGrQVJxd5VKj5X7OXWX06yi9jcx9aKSY/XcrrheMW7bt06fOhDH8JLL70ERVF4ahMLCslAr7XQ3WOnRxo+YK7Y83ZusfomIbJEKy028sVyzU4q2030o91d0mKhKt3HXtL0xJc+9vFY5b1U5ItlqYerCFPsMx4Ve0VR0JaIYTxX1F6zw93r1DsnczpCSMXnir1uoFbVFkbCPdaIqNiL7zFTqQrsm0SxHxzX1UaruSojqJDZYsk2TT1XLHFVrd2g2C+dzVLx9c/PgmnZlPVYgIG9vzX2parjmomOVAw7x3LSBnrZgv15mfGp+G1xxKIRJKIR5Evas3qWzd/y4JBq7G1JSmYEOoV9B1gWi9NUfBnFnqu8LrNZJkwyDNMOAkyn7e6CVezrjyHmouSCO+JLK/bOU/HZBneQ56gVcbwl+fnPfx7Lli3D9u3bkclk8Morr+CRRx7BEUccgb/+9a8BDJEIEqbYTxfjPMBCsffROI/BJxNDOqy/ir15aqlsu7uEZAoVV388nB8xa8FNL3u/FHtAX+w6MRczomcx1HPFD77Gfp6Qii8aYrmpszcG9tvHcoE4mbcKw1N6xtnmwUmpGtygGai0urNyxAeqlXSZdHyxbts4L7EaezFjwUmNPaAvDANNxY9L1NhblC4xmrWPPaAvgEennCn29UoUEjalCdMVbp5XWdewOVzK1KyiSjotc5qJ6BmB/n7vmWLPNtCdmudJtbtz0JrODDPFns0rMusf2bEGGbSy62Znnie7jhRxGtg7MQaeMnRQolT8ahzPXKtXr8Y3v/lNzJkzB5FIBJFIBO95z3twzTXX4HOf+1wQYyQCROz3Ol0wM+EIon+xVY2Wr4q9haFIXrbGXtIVuV4QK0siFuFlDm4C6kmf2t0B+i6623p/oP5mEDPP2zWe82TQVw/ew15IxQfsW3pZUSyVUayMtTcFnj69azy4zYlmR1Tsx3JFvtHZSOyM8wBtg8dqY9EMVl/fltAdnBlLWSr+4AS/l/VUfLn5wE0NpizGnsX1aNU+9oDzXvZTefssK/78mGEpqrzdXeU75KSXPaXiyxN0uztW8hZIuzuhjZybDV3WnrfdTLGX2EiTXcOlAvwO50tyLffcmCSOVq6hfCq+nGKvqmrNpoqXdnf//eg6nPS9v+LHD7/t+G+bFcczV6lU4k74s2fPxrZt2wAAS5YswRtvvOHv6IjA0RX76ZOKb9Y2IwilRqxzFQlGsXfZxz7EdneANwO9CRPXbvfj8ObQD9Tf7JjdnoSiAMWyisHJfM3v/UB0xRdJunSAFRX+ZASYUzFmm8np+CMGdbQZ0vEHbVrdMZzc42Mmre4Yi2alEY0oyBbKvLTEqedGLCDlDnBqnqcdky+aL9abtY89oG+uD0nOJzJZFTMxFV80n2TnlD2X5NzKKRVfFtE8z89sJzZfzWnXNtBln3V6RwN5F3bA3feDCziieZ6DDSTuSC/piu8mC9J2DEW5jRDZ7koiTLHvSkum4kuq7rliGUxLSRtc8d1cx76RLN7eOdEUm/p+4TjKOeigg/Diiy8CAI488khce+21+Nvf/oZvfvOb2GOPPXwfIBEsw9O6xr7WPM9LqrnV+xgnXH/72Nu44tulUMXkFtx+uOIDehq9GwM9ft58yHTgruE5P1Lxa8cTj0bQU1k0BpGOr6oqtlded54hsE/ZpBtbId6nsYieCTCTW941Y2Bv18Oe4aSXvVmrO0Y8GsGibs1NkRnoyaR5V71GJQvASTskWSYlaskZ4kanmVN3s7riA3qGxq5xucBexuDQrkvAdETs9NOZYqm68ptgpNjLI54jPzf1WCo+y4yTDWqZYi9TRiGaKrpRetnaorrdnXyAKbsJkQqyxl5yc4F1iCg4CJy5eZ5DV3y7cyfeC5m49z72kz6WgDYLjmeuK6+8EuXKw/vb3/42Nm7ciOOOOw6rVq3C97//fd8HSATLEHPFn0ap+GY7f3r/Yj9T8c3r9vztY2+ehsUmZDtzq0SIrviAEGzk3Dwo/ct0YJsDE76k4pvfM6z+b2cAqexDkwWeqje3s7rW2sxDQgbRQDKi6JkA/TPYGd9Yz9wMgT0zz6uXig/o3xOpVHyu2Jsvspb0anX2Gyt19k7NNOOSJp1ucOKKX2UuabJADOI54BdsPpEtjZmSyGRwYkg1XRDr65n5pNWz2gwnvdBnOuL3zc+WdzWKveTGVEEyUAW04J+Z7LlxU58wKR10Uh6lm+fVn9eCrB9ngbpda0eWveKojz1rdyer2EvOVWyjNxGN8A0cJ94GRiZ8Mm1uJhx/ktNOO43/9x577IFXX30Vg4ODmDVrFk/LJ1qHYaEtzHTBLC0nEPM8i13CYBR7Qyq+ZNsmvU2JZGDv8fywzYypggfF3ofzpvf5dq/Y52w2O+Z2pvB6/xh2BNALnqXH97Qlau5Zs64PMujlFto9Ma+yYdA3g3vZM8W+py2BwYl8U/Sy54q9RQ97RtpJKn5O+5xW7fOW9Gbw6JvABqbYS/RIF2EL5GBS8at7FtdDXNDnCmWgOtklkOeAX7AgRjqwl2l359KPo5XRW93pAYUTRY/3QqdUfFvE71u+WAas/T4dweqz2aZ2VjJgc3rt0vEoxnJFV2q4mdLrzKSx8a74shshrlLxHba7k81EnOLPA+G8s/JEF5lJM1qx//znP2/5u56eHvT19eHEE0/0ZVBEeAxNxxp7kx1OUa30C1tXfF8Ue/PAXL6PvfaAs9tNZzvWXpWsjEvFvlRW+Rj8OG9uxyFiq9i3B9fybruJIz7Dbf9do9mWrtjP3MCe1dUdvKgLQJMo9hVXfDvFPuOg7MWqhz1DN9Bjir2zDJ4gXfG5Yi8xFkVR6qafN3Mf+9kdLBXfWWBPNfbVMI+KWcL3x4mS6kT1nelEIoqwqeenYl/tiu+03Z1stkXSg+mamdLrxMRNtoe8lUmzH/BU/Fj9jRDu1eQkFd9luzu7dY1Z+1O3ayJAL1ObToq99Mz1P//zP/jmN79p+rtt27bhhBNOwPz5830bGBEOw9PRFb8yQRTLKoqViSuI2kqr2ifdVMUPV/z6Nfa+9bH32TzPaUqUWCfsi2Kf9K7Y2wU3TE3YGUBgrxvn1Uogbutm+TWOscBee+2ZHNgzxb65AntWY19f/nJknpezNs8DgCUssDfW2Eub5wXniu+kjz1QP5j1yyQ0CGYzxX5Mssaep+JbPwNmYio+W9P0CGsaJ3XKeUrFd4RsVqAs+WKZ369z2rXNZ9mArejAPA/wluZurtjr3ze7bjlcsbersbcwafYD+T72zud39myVT8WXW9eYmammPV1HVgLafM8Et0hvUfzxj3/E6aefjt7eXnzmM5/hP2dK/Zw5c3DXXXcFMkgiOIZ5jf30U+wBbYKNRSPB9rEP1BXfot1dSe7z6DutsuZ5XgN7d/3jWX19LKL4svnih2Jvd054L/sx/wNjq1Z34nictr8xuvyz1+6nVHwcVAnstw1PoVAqN3RRL2ue56QDhZ1iz2vsd01CVVXdmK1O0Cjiph2SLE5c8YGKCpctmn4/mtk8b3Z7dQvNSKT+gt+ZYj9zUvEHWY19m76mcbIJJlt3TGgkYhFMFUq+bR6NC4a3omKvqir3TLCCp+JH5K6dF6V3wsRLSfwu5orlunNWXlKxT7nsgiODrHmerFeTCCuncOqKb7euMfNc8dLuzqy7QasjPXMdd9xx+PWvf40rrrgCv/zlLwEA/f39OPHEE9HT04N77rkHbW1tgQ2U8B9VVTE8pRvNTBfEOnH2sMkZgho/EPugMlRV9dXd3Up9ku2BKrajqQc/Px4XM27bzIn19XYPb2fj8FBjb1PuwHrsBuGKXy8Vn5vnuXTFTxpr7EeyvrYqaiVYYL/X3HYkYxGUVS24bxT5YpkbR8mm4k85cMXvsFDsd+/RAvuxXBFDkwUeNMpuhMYrC+mijUrlBjYW2YVX3VT8Jg7seyueCsWyWtOtwQw2x8rV2M8cxX7IxDfISTozMwiTVX1nOn73smdp+JlEtMpxXmbjoFB2lm3hJc2drVnMXPEBe4VdV+zrz7FBtrtjgo/dJpbTGntVVV2n4tua5/HSLLMSCOf3IHs9P9osNwuOnm5nnnkmfvazn+ETn/gEbrnlFpx44ono7OzEPffcw3vbE63DaLaIUmUinE6KfSSi8B1GNmEHqdhX1/KXwWIkXxV7w0PCcR97WfM83/rYu1Ps/aivF8fhxRVf9x2wScUPwBWfpccbe9gDHhT7yj3A7lu2MZEvlrnXxkyiVFZ5EN2difPgtpHp+GKrLjulQ293512xT8WjWFDJ4Fi/a4Lf+7IqebCp+M5Km2RS8e26iTSCZCzKr7lMnb1MS8KZmIrPvkNixkvKQXBErvjOcKPm1oPNyR2pWNV6RGpTJsRUfDOlN2qy9rRCtt1dkDX2Ts3zZK/xVKHEN3n9Ns+bNDPP8+M6+iDENQuOZ67zzjsP3/ve93DxxRejvb0d9913Hzo7O4MYGxEwrBYtHY82Zc2hF4yLO9lA2AlmfezFNDLZ+tR66DX25q74dru9soo9C/q83gds99ppCryfjvjiODz1sec16VaKfSUVfzTnu+Ldz3rYm6Ti6+3uHNbYGzofJGMRzK6ohDOxzl5sddeVbo7AfmBcd/S2S8XOOAhW7GrsAV21X7t9jP9Mdg7TF37+fg/KgqmmdCp+nWC2mc3zAPDvo8xmIfWxN4d5VHSbKPZO3MopsJdDdo0hC3NT70jFEXfYks7ppgxXel25qZuXXMo648u64gfZ7k62HCBeMdeTNc9jre5iEUX6GWLV2tmInsFlkorv8Dqqqupr6WyzIP1JDj/88KoU2Xg8juHh4Ron/Oeee86/0RGBMjwNHfEZyUobE67YB+GKb2JqIqpLdgtzGdh4RSNAQOxjL+eKL9/H3msqvjvFnu2a+q/Ye2l3Z6PYVxTvqUIJ47kiOiRTzmTgNfb1FHuHKhz/DgjXeH5XCrvG8+gfncIBC2fWBi1Ld25LRBGPRrC4CQL7Qcn6esDZd81OsQc0Z/wn1w/ijX49sJd3xa/0OfZZsRfnVtlNP7ZINWvx1syp+IBWZ//2zgnsGrc30JPrYz/zXPHZuqZHqLF3EtgXHKq+M52Ez+Z5omIPaHPQuGRLOqft7lgwyTrGOMFK6U3FoxjNFm03XN20u5PxGXCCvolV/zXZNZYttdJb3cWlxyu7CclEo7RJYO+0XCFfKvPPNJ0Ue+lV9Ac/+MGqf3/gAx/weyxEyLCUta5pVF/PsFTsAzbP4y1QfNr9E8ebL5URr8yRsgtUNiGXVW3RHTPZyRbNsvwyz3NeY+/vrilT7L3Updkp9ulEFB3JGMZyRewYy/kW2OeKJR7gmQX2bhV7M7Ot+Z1pvLx1FH0zULFngT1Lf2aKdSN72Q9UWt3JBfby3zWWSVSv3nH3ioHea32jALS5Iyq5OcnMqgo+19iLny0lOXfXC2Z529MmzVCb3cGc8R2k4tetsXdXttPKmCn2Ge6HQ+3u/IapuX4p9npgr81VLLB3cu2ka+wd3Bci9ZRe9pp2AarsfcbKSMqqdo79XMPq5nlyJsyy11ivr5dfz1llpxqZ4t0IvNfYTwqZpTLtVFsF6bP+jW98I8hxEA1gOiv2xvQl2b7vrt5DWHxOmhiqeEHczc0VyogntIeo/nnkJmRAS1MzO7xQUsHW47KLZyvaHDh1i0zm/D1vftbY19vsmNOR1AL70Rz2nOOPzwgz40vEIqbeF0mXir3+eUTFfua2vDO242mGVHwWlPTatLoD3AX29VLxWS/71yuKvZPsHWa+5KTPsQxclY7LZ0BZfT9UVW16xX5Ou7xvh965gFLxRYbqtLuTcsWnGntH+K/Ys1R8ba5inTlkFPsiv3aSNfYujWjrKb0pySwA6VR8YU2WLfgb2OsdIPztYy9T+mUkJZmKb97H3t08xzI6k7GIqejVqkyfT0I4xsw9drpgrLPU06qD7WPvt/IcjSj8ISUuVJ32sQesd1vFh5rX85N26UY/wSdrnxR7tsHgocZeZjNoTgAt7/qFNHyzNDavNfbiwmBBVxoASLGHrlhvGmh8YC+j2KcdpOKPSaTis5Z37LzI1rQDQLwSdDNHcb+YLDj33rAKZsX5r1kDe1ZjL6XY5yUU+xmWip8tlPjCf5bwHXLiLM5V3ya9R5oN/13xK4p9Za7i7d4krl3eoWLvh9JbU2MvmQUgXd8eVXjmlN919vLmec7MUWVKv4wkZc3zTDY0026vI1uvTyNHfIAC+xnN0DTsYc+oVez9MYcTMUvF91t5BsRNCv19ZNvdxQSVy2pSZudIUbwveLlpXaMVe2bi50Gxz0ko9nMrqfI7JRbistRzxBfH43SxPmXio8DeY/sM7GVvDOwXz9IC29FsESMN6hIg28Me0LwBALlgZTynfR6ZwJ7hZK7UXfGDScV3ssnAg1nDIk/8vvipevkJ2yi0c8VXVVWyj/3McsVnWYjRiFKVBuzEWZwH9j545MwEEpV7zK/A3tiak6fLS6ixTLGXVV/dpuIzpTcVry1XSkuY55XLKp8r7YJqRdEN6PxueSe/ueDMHJX5DzgK7GNywXm9PvYyWR1m4/TLtLlZoMB+BjMykxT7AFLxzVQAv5VnQDCDqnyWsqpPsHafR1EU21Q50SnaqzFLutJbdMKhUh6YYu/BPE+vx7U+x8wZ38/AngXZrJ2eEfeKfe1GBWtxRoq99n1mgVWj0vEHK6ZprKd5PdKSqfiFUplfe6s+9trv4uhtq3USl8FpOyRZzBZxdrC535ihxOY5RWleY7TZ7Sywr2+ely+V9fKpeqn4LlNUWxWW8TIrU23aJWueVyrrZWmUii9HwudWl2OCKz4gn9oujiHhNBXfcUBonZmZkthEKgiZTTKZIW4DVzvyRbnNBac19uOuAnun7e6EGvvKPVIqq47uw+noiA9QYD+jmYmKfdB97P2usQf0CY8F5mJ8LmMCZZdG5ZdxHuDetM53V/zKOAol1bWSwLM86twzvOVdCyj2ORPFnrXTm8k19uL81+g6e3eu+HYuwvrmlt33S1TtncwHbOFXDEyxd5HSWaPY65u7fjpL+4ke2NefT7JCkCOVij9DzPOGLcQK3sfeJjASn5GUii+H/+3uDK74TowPK7syzMzTjqSDTA4R3p7XZJ0nkx0irklkTBqDanknW7rgOBXfxXpONruI19gL854ovjg5R9Oxhz1Agf2MhtXYd09nxb7yJdfriwOusffZFR+o3cksCmtnmYcCe/BaB/b2Aawsbk3rJrjTqU+p+MKk71a1l9nwYKp6IDX2Jj3sAQ+KPXf5F13xtfcYzxW5UjJTYOn2TLEHGh/YO3HFb5P0s2A1q6l4xHYBt6RioAc4U+xZyU/B7xp7toB2MBYr5SeIzV2/mS2k4quq9SYJe+bEIkrdazrTUvEHLQL7DM+uszE0EwP7Js3qaDaCa3fHFHt58zzdDC6cGvt6in298ToN7J20a3SC7PmyW0Ma4TX2TszzpF3xa7O4tM1a7b+dXMsJE4f96YDUp/n+978v/YKf+9znXA+GCJeZ4Ipf0+7OR/M8s1T8SZ8DVEDcpKhW7GVTSnkaVdF8ocgDPh/OTcaleR57UGZ8Uuxj0QgSsQjyxTIm8iV0Z+z/RqQouN7W2wxiveyZk70fsFT8eX7X2OdrNyrakjF0pmIYzRbRP5L1rWVfK2BMxQfQ8F72TlzxZVPx9bRI+2tbrdi7ccX3V7H3kopv/H6IJUfNCiuFKJRUjEwVLDfdZerrgZnnij/EUvHbqu91vUa5/nNJzDiJS6q+Mx2nadp21Lriy6vqzLzz/7f33mFyVFf6/1ude6LCSJoZBSSBiJIIAhMNskECRDRegw32gsMaG4NhwWubr9cgnHACHFl7vV7MrsFg/wAvNrIJIiMMAiSQCCIpSyNpRprcuer3R/W9VV1d1V2xu6v6fJ6Hx55RT3d1hXvvue857zHrj2A3YOaKvc64ZGazgJVSRkKCqW4fdr0AqpE1bZ5nrcaezzlWMq0i5r6jnu+KIAhIRMJI5QoWFXvr84sfMHXWb7vtNlNvJggCBfY+ohkUe56Kn3NfrdFz4hxzOUAFyvt7so8zm1JabeJ1NRW/OJCzFPhqpiwMtxV79l7ZvGjLGV8dFFRrdwe4m4q/q7hJ4Lpir9PuDpCd8YfTI+gbTmPetHarh+tbtO3ugPr2si+IEgaLx2QlFT+TF1EQJcOe81ozqkrMViv2jeCK78Q8r0yxr+6ZUW8S0TDfaOsfzRgH9myTrsp5MauCBQVWXqh9ftQBnCRJhvMmUyTDJgMuwkNXfJaKbzLgA1QBs2lXfHtzqVJyqafYV88wMNvqjr+nSWM5q3BPArPt7qzW2HvRxz6nnxWbiIYsB/aVrqOfMfVtNm7c6PVxEHVgqKkUe/dUaQZbLGQLIvIFEZFwyCPFXj8V3+wmhdlUfDP1+tVQL8BT2YLpiWvcA9PBllgE+8Zztpzx1ZNDZcVeDuyHUjmkcwXHmyOSJJW0u9ODfYbVhZQ6FV+ddN/dmcCGXSNNZ6Cnp9jXMxV/33gWLPvazJisVhnGs3nDbAsrrYdm2ayxj1hUdMyiLOIsBPaGNfaNn4oPyOn4w+k89oxkccBU/dekim0Aqyv2pdleQYdlvGg3RNgGiCjJ87XRPcDGVErDN4/7gX1xwzWhmJoC5oJa3tHArHle1N7zUUnpNVVjX5D/zXRgb6EDihX4BkO48jhit8bejnleQZT4elqPcYNsCfla5qyl4rOSCqqxJ4JAriBipPjwBVKx1wyunpjnqQaWdPH9vXDF16aWsnHL7KTAB2WDiZcr9i6kqMYiIf55rAe1Gey0R6kGb73nQLGPhUMVlZvOZJRfBzec8QfHc3yyNXLFt6syKCpf6XVmGwjNZqBXKbDfPphC3mWH92ooQUnUlOIUj4TAbs1KC74RC8/WbJs19l654iuLOOcmTMoc0NjLHjMGeqxW3EoqfqWa/aDAshAntegr9kCp8aCWnEkzMULBc8XeQro8K6Uw38e+OJdaLFWppPSaCezV6wszmGmhZ4esyY0QPr6bLLVy0u4OqKzaG2Vx8fNu4VqON3ONvZZt27bhwQcfxJYtW5DNlrZlufXWW105MMJbWH29IJQubINCIqJV7N1f1KnfK5UtoC0e8aiPfakCxcY8s9+lmmutm6n4gLwIH0rl+G6oGSq5zDo5DqB6DbIeZlrdAXL50ZS2OLYPprBnNMNrtO3C1PpJrTHDTSheZmLVFV/l8j+i+n13k7a8U1zxlSBganucezPsHEo7vp5WGBg174gPyPdeSyyC0Uy+4j1uxchoYksU7fEIRjJ5i674xVR81wN7F1PxPTBQ9YIpZgJ7NmZXOS9srBAlIC9KgVeiWSr+RM0zFA2HEAkJyIsSUrkCOqG/5jHbW5xQiLm4qZcviPyZ5+Z5FoJaqxszfNPAchcfM+3uqtfYWz1Ot2vs+fky3cfe3DUesWGepx6XM3kRRjYzRr4rcRvX0gshrhGw/G1WrlyJc889F3PmzMGGDRswf/58bNq0CZIk4aijjvLiGAkPYG1hOhJRw9pMP1Om2PNFnXuBoyAISEZLDTvGbChM1dD2IrYa2FczPmEBoltlCi2xMIZSOUsGepVcZu3CNlfGbLji6/V8N2JqhxzYu2Gg11fFOE8+JrbRY7XGXr8cpYe3vEtZej8/ky+IPF1QvbEZCgmYOTGJ9/aMYcve8ZoG9opxnvkMqmQsXDWw52ZUJtQTQRCwX1cL1m8ftumK75F5ni1XfJ+m4rfJ179SBpBinld5zFZvTGbyYuCV6H2qPvZakrEwRtL5igEiKfbWiblonjeqyq5jaq8ZBZzBunJELKbiW1XsK7VJM5M2n7UoNFk5B1bImswcYBuCZq/xmI3a9VBIQCwcQrYgGn7PbF4xNW6JltfYA9bOkRdCXCNgefS6/vrrcd1112H9+vVIJBK47777sHXrVpxyyin42Mc+5sUxEh6wL8D19UD54o4Fr24bJ2ndStkC213FXpOKLwklv69GtEo7mozrir05t241lVxm7R+HfcVe3fO6GqzOfo8LLe928R72xq7odhV7rvJp7hum2Pe56Ozf6LBeyQDQoVEV6lVnv9dCqzuGmS4UVo2MWMs7K9kziit+/RX7mCbDieFFZxQvMJOKnzapNKkX7FY3Av0IS8XXKvaAEhxVelYUBTN4YodXxAw20uzAlN54JMTf14pazVLFzWZc2DWlY0qvrmJvoj2fZfM8r9rdsQwVlxV7liVmZjNZjdGmLEO9WaKdExI21kVBVewtz3BvvvkmLr30UgBAJBJBKpVCW1sbvvWtb+EHP/iB6wdIeANT7DsDWF8PlCr2+YLsGg24n4apbZfCd3I96WNfmopvdlKoliqXNgj47MJ2ac0q9gVR4hOrm+6kzMBwzEaNvSXFnrW8c6HGvloPe/mYSk1mzMKvs7bGvgkVe5aG3xaPlNWz1yuwHxhjqfjVW90xzGxejVgwzwOAz540B6cfNg1nL+g1fRysNVjeZcXejqmmshFq4Irf6Kn4vJd91vA1ZtvdMRUMaA5nfKbYa2vsAXMtw3iKNLW6M43VVmiV0PawB/S7DxmRt6zYF1Vei5v/RgZugNn7zFpmiNJa2WVXfJOKvWLAbLbGnglcFgN7TXaqFubbFAkJZetfOy0BFa+EJlfsW1tbkcnIC9je3l689957/N/6+/vdOzLCU4Lcwx4orbFXL2jcTsPk9V9ZjWLvRWBfHLDU7e7MUL3G3t1UfEUZMTfAqlPlXVXs4w5q7C10UeAt71xQvKv1sAdK72Gzu9OSpGyeaDdwejqSAOQsHrdT/RoVvrGp4y/iVS/7lzfvwwvvD2D3SFrXyMxOKr6Z7Biriv1Rsybi1586usQhvxoRi67JZmHu77Zc8Q372Df2Is6UeZ6FLKtqKlhQyOQLXIGbqBfYR6sHR5SKbx3FPM/53KE44itjVVyzxqqE0tXAWsBsPRXfOHA1054vY1Wxj9g7zmpkPKixz+QLfK1ppcYeqN7Fo1I3Ajup+Mr7BUuxt/xtjjvuODz33HM49NBDcdZZZ+G6667DunXrcP/99+O4447z4hgJD+Apa02g2JcG9t6k4pcp9i7uAGpT3Xi7O5Op89ValbhtnscVe5Pmeex1kZDg6vXhir2NGnsrQcBU3sveeSp+31DlVnfyMZWm15pRYtXPgHazoiMZ4V4RfUNpzO5q1f554NDrYc/wopf9K1v24aP/sYr/3BaPYE5XK/9v7pRWvLt7FIAHqfg20yKt4J0rvhPzPJ+64jPFvlKNPT8vJronREMYyRirYEGBiRXhkMAd1dWYSWfOUiq+Zdx0xdc64gPW3M5ZxpDZjAsWMOcKEgqiZNpvypxib3w+2H1m2hU/Zi+zoBKSJJluD2il3Z3aNNmqwBWvEpynKmRwmdlQ0eJFe+pGwPJMf+utt2J0VF6ALF++HKOjo7j33ntxwAEH4LbbbnP9AAlvYDX2E5pCsS/2DK3Susze5yiDiSRJHin2pTX2ds3zjCZeNmG60cceUCY2swG1ur5eENy7PjxN2YI7PyNjQbFnbencScWX36OSYl9iMmNyMaWe7LQbOIIgoKczgff7x9A33FyB/QS9wH6y+4r9e8WgPRoWUBAljGbyWLd9COu2D5W9dnKbBfM8E9kxVhV7Oyiu+B6Z51kK7Kuk4jd8jb18/ftHs5AkSXdMTJtMxQeap5f9XpVxnt48ry2b0yNnUfEllHWIG+Z5I5mi0acqFd+Kc71VjwT1XJjOFUynjrPMEL1NdVMbSBYVezP3rlXyogSWOBav0sc+ZqHcgm0kt8TClo25jVqVMiptqMQtlGwwuGLv4aZ3PbD8bebOncv/f0tLC26//XZXD4ioDYNNo9iLKvXV/clardhn1I6dXrS7s9nHvnqNvbup+K0WzfPGbdZjVaPFgWLP292ZUuzlINyNPvZmUvEBOTjJFkTThljsGodDgu6itZsF9k3S8m5Yp4c9Y+ZEObAfHM9hKJVzpR0o20g4c34PfvSxhdi6dxzv7xnDxn75v/eL/xsJCTh2zmTT78ueGXN97L3bxI0UFTK3XfHHbQX2+huZ/nHFlzcKswURw6k8OnU2383W2APNk4rP6usnGKxpWnidsvF8wBVfCuxNY7XHeSV0FftY5WCPISvQ8jFETCr2JS2LLQT24xW8lMy057Na8qHt8uQG6vVgtY0Q5kNTEKtnNoxyp3nr67lqY9U4G/f0MiVsnCNS7IvMnTsXq1evxuTJpYuPwcFBHHXUUXj//fddOzjCOwabRrEvqBRp9yfrhKpuTx3IWmnPVA2n7e6qGZ+4bZ6nGHpZV+zdpMViSYAa3vPdjGLfrtTEWknnK//MAledKpnnAXJwMoK86d1p5Rrrfx+W+t8sveyHKgT2rfEIutpi6B/NYuvecXRO73T8eeqNhHgkjAOmtuOAqe2O3zdppsY+rRgFeoXnrvhR88eeqFpj39hBWyIaRnsigpF0HntGM/qBfdZcH3tAXcoV7FR8loWoZ5wHmGtDZjY1mVDg5oxuKPY6gT1bl1RT7NXGnWavX6hY/pfJG7dY02OsQps0MwGm3XZ3bir26vWg2XZ38t+JCIeMxx0W2Nsp/YpXGasqZXCZ2VDRElTF3vIMt2nTJhQK5Scuk8lg+/btrhwU4T2sxt5od9vvsB3OTIli7/6unHrAZYN9PBIqc9p2QlkqvlT6+2pUTcW34ABvBq6Umwyoxxzs8FbCSY29lc2OyW1xhARAlICBMfuqPTPfi0VCVU0tE1XcY7WkKux0A83njM8De4PzPNPlOvvBChsJTmjhqfjV293p1R27RbS4mcVcqd0iZWPTzyj1XHHFb3x1ZkoVAz1Lin1U/3wEjb281Z3+M6bM1RVqnykV3zJu1tgPp8tT8Vl9ebWATV0GZOX6JeykcFeq9bYQ2FtPxXfvGWbHIAioKkaoz2e1Onsn67lElbFK8VypdN7NnaNsXuTlI02r2D/44IP8/z/88MPo7FRUjEKhgJUrV2L27NmuHhzhHYF3xVcFPl6aJql3Z5Ue9u4uoBVXfJaKL5T8vho8sDcYkK3Uk5vBTHqwmko9YZ3gqI892wwycU7CIQFT2uPYNZxB31Cap+ZbRUnDj1f1GmDX3qpibxTU9HQ2l2LPxj+jQHvWpBas2TLoWp19pQwBJ5jp/DCqo4K5DdvIdLPGXpIknnppJxU/ky+U1Kj7pY89IKfjv98/ZhjYW6uxb65UfKPyQlM19gVKxbeKm8aZuoq9yRTrnGpT0Wy7O/n9QxhKudcmjd1nuYLcjlZP5MlazAxRAl73U/Fj4VDV9UZpYF95jFdKv+wr9kZGiXyjV2fc42t+k+dIvT5tWlf8888/H4BstMT62DOi0Shmz56NW265xdWDI7wj8K74EWX3LuOyOZyapCq9b8yjnpjaVHyr7e5Y/ZRRmqzbrvhsYjOrlI9XSGtzAns/J+3uzKp7PZ1J7BrOYMdgGgtnWP44AKoe9lXq6wHVRG9Ssa/mo9DdKbe8Y5sLQadaoO12L/tqGQJ2qdburiBKFY2e3IItpN0w0GJk8iI3d7Lmii+/VpTk9Fy2ePaLKz4AdLUXDfQMfDusdAuolt4aFPiaxqCrhJX+4mbdyglvXPHVY5Uy14kQRcnQAFm9vjHrig9Yr83O5kUe3FZS7AG5HW2bXmBvVbE3mbVgBSvO/OGQgHBINn6ttoHDNpJt1dibVOz1U/GttQRk69NYOGT6OvgF02deLO6GzZkzB6tXr0ZXV5dnB0V4iyRJwa+xVyv2HtZWqh1QuQmcy7t/Tl3x47U2z4ubd7EFKqe1OcFqrb8aq+UJvRMSWLsV2OkglZ0Z11UzzgNsKPb5yps3zabYVwvs3e5lXy1DwC7cECynf4+rN9e8dMWPeaDYj9tUVNSKfCYvcrUpUyVrpZFQetlndf/dWh97c+Zjfocp9oY19ibc1anG3jpGZpV2GOV97FWp+Kp7PJMXDTezWI19OCRY6n5kNYVbvZ7QS+FWr8vSBu1olaDa3FhkpTOAWZjZYbUe9gzW0cVsKr6dDLGq5nkVNjStniPusO+yoNQIWF7Jb9y4kYJ6n5PKFfjAEtgae1V/0nG+oPMuFT+VK3hmAqcd7Kz3sWep+LU1z2sUxd5srb8apR7X3D3TU1S8nQTGu7xU7LkJmf45ZpsJe0Yzrvcib0TMKvZu1dhXcuF3As+OMbjHmXoSC4c8DWiZYu9mjT1beMUiIUuGlGoFSp2W6SvFvhjYG3XaSFV5ntXELaao+pW9VcSKatktAKXi24Er9h6n4gPmWshZ3ZSx6jjPhAgjL6VQSFCM3AzutUZod2dFsQfUJRfmUvHtrOeqmudVKM2yukEz5pEQ1wjYGr2eeuopnHPOOTjggAMwb948nHvuuXjmmWfcPjbCI5h7bDQsBM40gqFWn9mi2ptU/KJymi2o6q48UuxzdlPxa9vH3swCSo1Xin1rDRV7pnhvH3Sg2BfN86o54quPy6whVjXFfnJrDNGwAEkCdrvQtq/RqRZos8B+274UCi60cGMbCW5nSFXzs6hFD3tAaS/lhmrHsNPDHpAX1typW3U8fuljDwBT2iub56WrmGGqaZYae9bCd5JRKr6JAI5tarppfht0lHZ3bgb2yjgZVj3Pla4db1VoIQ0fUDrFmE3hHjdhDlfNF0Ap+bBaY++ieR7LTqnS6o5RrW0yY8xBe1V12YUebC2na55n8Tp6JcQ1ApZHr9///vc47bTT0NLSgi9/+cu48sorkUwmceqpp+Luu+/24hgJl1H3e61mmuFX1OoUW1R7rthn7C1Eq8EWollNKr7Z3d5q5jZup+JbNa3zyhVfvcEgWgzOFN8Bc+dk+oSiYu8gsN9lIxXfrRr7UEjgn9sMzvjVFPtpHQnEwiHkRclReQUglz55ZZ7H290ZpOLr1ax6AU/Fd7GPPa+ntLHhqBfM+qWPPaBOxXfBFb9JUvH3Vuljb848z1rARajaKbqi2DNX/NLxKm6lN7zFdV7SRBtENWMmNhyTVdRju4p9tiAi71JGnVU/Ce6jUmUccWLWqpQY6l8LUzX2ZksqAtrqDrDRx/673/0ufvjDH+Jf//Vf+e+uvvpq3Hrrrfj2t7+Niy++2NUDJNwn6I74gLzLGw0LyBUkRbH3usaeKfau19iXLlKtKvZKH/vamOdx07qMtT72bmePqDcKUrmCpY0Dq0FAzwTnqfjcPM+CYm92EuN9rytc457OBLbtS6FvKNiKfa4g8sWZUaAdDgmYMTGJ9/vHsGXvOGZMbLH9eWPZAg94vWt3V0Wx93jxwlPxPaixt2Kcx4hFQkCmdOPLL33sAaCrrWieZ1RjT+Z5ZfAaewPF3kwfe8WtvPHvkUaBBYbZvFjShcIOeqn4gBzYjqTz5rItLJTtAEoJYtrkxhcXIiqs8xJVNpGsm+dVN+SzSjZvrezEbPeDUQfruWqbkJWyuMyYY6rxat3ZCFi+O95//32cc845Zb8/99xzsXHjRlcOivCWoPewZ7BBQlHsPXbF5zuA7n5OTLMws9rHnqkPRgNyxqs+9mZNTDzaOY1HQmBzvNVe9lYV+95iML5rOG1rR72gUoaZ+l+JajvbWqql4gNKpoBThbrRYeMBAHRUCLTd6mXPPi8WDplSWK3As2Oq1Nh7noqvcsWXJHeCe2YIaKdER9siFLDum1FPeI39aEb3fLINPWs19sFV7DP5Ap9vjMzzTCn2Fg3FiFLF10nGjihKPChUp+ID5lre2fVH4Jl9ZoWITHXTtWrHa3UDSWvI5wZcsTcrEJmssVfmHOub2NXGqvEK3iJ8g8bk+Rn3qAS0EbA8es2cORMrV64s+/3KlSsxc+ZMVw6K8JZBVu/psnrUaLCgbLiY3uVWqrkannKVFz1U7LWu+Pb62OvtghZEiU8yCZcWM2ygNJ/a5s3OqSAIVQMfI6xudnS1xRENCxAlYJeNGvXdI2nkChIiqpT4SlSrRdNiptyC+QT0BdwZnwXa7YlIRVM2t1reDRUzpDqSUddLn1p4S0f9Relopvhda5SKD8AVTwLAmWIf13k+lD72ja/QsBr7bF7kZlSMfEHkYzal4suwLMSQYJwC3GJC0WPmj6TYm0cdGDrx2BjN5nl7Sz3FHgBSWeP3z9vsaNBVfNbMesuwcamyYl+5dMCqYi8I1Q35rMKPwWXFXqmxtz7OJqpkF7Hvrpd9yc6PacXeI9PmRsD0bP+Zz3wGP/3pT3Hdddfhy1/+MtauXYsTTjgBgiDg2Wefxe9+9zv89Kc/9fJYCZcYHAt2D3tGTRR7FthnC56ZwBml4rtRY68eQN1W7LMFEbmCWHWR5OXOaUssjNFM3rJib1XdYzXq2/alsHMwZUp1V7Ntn6yS905ImnIAt6zYm6jJZb3sdwa8l73ZenclsHeWwTCYyhY/z5v7GzBeQI7UTLEvVe3cGGor1VNWQy/93E+u+IloGO3xCEYyeewZyZS0/1KnDFMqvgzvYd8SM2x1lqhStgKo6rQtpnM3M9rAvjVu731GVB08tGuRhIlNGbtlFKwLTZ/Jec+M6Vo1o0arjvTsPdM50XXF3nQqfkTJyqrEqAPzvHiVEsMxbp7nQo09KfbAnXfeiVQqhS9+8Yu45557sG7dOlxzzTW4+uqrsX79etx77724/PLLvTxWwiWYK/6E1mAr9iytZziVL/nZTRKqhbVXbdvUfWIlSVL1sTeZis9r7I1TOgE3A3tloDRjoOflzinb2TVr5Mew6ooPyEE5AOywoXizdO8ZE81tCOgpkpUw46PQbIp9tcDerV72XrW6A4CWqHx/5wqSrlpWsxp7VSDkRtsrwL4rPmCQiu+yl4jXMCWxX6MkqhU7M5sUzeCKz4zzJhrU1wPmUvGzlIpvmXBI4JvRTp59ZpyntwnJlNxK1475e1jtaNBtcd5j2X+VPHuqBvYWFXvAeuBaDbYetCoQVfNRGfWy3V0FQ1W1r4GZcrAg19ibnu3VJ+ojH/kIPvKRj3hyQIT3DI43h2KfKFPsve5j75FirxrEsnlR1cfeam1U+YTAJp5Y2Fqv6IqfFwlx48LxbL5qQDPmUZtAQFXvb7J+jpG2UY/L6uztOOMzxd50YG9Tsa8U1Fhd4PgVlhpvVrF3q8beC08TtXKRyhag9UOtVY29WvVxy0Dvrb4RAMZmaJXQSz/3k2IPyAZ6G/vHygz01Nk3Zko7+CZggGvs941VNwTm5lpmFHtKxbdENCzIZX1OUvEruKmbMUZTyiisrWOUbjDWFPtKgSsPMg3uNauO9ID7veytZjiYNs/LOHHFr9buzniNrS4zzOTFqhu4ildCEyv2AALbGq3ZYDX2QXbFB5TA18tU/IQqFX/cxIBvB/VCNJMXrfexV7nWamETpdvZDGwSGjNR2853wD1IiWq1WO/PsGMo6MQZf9s+ptibc1+3W2Nf6Z5hKYm7htOW2wP6CdOp+JPla7F3LMvVJC8/zw5sEw3Qb3nHXaY9XryEQwI3qnSjHdNYJo8H124HAJy1oNfy3/MWoQX5uZckyYeBvX7LO97qzqTS1Gyp+EZQuzvv4M74jhR744DQjDGaVZd3Rk+ntXnPXI19Zad9J4q9W4E9u9dNd1cyEdhLkuSofXG17KJxE6n4gLlNTGXd2cSKPQAceOCBVYP7vXv3OjogwnvYJNiZbA7Fnpnn1a6PvbuL6Ehx0SxK8oBnvY+9cZqcnZRzM7TGIxhO500F1GZq1uzCzMXMOvQzFBd564r99gZU7M0EA1Pa4wgJco10/1gGU9urm/j5EUVBrxxot8UjmNwaw8BYFlv3pnBor73AfNBkhoBdktEwcoW8vOBsKR17apWKD8gpsNm8iJwLm0J/fW0HxrIFzOlqxXFzJ1n+e20qvnrs84N5HlAhsK/gDK1HM6TiV2t1ByjnKy9Kht4vdp3Vm51YJAwg70ixZ+u0dp3abEWxr2CeJ9prdzelPQ6hOO8NjGW5caURbEyttM6rZnSXsRHYqzswuQG7VmYzHMz0sc/kRf4M2ZlzuGBhsK5h6xi9tWK0mHVaECWk8wV0wlymaBAVe0vf6KabbkJnZ6dXx0LUiGboYw8oqg2rIvGitlK9WGC1tF64u8cjYaRyBXngtNrurkIfezsBrBmSvOVd5RT4gijxydqLVHy2q27kGm6E0vPagmLPzOdstItTAnuvFPvida7wfaLhEKa0x7FrOIO+oXTgA/tKre4YMye1YGAsiy17x3Fob4ejz/MqsG+JGW+iMUd1O62HrBJjgb0LAeTdL24FAHz8mJm2MgW1KZ3q58Rviv0eTY09UwzNjtnN4Iq/10QLX/Wm5ni2gM6kXmBPqfh2qNZS1wwVFfsqLvPqz7YSLAPyte5qi2PPSAa7htNVA3szXkpKt6TKqfhW7jN2DtzKvLG6iaWk4htv3KpLHu1kYPJ2dzpjVa6gbBoYiUDJqGyWbGbzg42jdtz7Gx1LZ/7jH/84pk6d6tWxEDWCp63ZqF30E9ogxosFXSKmvCdTVrzYAYxHQzywV8zzLA7IeT3zvOoBnx3MpsCrA39PFHteY29+MpQkSamxt6LYs1T8QWup+AVRwo5BbxV7s6UF3Z1J7BrOYOdQGgtnmHpr32El0J41qQVrtw46qrP3PLBnWSk6PhKjzJCqJoq9vLhnypld3tw5jFe3DiIaFvDRRfZuQm36Obv/Q4J1Ra9esABDq9inrabiuxwQNCJMrJhUwRA4GhYURS9X0H0eWcAVoVR8S7Bg2olirwT25dfFSh97O893T2cCe0bkeW/+9MripRkvJXWJph5ZG5sQySp1+1axegxmUvG5cV4sbNidohJKplX5d1QbIBuNfYloCKMZ4w0VNWMmMi/8ium7iurrg0FBlEynovodbVDmhSt+LBzitaXDae9cNtWBXEGy1seeT7p67e48SsVnAbW2B7MWVucUCQmebLywLAAr5nnZgmgry6N3gqxwD4xlLbWk2TWclluEmexhrz4usyqckopf+Rx3d8T5MQUVq4E94MwZ33vFvtjGS+eec2JkZJVIqLqiY4Z7XtwCAFhy6DSuWluFB7M5ptgzM0xzhnONQFebvPG+R2Oel1KZ55lBr0NA0NhrooWvIAhVgyM7pmaEW4F9MRVfV7E3749gJ9timoWWd2a8lKqVDljtIQ94UGOft3a+oiayMtjmjN3sy0rZReyZDYcEw/MWj1Q+72rMeCX4FdN3lZn2AV5z8803QxAEXHPNNfx3kiRh+fLl6O3tRTKZxOLFi/H666+X/F0mk8FVV12Frq4utLa24txzz8W2bdtqfPSNwUg6x4OWCU1SY8/wwjxPvVhgeKLYF4+dDZyAjT72eoNlzlpap1lYSvl7u0crvk5dX+/FgpsplVbMz+ym7XYmo/xesOIsb7WHvfq4LLviV3kGlHKCAAf2FmrefRHYR42zY7grfg0UezfScVPZAu5fI5vmfeIDs2y/j3aByM0jPdjc9Ypq7e7Mbjo2Qyq+GfM8oHpwlKUae1uwtUjGhVT8Dj1XfBOt3vIOrh030DMx75nxUqp6n9kw8nS73V3Wonle1IRB4hgv/bI33yQqpOKzDZWWCt1A2N+bWRcpNfbBS8U3fVeJoljXNPzVq1fjP//zP7Fw4cKS3//whz/Erbfeil/84hdYvXo1uru7sWTJEoyMjPDXXHPNNXjggQdwzz334Nlnn8Xo6CjOPvtsFArBTU0zgvWwb42FLdci+Y0yxd6j76tNC/JSsR9WBahmNyoqm+d509t5/nS5Hvn1HUMVX2emJ6wT2O5/tcwBNeycCIK1HXVBENBTVO13WDDQY474MyeZS8MHlOtlViFRSguqpeIHv+WdlUB7pgst77zOkGLjz3jFGvvamOcBzhT7Fet2YiSdx8xJSZy4f5ft9ylLxbfRvrLeTFGZ56mFFduKfYBT8c2WF7KMJaOAi3V0oD721qgkHphFUex1zPNMpeLba3cHKIq9mQ1tM4p9NU8AOyaN7re7s1hjH6nex96pWWu8QvcDNr9VKkHiBoMmzpGX3ZjqjS9Gr9HRUVxyySX4zW9+g4kTJ/LfS5KEn/zkJ/jGN76BCy64APPnz8edd96J8fFx3H333QCAoaEh/Pa3v8Utt9yC0047DUceeSR+//vfY926dXjsscfq9ZXqxj4TJjNBQRuserWo036OFzU7bBOG7WoLgvkJrKJ5ng2TODMsKNaprd8+XPF1XjriA8oiQZ3pUA1enmAjbbe3qHjvsKHYz5hgzjgPsKPYy9+pWjDAlAs7BoB+gQfaJjKWWMu7bftSKNh0e/dasWcLTK1BpCRJtU3FZzX2DlS7e1bLafgXHT3TVo0mQ+sEr7S68486w8oQMnmRX0dAeebNjpmVVLCgwPrYV3LFB1QBYpVUfDvBYTPjebu7Ki7zgKrG3oZir271Wo0xEwFhtY0IO+3ulPR+d9vdmQ3srdTY2w/si5sHolQ2j1RyxGewjEQjV301Xq8964kvtiq+9KUv4ayzzsJpp52G73znO/z3GzduRF9fH5YuXcp/F4/Hccopp2DVqlW4/PLL8fLLLyOXy5W8pre3F/Pnz8eqVatw+umn635mJpNBJqOkwA0PywFKLpdDLme/p7HXsGMzOsb+YXnBPqEl0tDfww0imrk5LEiefOeEanCOhgUIUgE5lwZfBktzHRqX78l4OIR83lywKhTNrEQJSKUzJRPfWCZbfD/B1XNzQFcSgiDXrO3cN2pYKztc/D4tsbAn1yZZHOGGU1nT7z+aKp7jSMjyMbEa9W17x0z/7ZaBMQBAT2fc9N9EhGKKcb5g6m/YgigiiBXHiK5W+YT1DaUDOz4MpeR7viVqPE4yJifDiIYFZAsitu8d5RsfZhFVniYtUXefMQZbDI2o7vFcLoexTF7xighV/65OiRYD8VTW3hz5zu5RrN60D+GQgPMP73Z0vCwuS2XzyOVyGE/L1zzm8jjnJRFB3rQZyxSwc98YEl2tABRDxHik/LvoPdshFDc3cubGCr+RVW18tFV5xliAOJzK6L6OBVyCJDbkuaq2vqsXbCMklbG/PmbjclLnvmbJl+x51iOdlX8fFqyfnylt8ry3cyhV9W/ZBmosZLyejAiS4fFKksQ3QEKS+WeSnYNxB+cYUM5Nuvg9zK6LQ5D43xm9nq1PW6LW107yZyjr5rF0pkQkGym+dyJqvFaMFRf9o+nK50jdjanSdWw0TK8PPT4Ox9xzzz145ZVXsHr16rJ/6+vrAwBMmzat5PfTpk3D5s2b+WtisViJ0s9ew/5ej5tvvhk33XRT2e8feeQRtLSYV9bqxaOPPqr7+xf3CADCyI8NYcWKFbU9qBqzeZv8XRmrn38O21vd/5zMeBiAPKBEBdGT8zo6FAIQwprXNwAIQ5AKpj9H3mCWH/W/rvg71BuUr26Xz9GeXTuwYoW7vhNTE2HsSgm48/8exyET9dXOV/rlz0+PDHpy3t7aJ7//9t17Tb//1lEAiEAqZC0f0+hu+Tq9uO5tzBl/y9TfvPqu/Df9mzdgxQpzf9Oflo9xLGXuGFNZ+R5d9cxTmFjcY9EbI9j7bt83hoceWgGf+IyZJi8CqZz8LLz47JNYb2IGnBANY09BwJ9WPI4DLHZ7Hc8DkiR/yPNPrYQXJd57dsj3z2tvbMCjI28CkK/tUBYAIghBwuOPPuz5tRwble+x5//xIoY2WM9ueGCT/D0O7Szg5Wcfd3Qs7++Qn/v3N2/FihWb8WZxHEiPj/pq3ksKYYxBwF8fewr7F7strt8in6e+bfJ300P9bLP7IJ0rBPKZZt9PgIRnn3gUlRI9xoflc/f8iy8j8375PTpcvIdX/+N57H697J8bBqP1Xb3YNyCf15fXvIrYjrW23mPnHvncv7luDbC19Nq8WVwnbN+1x/D5fav4XOzYugUrVmyy9Nm7UgAQwba91ceH4ZR8nC889zTeNvD2fL043uzq31f2fvLekTwnPPH4SrSYjMI2F9dq77y/GStWbDT3RxXYun0HgBDeffstrBh9s+rrt2yWz+/b772PFSve1X3Ny8Vxd6h/l61xVk6Kk0/IQ397BOomF68OyO+dGRs2fO/hvfIxvvTKWkS3rzH8HDk5RP6cZ554zJN52QvGx82VBDZ0YL9161ZcffXVeOSRR5BIGCsl2nRZSZKqptBWe83111+Pa6+9lv88PDyMmTNnYunSpejosNfPuBbkcjk8+uijWLJkCaLR8tTPXas2A+9uwAEze7Fs2UKddwgOfc9twkNb3+Y/n/bhUzB7svuR/e93rsbWsX0AgAmtSSxbdrLrn3F//yt4Z7gfU6fvB2zbhtZkHMuWLTb1t9m8iK++KJedfPi0JSX9u99Z+S6w5X0cMGcWli071NVjfmzsNfzltT4kpx+EZYvn6r5m9KVtwDtvYGbPNCxbdqSrnw8A3VsG8eu3XkQo3oJlyz5o6m9e3rwPWLcanW3m/4Yx9vI2/H3bG4h2TsWyZUeZ+psfvfUMgBTOWnwcjt5vYtXXA3ImxLfXPI0CQli2TD/riJEviCg8L1//M5eehvaYYDhGZHIFfHvNSuREASd+aEngOmf0j2aAF56CIAAXnH2mqXTv/2/Py9jz7gB6Dzocy46abunztu4bB1Y/i0Q0hPPOXmb3sCuy7uG38eyuTZg+aw6WnDaXX9stg1ng5efQnozirLMq3yNu8N9bX8C2sSEcedQinHqINT+eTK6AG3/0NIAcrjprET500BRHx7L3hS34v81voWtqN5YtOwLRN3YDb63F1MkTsWzZBxy9dy35n+0von/LIA6YfxTOnN8NAHhlxVvA9i045MD9sWzJvJLX683/Q6kcbnj5CUgQsPSMMwJnDLehbwR4+XlMbI3h7LM+VPG19w+8gneH+3Hw/IW6z/J31z8FZDI45eSTcGhP463zqq3v6sWKobV4fd9uHHzoYVh2rD3Tyx+9+TQwnsaHP3g8jpw5oeTf4m/txp3vrEVLRyeWLTtO9+/feOQdYPtGHLD/HCw78yBLnz2WyeN7ax9HpiDg5FOXGqaSZ/PKXHr2GUsMy6smvb8X//nWS4i1tGHZshNL/m00kwdekDcuzz7zdNP+Rnue34y/btmArmnO1u7sHpo8ZRrQvwdHLDB3zd5Z+S4e2/E+ZszcD8uWHaL7mrdXvgtsfh8H7W/8mmp8dfWjyBUkfPBDH+YlEgCQXbsDeHs9eqd2YdmyRbp/+8jIa1i/rw8HHHwolh2/n+Fn7BpOA6ufRjgk4NyzzvRNpxSWOV6Nhg7sX375ZezevRuLFikXsVAo4Omnn8YvfvELbNiwAYCsyvf09PDX7N69m6v43d3dyGaz2LdvX4lqv3v3bpxwwgmGnx2PxxGPl2/HRaPRhhpQjTA6zsGUnH4zpSPhi+/hhJZEab1dayLuyXdWpwu1xiOefEaC9WPn9d8h058TiSi731IoXPJ3zGC1Jeb+fb1wxkT85bU+vNk3avje6WLmVVvCm+dqYps8MYxmCqbfv1C0HklGrV/LGZPaAAA7h9Om/jZfELlR3ewp7aY/rz0pX9O8KEEIhSvWFWZEpWSjoyXB0/j1xohoNIpJrTHsHcuifzyPKZ2Nn51khbGcfK7b4xHE4+Z8RvbrasUz7w5gx1DG8v1Q9CpFZ9K7eaO9OM6lCxL/jGg0inRBTm1ti9dmzmL166JgfmxirHh9NwZTOfR0JnDqoT2mu0MY0RKXPz8nyuciX8yoSkTDvpr3prTL49dgWhm/mOlVa4Xrqn6221RWSqIQRjTa0Ms+y4xk5fMxsSVW9doyk1Z2X2hh9cMt8ervVU8abR2aKK6B8pJg+7hGirXrk9rK16ZtiaLfRE4yfH/m6Raz8YxPiEbRnohgJJ3HwHgBE9v0jWzHVanQHS0JQ5PFtqJ/SyYvlh2LlFXWY62JuGkvkbbiOJ8plL+nHZjlRsLk2o9d44Kk/+wAQConf7f2pP3nJx4JI1fIoyCVziMZvlY0Xpcl+fNd+T7MikoJaCzmH78xs+e0obduTz31VKxbtw5r167l/x199NG45JJLsHbtWsydOxfd3d0laUnZbBZPPfUUD9oXLVqEaDRa8pqdO3di/fr1FQP7oDJQ7Ik7uYrJTBDQmuV55oqv2nH1otUdoCyah4sbMzELJlCCIBgan3jlig8AhxWd8ddXcMYfz1R3mHWCut2d2ZadaQctAFkv+52D5szzdo1kkBclRMMCprabr99Wm4Clq5hiqc12zDwDbJc8iM743MjOQiYCa3m3ecC6M/6ghdZ6dmHmP1pjqdEKZlReEHHQ7u6eF7cCAC48eqbjoB5Qt3gruuLn/OeKDwBd7fI8rW55lzLhDq1G3dnDjKmU32CGwNWM8wBVGzIDEzYnLdOaGTOt0CpRavSp44pf7GaQrtDZIV80N42G7F07M/MeM1yLhUMVje8qGd2x8TESEiwZhLrd7s6qeZ6Zazyakec7J+1VtcanDN7urmKbQXOmwmYMEP1MQ3+r9vZ2zJ8/v+R3ra2tmDx5Mv/9Nddcg+9973uYN28e5s2bh+9973toaWnBxRdfDADo7OzEZz/7WVx33XWYPHkyJk2ahK985StYsGABTjvttJp/p3ozMCYvECYbmJkFiTJXfA+CV6B0geVFqztAZZBVNE6y2qpQNgArb4/GJgm3+9gDwGG9ckHytn0pDI5ndTsxjGWr94R1AgtqcgUJmbxoagPDSacA1gd+JJPHSDqnu0hRs63YRs1KD3v52EoX65UmUjbJxSIhhEICqnX5nNoRxxs7gT2a/tlBwIojPqO7eE13j1jf6LDzeVZR2t2Vmmm6sciyAssaqdQOSY+N/WN4/v0BCAJw4TEzXTkWvjjM+dcVHwCmFDOO9hQ35AHFHdrsZmwoJG/sZgtiIJ3x946Z62EPVG8ZxoKWCLniW4J33snb6xwyni3wriN6G5Hsua3kip+1GKhq6e5M4J3do+ir4IxvptUdoLiz6x0vW4NZPc6E6+3urDnzR020M2UBszuBfen3NNPujp33ShtAQLB72AMNHtib4atf/SpSqRSuuOIK7Nu3D8ceeyweeeQRtLe389fcdtttiEQiuPDCC5FKpXDqqafid7/7HcLhYF7USvQzxb6NFHu3UC+wvApQ48zNt6jCWf0u0UgIyBbKFfu8d4p9ZzKK/Sa3YPPAOF7fMYwTDyjvSz3GFHuPNkRaYxEIAiBJcjsdM9+T97y2sdnRGo+gMxnFUCqHnUPp6oE9a3U30XwPe6B0sW5WsTfb97qjeMzDaX84xVrBTuu5rqIS2K8Krqx+XkcNFHttH3vWPqoWPewBpXOHVcWetbhbfOAUTJ9g7Tkwgj27bPHKA3u/uCQVYYq9epMtZbJ1pZp4JLiB/eC4+cDeKLuFwe7dGCn2llDa3dkLOtlYFQ4Juve1mVZveYebMopib9zqlQWu1dZ5/HjzYpmfV8ZGqzv1e1ba3LBCznYfe+MxZMRhuztAEeC0YxX73i0Vxj1+3qucI7ZBU6tN71rju2/15JNPlvwsCAKWL1+O5cuXG/5NIpHAz3/+c/z85z/39uB8AFPsjdqPBQl1EBcOCZ6l16knIq9SytmO9YjNwJ5PvJoddTZRepXNML+3E5sHxrF++5B+YM93wL0ZikIhAW2xCFfQp7RXv++VLAZ756SnM4GhVA47BlM4cFp7xdfa6WHPiEeLi/UqO/hWszKYYsI2kYLEkI3U+K7iPTMwaj2DYbDYwsnbVHz5emkDe6c9ha0SKabA5kTzql02L+K+l+VuHB//gD3TLT14Kj5X7H2ail+cp/tH1an48nU1m4oPyGPFSKZcBQsCe4s97CeaSMWvpNgXRAns1qVUfGuw50qbEWgWlonYnojoGpklTaShs0DV7qZMd7GVaSXFfsyiYl8QJeQKEm/DBtjrYS+/Z/VyBCuwTSyzY6KZjVsu1Lih2Oe0qfgm+tibLFdQNmiCKe7S6NVk9I/IC82uJlPsvVzQqQMmzxR7nopvU7E3rLFXzPi8gNXZr9uuX2c/zgZYD4MPFqiOmAxUnQYBvUXVcYeJOvtt++RU/JmTrCuVLHipNolZ9VFgWQYjAVTsB20o6MyPZN94zrIazVPxPewuYKTY16vGvpKio+WxN3ehfzSLKe1xfPhga076ldCmc2YclNfUE93A3mIGDlC+0REk9nHF3owBmLHqqX62jUzRCH3MpGlXYrjKWMXmrmxB5Cn7WnIOFftpXLE33sAdN6nYJ2LK/aMNxO1mhZhVo81itSSAbdxmK1xjN+aceFQ/O0NJxTd+77jJzQ9eUhHQGnsavZqI8WyeLwqarcbey8C+RLH3rMa+qNhnmHmeRcWe7ajX0DwPkBV7AHh9h36bDr4D7uHOKQtUmYJZDTcUewDYWSGlj6Gk4ltX7NmGUjUVLm0xdbcjaW0jxE/YScWf0BLjvbH3jVlLxx+28XlWUdKLtTX2tVXsjQw6K/GHF+U0/AuPnuGqSqqY52lr7P215JmiCuyZ+ScLSq2MT0aGVEGAB/YOFfuSwJ5q7C0Rc3h/sU3ktriB27nqXjdKx7dqBqelhyv2FVLxTSr2sXAILPFAG4hbrW1nVPOHsErOao0991GoZJ7nomKvTcXPMfM8M4q9OfM8LwWleuKvWY5wBHPEj0dCngZSjUKpYu/d91WnRHrmil8M4thutXXFvphGpTXPyzsLYqsxf7oc2G/sH9NVgMc9Ns8D1Iq9OQXaiSs+YFGxH5QVe6s19oBqd7qKCpeyWG4RZMXeTmAfDgmY1CoHWHsspuPb+TyrsPFnTFtjzwP72rTFUlzxzal2W/eO45l3+gEAFx3tXho+oIyXSmBv3zejnrAa+3RO5NeXb9RZmMNjEXObgH6EbbZNsmCep+9Wrty3dp3Vm5WY41T8ykqver1jFNgqHQ28AwtFVAAAgmtJREFUU+zN1tgLgmBYPsBT8W2a57nliq8o9ubOl5lUfDc2k52Y5ymbH5XP0XgNBKV6QqNXE8HS+bra4rp1TEGjRLH3cEGXqIFir50ELNfYGyj2GYdBbDUmtca4IdYbOqr9mMft7gDFPMxszbhTB23e8q6KYp8viLwtnj3FvrSllxF8o8LkPdNhsXTBTwzbTI1npUsDFg30atHujqUTGrW7q5V5nlVX/HtXyy3uTjqgC7MmW7//K6HUaRZT8X3qit8Si/A5hbW8s5WKz8aKAKbi7+WKffVnjBuQVVDswxbbkBHO292xgLDDYKwKhQTVRnbljgZOXPEB2YfKaIPCSkBopLDbVezVrvhmW/dWwrJ5XpWMLHXLQieBvbKucVJjX80V33tBqZ5QYN9EDDSRIz5Quxr7mvSx1wTeVvrYA8Y1cF6n4gPAYb2sn71OYO+xeR6gSsU3Gag6VexZy7sdg5UD+77htKqHvfXSGLOKvfUae7YRQoo9Q6/W2dLn1aTGPl+y4OOGVDVKN4yGzLviS5KE/4+b5rnT4k5NWSo+r7H335KHmTeybJGUiQWuliCn4g8y8zwLir3WjwKwrmASCjETadqVUMzzjMfJakEb21CM2AzsJ7XEEAuHIEnGrU15/3MTY6pRezq795laqXbjOc5aNM9TNm/0NxUyecX/wMlmstEGjplxj5cnVgnsx2sgKNUT/81yhG3Uin0zUFpjX5tUfK9r7BnW+9jrp8op5nnenR+Wjr9ex0CPmdF4aWJi1zzP7jnpLQb2O4fSFXfWWX399AlJWwqRVcXerMKnpOIHT7G3G9hPtqnY1zIVX5RKn2+untRIseebh2L1RWcmL3L36Q/Om+L6sbDFYV6UkC+IvnXFB1SbSiNynb3VPvaAcXqr38nmRV5yMslMjb0J8zxyxLdO3KFiXy0VH6jujK+Y0tnbmAmFBEztkJ+1XQbO+OMWhAgWZGoDVKeu+IA7Le+sZjhUU+zV64VKLemqod2UZbBzn4wan3vTrvik2BNBYaBYizbZxAQYBNSLOK9SzQGNYu+xK77Rz9UwMrZS+th7d37mF53x9QJ7pth72XbEao09V/dsnpNpnfLiIJMXsbeC2ZoT4zzAuC2MFqvt7joCHNjbTY3nwdWYRcW+Bqn46jFHXWfP+9jXqt2dhVR8lg0iCN5kFKgXzer+7V619fQSVgbSP5opWexaandnsFj2O6yHfUhQxq1KVKqxz4vO2qU1M17X2APK/GVUY8/abEYc+CN0V6mzt7JeqabYW826jIRDXOV3o+Udbw9ott1dpHLXkzFVGr6TUhbuj6JZ15hT7IvPt1lXfFLsCb/DFPtmcMQHameeV1Jj71kfe29q7GuRis+c8d/bM8oHVEA2AmRBp6ep+HFrir2y2WHvnMQjYUwpps/uHDI20GOt7uwY5wE2auwtpuKPpHOu1PI1Ek4Ve9Yu1AwFUeJq4gQPA/uwqv5UvYisvWJvPhWfbzrEnC0CjVCPj5mc6FtXfEDZVNozmi1R6qy0KI2bTFH1G/vGmWdGzNR9ZBRsAdbbfxEKTmvsh11JxXfW7g5Q6uyN/HGsZBgmua+FUbs768fJNnGdbrpLkvX7vVpLw1GX0tsNzfNy5lPxq2U0mDVB9Cs0gjURLI20GXrYA/IOZ6Q42XtaYx+rgWKvCcpsu+KrJl5JUgJrL80Fp3YkMKU9DlEC3tw5wn+vDvK9Vezttbtzcs/0FhcIlersFcXeXmBv1RXfamCfK0iBUvjSuQL/Plb62ANKcDVgQbFnRn12Ps8qer3s2f1esxp7C72szSh0ToiEQwgXx/5MXuSLa7+Z5wHgm4T9oxn+LMfCIUu1xEGtsWcZUWZ62APmUvGdBIbNSi0U+0rXDrDfH14NU+yNUvHZmNpiIng1VOxtmucBSku+7VX8e6ohqoZos+dL6WOvf43daq9azTyvUqaSWfM8csUnAgNblDaLeR6gPOheBq7JOij2btTYqwdOLxV7AFgwnfWzV9Lx2a5pRKU4eoFVM7iMQ8UeMGegpyj29lLxzSv21loatsYivAevOjj1O+y7hGykf6vToc3CsgNaY2HPVcAWjTO+JEl1cMWvnKqpxoxZllPUyk8gFPuRjGqTztr3CGoqPu9hb8I4D1A2wPRd8SkV3y7OA3sTin2kch93p+Z5gKLY9w3rj/MsuDSj2BvVe9ttdwcoawUmCtglrw7sLabiG2VkjbpU+qVnnlcQJX7eKp17JRW/8n04Sn3siaDAXfFbmyMVH1AGCU/N80ra3fmnxl5dw+SleR4AzGfO+Ko6e3W9mpftF9uspuJzxd5BYM9b3lVKxXem2Js1irHqoxAKCfycmW0R6AdYoN2RjFpO/+aKvQXzvMEaGOcxtIp9Ji/ymuFa1diz3t9WUvG9UuyBUpVaqbH335JH3ZEhZUK10iOo5nk8sDfpG8Tm6lxBKrtPyTzPPiwj0FPzvFjllo2KGZzzVPw+g1R8KzX2RhkGThR7tlZgooBd1HGv2fPFM7IMgmZ2bpxuJOttQqqzO830sc/mRYiiceYYKfZEYGg2V3xApdh7qNQkYsp7e5VSrg0y7dbYq9NkWcAXErxv8XNYUbFft11peTduoXWMExSXd3PqM9spdhIEMGf8HQaBfb4g8qB/5iSH5nkuu+IDagO94Cj2ThzqJ6sCe7O+A0qrO+8zpHhgX7zWLC1SELztOKGGl/tUWFAxFIXOy8BeCQQUV3z/LeSmtCvZInZ62APGhlR+Z18xFX+SyWdMnbVU5lbOAsMIpeJbJR4xv6mnBw/sK6wFqpnn5S32ZdeDm+cZueJbaXen43sCOPNyYGsFp4o9WwaGBPMZDtVKrdwya9UrG2Ib1iGh8tpXLV5UMtCz0rbQj1Bg3yQURInXozVLjT2gDAJeppq3x6OIhATEwiHP0l7d6mOvTpVTm6p5qZgDSsu7d3aN8M+thSM+oAQPZmvs2YTiJIuBK/YGqfh9w2kURAmxcAhTbG60xc0q9jYMEq22CPQDdh3xAaWTSLYgms5iUDYSvF88aNUhXu/okTmdHoorvhXF3sNU/Kiy8eXrPva83Z1inmd1PgtuKn7RPK/V3H0Uj4R4mZE24HIjMGxWYmFFKbUD9wNxYJ7nRsbFNFZjP5TR3cAds9DuTskwcKfdHaBW7N1JxbdyrtQGibrnJmP+3FRCz+hzXNWertJaVb1mq7QuUhR7CuwJHzM4nuWGGWbT1oJAvAaKfTIWxk8+fgR+9okjPFOEymrsLSrseq61VmuvndDbmcDElijyooS3d8kGelZ6wjrBavu2tM06VjW9E5Re9nrwHvYT7fWwB/Rr0fSw2u4OCGbLOyeKfSIa5mqS2Tr7oWKacG1S8eVjYwug0bT8v7WqrwfUBp1m2t3J91WHh5secVXdbxBS8VO5AvfJoVR8GauKvSAISsu7LKXiu4WTGntJkkxl8FTqaAC4Y37IAvtsQb9VrVJj70a7O/uB/XaXUvGt1PmrX5vXycpyy6yVBedpnVT8auNeqCiwAcbrIlGUlI0CandH+BnWw35CS7SpJi6lxt7b73z2wl6cMb/Hs/cvS8W3GIyz9MKcnmJfAxVLEASu2q8vpuNzAxOPFXsW3IxnC6bURMVoy/5xsVR8psxrcVpfDxi7x2pxotibNRz0A+oaezt0tVurs2efNyFZw1T84gLILYdiK0R1fDyMqI15nvJ8+DkVvzUe4dd361553LCcih9UV3yLNfaAcu60AVfOhRrtZsVJjX0mL/LNwIo19lUy1NwwP4xFQjyjVS8df4y74ts3z3Pi3s/M8/o1rS+twhR7K5sL6hKVvM7m7aiHir2ZHvYMJmAYBfbq554Ue8LX8B72TaTWA8pDbjUQbjS0SpPVjYq4zqK7Fj3s1fDAvuiMP16j4EO9WDCTju+GYj+lPY5ISEBBlLB7pHyBsHWvsx72gHnF3mq7O6C0l31QUAJte8EkGztNK/a8xr525nllqfg1VOyVVPz6t7sDguOKDyiq/ZbiuGG9xr6y8ZhfYan4Zl3xAUX1UxtyAdTH3glOFHu2eVzND6RawJYX3WlXqBjolc7b+YKS+WNOsTeosXcQ2Hcmo3zMdGKgx5aBdlLxAf0NHLe6sOib55n3FqmW2cHKKQTB2RqvkQnmtyLK6Oc97JvHOA+ojXleLdBOAtb72LNUfLV5HktPrVFg38sUezmwH1PVTXlJNBziA7iZ1PKMCyUK4ZDA0/p2DJYH9opib884D7Ci2Fv/PkzVplR8BcUZ32JgX8tUfI15Xk0V+1DldkhqaqLY80BA5AGHX+cBpiKyDcEEpeIDAHYXVVUrvkHGij3V2NuFB/YG9deVUJuuVSpLS1aosZckybXrZ2SgN6ZSyM2sWYyON+MgFR9wp+VdwYZiH1FdG70xnrvie2ieZ06xr5zZwQ0Qq9Tr+xkawZqEgSZ0xAeUhWMtF7heUF5jbzGw19lRd0OZtsL86XLLu7d2jiBXELli31qDOqe2uLlAVRQlvhvtNAjo6WQt78onYKWHvfeKfcZGyUUQzfOcBtqTi8HDHpOp+Mysz27qvxWSmnZ3ihlVHVLxTbniF2vsa+CKr8468WvmFpu32WK+hVLxi9lQ8rqGeZqYgT0r2nGTKb7Ux9467JxJkn79dSWUsaDyOFlJiVV/Jmu7aRfFQK80sGcZHtGwYCogNgrsecmA7cDeecu7PFfszQe2giCofFTKxxG3XPEVwUKVip9jRstmSiDKU/nV1Mq0uZ74O9ohTMN72DeRIz4AfPGU/dHTmcCZHta/1wJBkCcTu8qTXv2rUmNfmwFu1qQWtCciGEnn8c6u0Zop9oAcQPSPZqqmlqsXvk5LFHonJIHN+7CzomJfuxp7K4ZbbEMsiDX2tVbs7ab+W6FVnYofU6VF1nBDk6XAWnPF9z4VX93FwLeKfdHfgW0SWjfPC54rfv9oBgVRQjgkWBIseICoMc9TUvGDqeJ5iTpIzRVES6q52daXynXTCexVmYhO2xUqG/IaxT5jbb1ibJ4n/2w3s8ANZ/y8JJ8jO92VcoUCcnkPa+zZJmROJxXfxLjHN1QMspO4AaLPxb5KBPebESUwN93Jrc2l2B/a24FDezvqfRiuEFcH9hZV9pjOTmvGhlu6EwRBwGG9HfjH+3uxfseQ0h6lBjunZlveqXfXHSv2xZZ32zUt7/IFkaf5OUnFr0WN/XCKFHsGS/e1XGNfE8Ve5YofU4wpWaZKLWg887xiYF+8DuGQ4Ns0a9YSkwmTtvvYBygVnwVe09rjCFvoLFItFd9sX29CQZ3lkM2LsGB5YHqTTwnYyscXdc13xCXFXpuKP24x1dwoJdyJKz7gTio+N8+z1V2poFtjP+aSK77eWGXFPC9usHGnPc4gK/Y0gjUJ/U2q2AcJtaOzVXdnNomUKPb52prnAcCCooHe69uHLPWEdUq7yfZtTNGKhATHCzzmjK9Nxd85VOxhH7Hfwx5Qrls1wyJeY2/hnlHOFyn2DEWxN5eKP1zTGvvSYKUe5nnRBjPPi3HFXr4OflXrAUWxZ1jvY1+ugvmdvuK4yszOzFLdFd+/90m9iIRDYHsrVg302BxTLWDmgbKuYq98ptOMC3Y/7dLW2Fvs4sPN8zTH67TUz41UfDvmeerX623esiwx54p9udGnvRr7Kop9QB3xAQrsmwalxp4Ce7+ingjs9rHP6NbY1y6wZ87467YPcRMTM61jnMIWDdUCVTfPiVFKH0/Dn2C/hz1gTrGXJEnZwIlZ6WMf4Bp7my71k4uBvVnFfpCl4tfQFb+sxr4Oqfg50Uoqvvft7ljWiZ8D+ymaeZtS8ZVxtafTWjmT0kGidGxT2pBRKr4dFINeq4G9ubEgWZy/9FKsebZFSHBsiGY0bzPF3ux6xSglnKWx291Amlkn8zxAP/OT4dZmciXzvGTURI19xPg+AdQtC0mxJ3xOs7riBwl1+r2d2ihAW2Nf21R8ADis6Iz/xs5hjGTkwKeWqfjDVQLVNO937fycMEMnrSs+22mf7qC+HjBXY5/Ji2AmxdZS8YuKfSYYir0kSa6Z55lR7HMFkS9GauqKX8d2d8y0qppin84pqZy1qbFnir1/F3Laedt+H/vgpOKzdmRWFftETD9Vl1zxnWG35Z3Z7B2WcaZXY8/WNU5b3QFKKv5IOl/SEnGMK71mFXv9DIOMg3Z3gLJuGBjLlrVsNEvermLPMz9Lx3hJklzrxMIzEQsixGLtUcqC4Z1ijlk5FZ8Ue8L3MMV+MgX2vqU0Fd9uCpWq3V2OBbG1W/DO6WpFSyyMdE7E+u3DAGpjnscC1Wo19m60umOwwL5/NFOyoHaj1R1gTrFXp7NZScUPmmKvbnnmNBV/JJOv6mvANhEAb1VphmEf+1q2u4uYa3fH7ilBANo8fPbZRigribDqS9JIOA3suVN0IBV7l1PxfZzZUU/YfOSVYs82ZPQVe/fKKNoTUR68q3vZK7XZJhV7frzu1th3JqN8ft5uU7XP21TsjVLx0zmR+3+41e4OUMYrK+Z5bJ1jNEePWUjr9ys0gjUBqWyB38xUY+9f2IAnQLJcRxbXq7F3MYg1Szgk4NAe2cyQBT+1aHentG8zl4rvRhAwsSXKz7t6geCGIz5gTrFni6CQYK32UO1JYLUvcSMypDJQs7vw6EhEuMoyMFZZteet7hIRS8ZeduHt7upYY89Mq7RqjhZeUxur3LfaKTwVP+3/VPyyGnu7qfiBqrG3p9gbtyGjGnsn8FR8mzX25hX78vdn7e7cunbsntIL7M2uV5IGLv5u3GdMFNhqs86eXSKrWQOsl702sGeZfYLgPGAuDezlc8fmNTPZEmwT07jGvnbeTvWCRrAmgDnix8KhmtZcEu7CBryIAMt1ZHqTrmKeV9thgNXZM2pjnmdOgU7zdoLONxsEQdBNx3ejhz2g3A95UTJsMZbitWlhS/cMO18FUeK75X6GBfYdiYjtGkxBEPjGaP9I5Tp7p/X8Vmnlqfjy/c1VsFoq9ibb3dXCOA8od8X3cyp+ayxcotI7ScUPwkYdAOwcljdILSv2sSoBVw024oKInkGvGZQ+9lVc8WNsc6p8PnK7VSEP7FUGeuMW2/MycSCVK33mnCr2gPOWd2zv1er5MrrGzFiwLWZ/fmVEwiG+Gc5Ei5SFc1/NPI8day0EpXpBgX0ToO5h7/ShI+oHa+NhZz5gA3i2RLGvvXkeoBPY1yQV31xgn8m5u9mhGPEoE7Bbqfjq62ak2tvtfNASC/PJNQjp+G61nuN19mOVA/taOuIDFVLx6+CKX12x9944D9CrsffvckcQBHS1K9l21gN7+fWipKibfkYUJewakp/Bbovmecb9xYuqr4/vk3oS0zHoNQNTe6ua5xlcN0C5p522umPotbwb4+3urCn2QOk54S2LHQX2zgz0nKbiZzV97JkjvlvzjbaLB8uWMJWKb9BmkMFNEKnGnvAz/dwRn+rr/Qwb7OzEnFGdnVZeT17jhcz86R0lP9ei1onX2JtU7K3Uo1eih7e8kxcIuYLIg/yZLin2gPHutN1yC0EQTJcv+AFFQXdWisTG0P6Ryqn4texhD6hUyGKto9LHvvFc8c2m3jqFbYSyjQY/19gDpfN30kKHC6D0uwehzn7veBbZgghBAKa2W1vXaDtIMCgV3xmem+dFlQw1rWLMOxq4tJbp0UnF5118TAaE6jlXPT9nXThWpy3vbJvnGbjij2bcTW9PaDoKsM0cK+3u9DaAAOsmiH6ERrAmYIB62AcCNhHYmQ/YbnouX26eZ7V1klMOmNJWEpTWIhWfBTjDNayxB4DpE+QFwvZBOZjvG0pDlORr6XSjLRQSqqokaQcZCGY7CfgB1xT71mJgX0WxHxyXx9wJydqMueoFTyqvLK7b47XZWAAUV3xJkks4jKh1Kr7ys78XcurxwupGnbqWVi+V2W+wgKurLW45ODGqsc+L1O7OCWYzdrSYNs8zCJTlzyy64rtURtHdoVNjn7VWYx8Nh/jxqNXjXN75BpLzVHz5uNwyz3PbrFWr2Fsyz6tWY8/b3ZFiT/gYtghli1LCn6hr7K2iVxtlN03bKZFwCAf3KKp9bRR7k6n4biv2xRr7ncXAnpndOO1hz4hXmcRSDsotWFBYbTPED7BA22lgz9Khqyv2xbrRGin2iUgYrMpqWHW5allHqE5hrlRnO5w2l3rrFG0g7+dUfECj2Ft8ns1sAvoJu474gIlUfFLsbWFfsTeXwROPhPgYp712eZdbFeql4ltV7AH9ey3jimLvMBXfpnkee722pemYV4E9U+xt1dgbtLvjij0F9oSPGeA97Emx9zNsoWorFV/PPC/nnlGcVeb3yoF9JCTUZMFtvt2dVzX28gKBTcROe9gzuNu1wWIq4ySwD1DLO6Xm3dlk3lXcHK1WY1/rVPxQSODB3nBWXv0mo2FEahikqNWySoF9/RR7fy93prSrU/GtP8/KYtn/gX1fsZyJKatWqGaeV8tnJkgo7e6sZYSwjLBqQaEgCHzDXdvdQSmjcEexZyV0ThR7oNzITZIkxTzPiWI/ST6+vWNZHlRboeC0xr7MFd/twL50XTNupY897xZU2RW/hczzCD+j9LCnwN7PxB2k4lc2z6v9MLCgaKDXErPm1m4X5rg7mqncvi3jois+AJUrvrwQdcs4j1Et7Yxt3lhV+ABFbQ5Ujb1biv1olVT8VDEVv0au+ICy6GGKvdeBsxa1WqZVdNTUzDwvqg3s/b2Qm6Kav1ui1q9tPFqqgvkZJ4p99XZ3lIpvh6hOuV81MvkCD3Q7TIwHCZXTvJqc24p9p7yJtmc0w+8Lq33sAcULgx2v2rjSSWDfkYjyuYyV+VnBdo29oSu+2zX2pWPVuKq7j9m/1W7cMVjmBSn2hK9hPZcpFd/fsIWZnThcNxW/Tq74AHDUfhMBKClvXtNmsn2b25sdbOE5nM5jNJPnZjczJ7ml2LPA3qDdnQs19kFQ7N2usWdZUEbU2hUfUJTI4eKh1dIRHwDCIYGnylZW7GtknqdNxQ+QeV7ConkeEKxe9koPe+vjaDXzPCcBVzPDSz0stLtTm9maGa+qbcpEXNqU6WqNIxISIEnAnmJr03EbKdwswyBd/Ft1xqRToz8nBnp53u7OYmBv0Md+1OUsLDZWpXMiCqLEBRczin1cY7ynZcyC+u9XaARrAtjA1GXRPZZoLNhgFxGstytik66oMray65juBgdOa8dvLz0av7zkqJp8XjJqrn2b25sd7Ykon+x2DqY8UOwrp50pZoA2FPtE8BR7p2Z23BW/SmBf61R8QFlwDhVT8WvZw57BVTsT5nnV+lY7JWip+Gz+Dgn2gs8gpeJ7UWPvturbbNipsWdjQauqvWol+LXTbMow40O3rl0oJJTV2Y/ZSOFmm60syPQisN+617pi7zQVX2uQqLjiu7NuUmcXqZ9TUzX2qk0BPbhiT+Z5hJ9RFHtKxfczzlLxlT9ik0smX79UfAA49ZBpOHBae00+S92+bTRjHKhmXOgxq6W3qCrtGEpjOw/sa6PY880bG2nI3BU/5X/FfrAYaDs1s2M+JXvHMhWd3+sR2Cc1qfi1VuwBRdHJV1LsTfatdop20er3VHxW1jOxJWarfCmmMaTyMyzY6raTih8zCuyLwaHPN4DqhZPA3uxYoLRB09TYe2B8OK1D3kjbVdxEGrfRQpTNu6msfLysFDIcEkxtZFRCMdCzodhz8zxrxxAtOjdrr7Hiiu/OmK52xWc18YJgbq3KN1N0yhMlSVK8EgKs2Ad3y4IAAIiihL1jzDyPFHs/wyY1J+Z5gDy5JBF2FPT5kfZEBIPjuYrt25wo3Eb0TEhgw64RbNk7znvYuxXYm1Xsrfa9BoKp2DsNtCcVN0dFSXban2wwpg6O1z6w5zX2RcW+lj3sGbLxWIHM8zxg+oQkfvRPC22XL7Exze+p+JIk8XHUSY19Ni+n+YY16cVRl1qmNRtGrdAqYbUsx9D4UHS33R2gbBqx7BA7KdwJTZCZ5a3unB+nk5Z3zhV7/VT8NrcUe5V5XkpVX29mQ7OS71A6J4Ltxwe53V1wvxkBQF7QMmVpEin2vmbJIdOw8s0+HB7bY/lv1RMJG5TrWWNfD+Td5FSVVHz3FXvmsLtm8z6IkvzeU1zaZNP2e9XCr7EDxT4INfZu1bxHwiFMbIli33gO/aPGgX09FHuWpjjEFPsa9rBnmOllXTvzvGDV2APAx46eaftvg5KKP5TK8XHaziaH2oArnSvwlFyeiu/zDaB6Ebeh2A9b3OQzCtp4b3gXr113hzxv7xpOoyBK/J6zVmNfap6XddHHwUnLO7vmeTGDwJ5teriVJaZu4zvOW92ZW8NUSsVnxwkALQFe99IIFnBYW6aORMRxTQ9RX2ZNbsGdlx2NgydYr7EXBKFkUM4XRO7QWq9U/FqjBKqVUvHd3+zoLe78v7hpLwC51Z1bnQDMKvb22t0xxd7fgb0kSUqg7YJLPct8GjBwxk/nCjx4cuPzzNKiMc+rtSs+oGwgVnbFr5V5XrBS8Z2i7Q3tV1ga/qTWmK1xTX1fqNPxFTW1OeZDt+Gp+LYUe3PjpJF5HlvLuJlt0V10xu8bTvN0cMBmjb1GsY+5MBbVxTzPYONW8Upwv90dd8Q3G9gb3COAUk7REgsjFODMHBrBAs6ekWIaPhnnNT285V1eLKlRaxbFnre8M6HYuxrYTyhNmXPLOA8wX2Nvp+81r7H3eSp+KlfgCxE3FHTWNnSPQWDPNhHCIaGmBnYssM+K9UzFL2+rqcWqSmeXoKXiO0XbG9qvsNRoOz3sAdkYLaljwqYYsAV3we8l6vWFWayW5cQNjA+zBfc3ZVg2yM6hNA8uIyHBktqu3YhQOi+4l4q/bzzHa9zNUpDkz3crFZ+1u3NNsVdtQrJn1GyLT3bO86JkmFlgpWWhH2numa4JYIp9F7W6a3rUPUjVC5pmWfCyQMeMK76rqfgTShegbtXXA9UV+5SD7xOUVHwWaEdCgiuGOYpir++Mzz6vIxFxLTPDDEnNwqcu5nnFhZ+ReV46p/St9jwVP2Dt7pzCnaZ1lCw/0efAEZ+hZ6DHNv+o3Z09YuHixqIlxd5aWY4SKJd+BssQirh47VgJ3a7hNA+cW2Lm6rwZ2g4MimLv/DjbE1FMKGaEbbeYjq+Y51ntY2/Q7o6b57mbiq82zzObKaEe57WqPXsvt9z7GxUawQIOW3wylYloXtggns1LJQFsLYOPetJuwgyOqVnupuKXBvJuBvbVFXv7qfjMQd7vir3ayM6Ne11peVdZsa9lfT1Qvliph2IfDRUDe4OOAepNIq+PLxoWoL7clIofjBp7rtg7Cex1FPscpeI7wp4rvrWyHFY2aNTRwA0lnMEyQvqG0lyRttoiLaHZiHAzsAfsp+Pn7ZrnhSq3u3NrTE+ozfNy1mrs5TWt/P+166IxnopPij3hY1gdKAX2hDqNyota8kaHK9AV0taUQNhFE55OrWLvXip+1Rr74kIiaavGnrUHzEOs0Nqt0XE70GYt7wwV+zo44gPl5Rb1qLGvlorPFvJt8Yjjdk/VEAShJFOlWTKTjAhKKn6fA0d8hl6AyO7ZCKXi28JOYM8CQrMlS0ne2UEb2Luv2E8ttrvL5EXsGJTvOeuBvYF5nluB/QR7BnpseLZeY18+vkuSpKTiu6zYp3MFHoxrM9KMUI/7hop9gFvdARTYB55+3sOeUvGbHbW5jVJL3jxDgBkzOKWPvXsDfyIaxmRVR4qZbir2BqmJjHTWgWJfPF+SVOom6zeGXOphz5hcRbEf5EZ9td1M1br81kWx56n4lRX7Wm06qJ9jUuyDYZ6nKPb2x1H9VHz3HMubEaaWW2t3Z9UVX7/GPu9BjX0iGuadpN7bMwbAekCorbF326CRKfZb99pT7K36SfByTtXmTSpX4C3k3KuxV5vnWW8zmDQQPLhiH+BWdwAF9oGHKfZdpNg3PWwQz+XFpmt1ByiTTsVUfA8Ue0Ax0AO8Mc8zVuztf594JMTvGT/X2but2LNNGrZp6vXnmUWbXlifwJ654hsp9rUO7FWKfRNtYuqhrlv1M67U2LOAq7jxWRAlHpxQKr497Cj2wxZd8Y0cz3M8sHc324IZ6L1fDOytpnBrj9fNdneA/V72vMbeBfM8ZkYcEuxlBuqha55nIbDnG0DZ0nuRFHsiEPQX00W7XOqbTfgXXcW+iVSsDhNmcGkPauwBZREaj4Rc3WTT1vBpcbKBIwgCX3A1Yp29JEm44q6Xcel/v1hRhXSrhz2DdRjpH6lWY1/bwFprLlQP87xIqHLLK6vtrZyiDuYpFT8oqfgu1NgXAzTmdq4OVKiPvT3stbuzttHHvRE0812uuCvDxh+3YPP2e3tGAVg3XdOa/blfY19MxR+0ptizhCqrGwwxnXZ3oyr/Abf8mtR+IOM5a+3uANW6SKvYZ6nGnggASo09BfbNjroHqRe15I2OumbciIwHrviAotjPcLGHPWBCsXfYvs/MZki9eP69AaxY14en3t6DO57bZPg6FmhPcKmnPOswMjCWgSSVp5yzjYQJyRqn4mtr7OO1zRgAlKCIUvEbjyCk4o+kc9wjxW67OwBIamqfSwJ7qrG3RTRsXbG3utGX0DE9BFTGhxGvFHs5sLes2MdKj9ftco8Zk2wq9nbN8/QUe4s+CWbg3kE50ZZib1hjnyFXfCIAkCs+wVBPvGwnM95Mqfjx6jX2Xin2vcWWd26m4QPVFfuUww0cM50E6sVdL2zh//8Xj7+L3SNp3dcNumxm19Uuj6XpnMgVgNLPy7r6eWZpiHZ3RUM81hNci9XUW6eQeZ5CEFzxdw3Lz3h7ImLZyExNeX9xZSMq6rLq2yzwrjteKvYx/c0p1oXD7WvHNo+G0/YCwkREY57nsmI/vSgYDI7nLM3RbAiwa56nF9g7eR618MA8X1DV2Jt/f6bul7nik2JP+J10rsB3t6mPPRFT7bY6VXL9SHuVGvtcQUShuEBwOwg4c34PTjqgC5edMNvV962u2DvzUmjUXvZ7RjJ4+PU+AMDMSUmMZvL48cMbdF/rds17SyzCA4MBHQO9+tXYl17jeqgSiit+oyj2VGPPiKtUML+y04X6ekBlnqdRUsMhASGPuzUEFXvt7uTxoMOsYh/RV+yzHtXYa+8zqwGhEmDKx5txObAv6WU/aE61lyQJBUmwdRxRvVT84jV0cyNZPVaxchkr9fv8PiFXfCJo7C2aO0XDAjpqXO9JNB7qViU84GsiFYsFE8MGQapayXJ7w2PmpBb8/nPH4kMHT3X1fasp9mwRb9fUpto5qxd/enkr8qKEI2ZOwE8uOrL4u214bdtg2WvddsUHFNVezxnfi88zgzqQj0VCdUk9V1zxK5vnmV3IOyVWotgHezFXjSCk4rvhiA+Uu6srbuUU1NslZjEVP1dQepSbdsVngbJWseetCt1dz0zTBPb2+9iXZoa42XlhJquz32susC/JTrGs2Jen4rOOOW6atTo3z9NPxSdXfML3sEXn5Na4q3W9hD9hi9xcoTld8Vn6bzYv6i5u1ZOAX9J2jWrJANnpmSkZ9hX7onleqnFS8UVRwh9elNPwLzl2FhbtNxEfOXI6JAn41l/eKKt790JBZ+1D+3V62Q+6XNNvlqRKTWqrUw1h9XZ3LBW/HjX2/nimvSIIqfjcEd9BfT2gbHQyNZCncpMjvm3U6wszjKo2i82qvUaKvRcBM1Du42C/3V2peZ6bBo2KM745Az319bF6vvT62HPF3pPAXqXY2zDPy5QF9qTYEz6H6usJNeoa+wyvJW+eIUA98YzqKNAsOI5FQr7ZCGMTmJ5Kog727V7njkR1X4Ja88y7/di6N4X2RARnL+wFAHztjIORjIbx0uZ9+MtrO0te77YrPqB0GdFT7L34PDOo+9jXo9UdAERC5Qs/NYpiX4dU/KYP7P3vir/TBUd8QFH/0hrzPOphbx+rqfhsLEhEQ6Y3VIxqp3NcsXd33tbeZ1aV3oTGpDFbKK4xXLzPrLa8Uyv2llPxdTZvRjyosVdnIjJXfEs19gaZjCy7wM1jbURoFAsw/eSIT6gorbFvPsU+HBL4Tq1eoMo3O3wUAFRS7EsCe5tpyNV8CerBXf/YDAD46FEz+EKvuzOBKxbvDwC4ecWbJYqOFwo6a1k4oFHsJUmqW429WtGolSKupaorfqbW7e7kcxIOCa6n6foN3sfex6n4fUNy8OK0xt44Fb+57xEnWG13Z2csMEqxVvrYu3v9OhKRkjI2q0pvWR/74n3m5iYjM+TdalKxZ9cnJMjjohX4GjKvjO9MBfcuFZ+Z51lwxdc83wym/pMrPuFbBoo19l2tpNgTRu3ugj3AaWGLCL2Wd348JzzlTEclSakyEOwaQjWaed6u4TRWvrUbgJyGr+ZfTp6L6ROS2DmUxq+eeg+Ad4G2kWKfyhW4IlLrVPx4JMQXavVS7Ku54tfLPK/Z1XpAtVgOgHmeU8XeyDzPbcW3mbDa7s7OWKDtZsBgG4lueyQIglByr1k2z1PNz6Io8bnBzQ0I64q9fQM/3XZ3XqTiq86bvVR8oxp76w77foRmuwCj9LCnwJ4oTZXjrvhNtuBVzODKFWh2Tvzknl1ZsXd+jTsarN3dvau3oiBKOGb2RMyb1l7yb4loGP9v2SEAgF8//R62D6Ywli3wTgeu1tgbKPastV40LNg2LLSLICifWbdU/Cotr5TFfG3b3VFgH4xU/L5h5orvzDwvqVH0vKrRbiastruzMxaor5vaSyXnoUeCus7ecrs71RyQzhdcd8UHFMXebGDvJDtFv92d/Ay56oqvWqtyld1CMG5kKmznvfwIjWIBRqmxp1R8QrWjrkrFb6Y+9oAy+ein4rNOAf45J5UUezcyEBrJFb8gSriHm+btp/uaZQu68YE5k5DOifj+397iar3bgTZT7PdoFHt1dkA9fBpYumLdFPsGNc9rdkd8wP+u+KlsgW+cOVbsNcpv3qNU7mYibrnGvtg9xMJYwNYrolS6gZDLe+OKD8CRYl8S2OdE1/vYA8D0omI/lMrpChZacg5aA+q2uyuWVHhRYw8oc6qVVHz+fOcNFHtKxSf8Clt0dlFgTwCIRoq7rXkRaW6eF+wBTkt7BTM4lqLqp3PCFlN5USprMcYW8FZS2LSwlm2NoNg/uWE3dgylMbElijPmd+u+RhAE3HjOoRAE4C+v7sDjb+4C4H6grSj2+oF9rVvdMeof2BdT8Q1Uu+Fap+IXs2/8lIXjFQleY+9PxZ6p9S2xsGPzRTYmMgWP90GPUCq+XVjQJ0rGz78aJ6n4QKkay0p/vGhXOE2l2FsdV8MhgWcyyGVa7ps0tsUjmMh62ZtQ7Z1kp+i2uysq9u0e1NgD4Bl3tlLxVV47kiSRYk/4H3LFJ9Tom+c11xDAFhGjuqn4xSwGH6XtqjchtAv2VJal4jtX7Buhxv7uF2S1/qNHzai4+XJYbyc+foxcf/+Dv28A4H6gPaVNv90dUxQn1Cmwr3sqfqg4xojlin0mX+CKVa1T8f2UheMVPBXfpzX2O4vGed2dCcebdEap+KTY20etQucMMnbU8OyduPmxIBoWwOxi1OVnXl6/nhLF3vo4oq739qLdHWAtHd+NVPy8KEEsjvFeuOJHQsp1ZljrY1+u2GcLIm9rSYo94VsGxoqKfSsp9oS6Bk5lntdkC162q1zRFd+Hij1QXmfvxuZNpQyHWrJ9MIUnNsimeZ/QmObpcd3SA9Eej3CTRLcDbVbeNJTKlaSe1qvVHUNR7OvUx16VFaRFfQ/VauOBp+I32QamHupUfHV9sl/gPewdpuEDqrZpGvO8aIjuE7uoA3sz6fh2FHu1j0hpYF9MxbdpEluJaSU19tbHLd6BIVvgmSFxlzcgZk4y38s+68Q8T715U8yS8MIVXxCEsvIpK2tV9lp1Vsd4RrlfWny0xrMDjWIBRZIkUuyJEtQ9SP2Ydu4GXIGu6Irvn2ExpEr10yr2bLfajRr70Uyep8TVg3tf3AJRAo6fOxn7T2mr+vqutjiuPm0e/9ntQHtCMsod6PeOKap9vVrdMVjA4qaRkRVYYJTXuVdGVO7JVtss2YXM8xTYQlmU9K9Po8NS8bs7nBnnAXqKPaXiOyUSEsASKTKF6j4OwzaNNLWtCgHv2t0B2hp763MpG5PVGUtu1tgDFhV7B+dKnb7PsiS8cMUHSjdjk9Gwpc4+iVj55g/rYR+PhALf+jTY366JGU7n+eQ9idrdEShtR6MEfc01BLRXcHnP8B6z/trsiBu0dmGtnNwI7AFlAq81uYKIe1ZvBQBcclx1tZ7xz8fPxtyuVgDuB9qhkMDHVXXLOxbYT2ipz5j7gdkTEREkHD6jsy6fH9FxTWbU2jgPUNXY++yZ9gL1QtmPdfZuKvbUx959BEHQNVczgo0HVjch9RzP8x6m4s+cmERIkLP97GwQ8k2krOgoqK6E0vKuumKv1NjbN88DlKwsrti7PK6rFXqrGyqsE5B680fpYR/s+noACP43bFJY7Wd7PNJ0qiyhT0y16PZjz3Y3qFQzrnQK8NfiLh4JYwR5HcWeZWXY/z7xSBjxSAiZvIjhdA6dNe7NDgAr39yN3SMZdLXFsPRQfdM8PWKREH7wTwvx/+5fh3MO73X9uLra4tgzksGASrEfTMn/v17meV88ZS6mj7yFBdPrE9jrmSsxat3DHgB6i23R3AgG/Y5abcvkCnXzYbCLWz3sAVUqfk7uL573sF1aMxEPh5DNi6ZS8VmZlNXxgM1nqWxp/TTgjXne5LY4br9kEdoTEVveDnHVJpJ3ir08zm3da77G3s4xhIu176Ikj/GSJGE0WwPF3mpgr7P5o/SwD/6a118jO2EaXl/fTvX1hExMlYrPe5z7LIh1SluFGnvex95n6l7CQLHPuLR5056IIjOaqVud/d3FFnf/tGim5cXIMbMn4dFrT/HisNBVLHHqH1Er9vI5qlcqPgDUM+tcccXXS8Vnin3tzs0pB07B3Z87FofVaaOjkWBlO9mC2PSKvXpxn85741bejMQiISBjrcbeaocDvimjMkbzUrEHYNiFxQxJHfM871LxzSj2zrIGomF5oz8nyi7zzK7D9cBedY4sK/asDbCeYh9wR3yAUvEDC6+vpzR8okhUxzzPb0GsUyqn4vuzPEExxdIo9sVr7LR/ewfPcqh9y7stA+N4+u09AICLP2A+Db8WsDaibBMVqH+Nfb2p5Ipf61Z3gBzMnnBAV9NeDy1GY4UfcFOxV6f5prIqt3IPFN9mQl3uV4194/IatTNpbY3KzfOytamxd4q67MOrDaTpE2TFfjid53OQEU6PgXdXyos86yIcElxfN6nXpkmLwbieweIod+8P/pq38Z4CwhWYoRMZ5xEMZdItNG0qfkfFVHx/GgomdCYxQKkvc67Y16/l3R9Wy2r9B+d1Ydbklpp/fiUm8xp7lXlecbFar3Z39YbX2Fdwxa+lYk+UEue97KubmzUS2bzIvSy6O5wH9qGQwDc55IBL3ogKuqmW1zAlOmuijz3LdJrSbm2Nqm1lJklKKUWkATdmkir1WHGkd/c4W+MR7vlSrZd9Ns+yG+wdg9pHhQfLsbDjFpRaShR7i2sYXq5Roti735avUaFRLKAM8MCeUvEJGbWxjRv1136EBRWjeq74ef/1sQcqKfbF0gKH15ids+EaK/bZvIg/vVQ0zTPR4q7WsDInPfO8engRNAJMzcmLjWGeR5Ti1172u4qO+LFwyDUz4KTKObuRFV8/wQP7Kop9Ni/yDJ7JFtsxJ1RmdEBph4dGvH4JvRr7sPvigVkDvZyDdneAOvNT5Ia6XmzWqgUJu6n4pTX2BVvv5Uca7ykgXIEF9l2Uik8UUfcxzub9qU47pa2C+uzXFoBGir1rqfjJ+ij2j76xC/2jWUxtj+PUQ6bV9LPNoKvYN3sqfgVX7HqY5xGl+DUVn7e660y4pgyq3crzPD258RRfPxELm1PsWUZpJCRYHiu1HQ3URp2NWEqhDjK9qrEH1IF9FcXehRp7QB7jvUxvVwssVs3zeKegfAFS0QSAK/ZUY0/4FbbYJPM8gsEGZHXbMr8FsU6p1JedtwD0q2KvUeFcS8WPG/sSeMmz78q19ecfOb0hlRheY19U7EVRUtrdNW1gX73dXQel4teNmGpz10+4WV/PUPeyz3psvtYsRJlBb5WNI5blNKk1Zqk/OVBqRgeUbiI24vUrvc+883KYabKXfc5ha0e1CTML7L3osKHONLSqsrNzLknKRgZX7KnGnvArvMbeYpoTEVzYZKJWXv0WxDpFrRaOZUsV6Axvd+evgZ87wOa1rvjFDASH17heNfab+uWUwoO722v6uWZhgT1bpI5m82B7RfVqd1dveCo+KfYNSTzqz1T8viE5WHGzbSFTAcezeSUVv8nmQ7eJm1Ts2Zhpp1RUm6Gm3kSMWNwkqAXq9ny1UeyrpeIX+9jbrPOPqnxUmEjkRd16vKSPvdWWiKquF8WSDVLsCd/DXfHJPI8owhYtrFY6EhKaziwoHgnz4EMbqGZ86jvAFPu0ZrHOU/Ed1pQpNfa1Dew3D4wBAPab3FrTzzULG1sHRrOQJAlD4/JzFY+Emi4ThsEW1jndGnsK7OuNX1PxvVTsS2rsGzAw9BNma+zZ+rTLxvpU63iutLoTXDdwcwP18WYd1rdXYoZJxd6tVPxsQeTiiBdjesKBYh8NhxAuPsssE3Msy2rsgz//+GsFS5iG19hTYE8UiWnqX5s1+Gg3aN/GOwX4rAWgkWLvtit+Lc3z0rkCdhQX87MbzA2fwQL7fDEFn6fhN6lxHqCusa9gnhdv3vNTb+I+TcXnPexdcMRnsA3PFJnnuQZTc6sF9kyx77Kh2McNauxZq81Gg82/o5k87/ke99A8b6tZ8zyHgX2+IPHNWi9U8FLF3vr5SnDBQ75PxqndHeFn8iJsO44SwUW7S+w3ZdotjFLL3XKRrzXVFPu4w40KllZey1T8LXvlxUm7qo1PoxGPhPm91D+axXCTG+cBlIrf6HBXfN8q9knX3lPtrs5bgFEqviPMtrvjXZtsjO1JjeM5D+wb0DgPABLFoFSd8RZ1ud0dAEwvBvYjVXrZZ53W2Ks2b8dYjb0HY3qpeZ7191e6XhRr7EmxJ/zMaPGZDttwHCWCi3Ygdxrw+RXe8q4sFT9Yin06505pgVGGg5ds6i+m4Xe1NGR6JWOKqs5+kAJ7lXleeWA/TH3s6w7vY5/zqWLvkXkea89Iir0zYsW5s6piX+xhb8fcWdujnNeMN+i1Y8rxsCrY9uJYW2IRvlFSqc4+W3Cnj33Wa/O8iP1UfPnvSzM7lD72/lrf2aExnwTCESPF8WOyDcdRIrhoB/JmVezZJKRNLVcUe38N/IaKfd6ddnf1MM/bPCAvTGY3aH09Q11n3+yt7gCVsVKlVHxS7OuGH2vs8wURu0c8DOxV5nnU7s4ZZtvd9bug2Ge0qfgNeu2YcswC+5AAz7yNzLS8c6uPvbrdnTeu+A5T8TXdE5Q+9sGffxp6ZX/zzTfjmGOOQXt7O6ZOnYrzzz8fGzZsKHmNJElYvnw5ent7kUwmsXjxYrz++uslr8lkMrjqqqvQ1dWF1tZWnHvuudi2bVstv0pNGc3JA5wdx1EiuJSn4vsrgHULo0CVKd5xn6Vjxo0U+6w7NfasPVlNFfuicV6jB/ZqZ3wlsG/M0oFaoNRfli7ss3mRB5PU7q5++DEVf89oBqIkGzO6uaZR19izVPxmM5N1G+a0Xq3dHWsRakexV183AA3vj8A2IpiQ4OVxmjHQc5qKH1Wl4nvriq9KxbexhtF2T1Bc8YO/7m3MJ6HIU089hS996Uv4xz/+gUcffRT5fB5Lly7F2NgYf80Pf/hD3HrrrfjFL36B1atXo7u7G0uWLMHIyAh/zTXXXIMHHngA99xzD5599lmMjo7i7LPPRqHgr3Q0s4wU4xUyziPUaNO/nCq5fqU9oV8zrqSu++u8GCv27nwfbp6Xqr1iv1+DGucxFMU+g8FxUuy5eZ5Ymoqv3hTyoh6TMIcfzfNYff20jgR3unYDHiBmxYYPDv2CacWeBfY2PKB4inVx4zovstTyxrx2bP5lG79eOOIzuIHeXuNUfKeKPd+88dgVv1Sxt1Fjr/FiUPrYB3/+aehv+Pe//73k5zvuuANTp07Fyy+/jJNPPhmSJOEnP/kJvvGNb+CCCy4AANx5552YNm0a7r77blx++eUYGhrCb3/7W/zv//4vTjvtNADA73//e8ycOROPPfYYTj/99Jp/L68ZVaXiEwRDO/H5LYB1CzYJjWb0XfH9ptgb19i7k4rPFFbmHl2LBRRX7Lv8odjvKbZvApo7sGftwrSp+Ip7ctjV4IywhlJj7x/Fvs+DVndAaY29EtjTvekEM+3uJEly1I5Za4qWyzf2tWPzM/MC8HJ9Mac4X967eivmT+/EPy2aUfaarMOyE97uTt3H3hNXfLV5nn3FPsPb3bGygeCvexs6sNcyNDQEAJg0aRIAYOPGjejr68PSpUv5a+LxOE455RSsWrUKl19+OV5++WXkcrmS1/T29mL+/PlYtWqVYWCfyWSQyWT4z8PDwwCAXC6HXK52KalWyeVyGMnKD+zElmhDHythHXY9bV1XTW/pWFhoyvujpbi4HRrP8u8vSRJPT40Ioq/OSzQkLxhS2XzJ92GpimHN97F6D8XDivq6bzSFiS3ebhhm8iJ2DMqphNM7Yg19LSYki674I2new709HqrbMTsaH9xAku85SQLSmSwP4veNysFZWyLS0NfT71S7/tHiWl49VjQ62/bKm3zT2t0dC1isMJ7JIVtc/IcgNfR5qfvzXYWwiftrKJXjKnuHjbEyIogln5HO5oqf3ZjrGXa8jGjYu/lh2WFT8X9rJ+H59/fiK396Fc+9sxs3nn1ISap8NufsXmfXOJ3N8w3bRMT9ezIiKOuOWMj6sbKNi9GUvM5jDv6xUOM+P9Uwe9y+CewlScK1116Lk046CfPnzwcA9PX1AQCmTZtW8tpp06Zh8+bN/DWxWAwTJ04sew37ez1uvvlm3HTTTWW/f+SRR9DS0tjpoSN5OXDp3/Y+Vqx4r85HQ3jBo48+avlv5B6qyiO/r38XVqxY4d5B+YTtOwQAYbz13masWLERACBv/svn5unHV8JP2cJv9MvfZ8euPfx65kVAkorf54mVaNH5PlbuoVgojKwo4C9/fwxd7gpnZexKAaIUQTwk4cWnV6KBTfGxZUA+9+9s3YVYWAIQwsYNr2PF3vV1PS4744MbyOs8+Wb764q/gflzbhiSz5OQSzflmFNrjK7/pu3ydXh3ozL2NTrPbwoBCGF8YCdWrNju2vu+1yefi41bt2MoKwAQ8NqaVyBuLu/o0GjU6/muxqat8jl9b+MmrFjxvu5rdqUAIIJkWMLKR/6u+5pKbBmV/37fyBhWrFiB9fvkzxwfHW7IsWV38fsycumUp8d54VRgYk7A37aG8MDanVi1YQcunVfA9GLy267+MAABb72+Hit2rbP8/n3b5efxjbfewsBQCICAV1/6BwbedPNbAK/vla8rALy46hm8b3Hdsa9fPs5XXl2HRN9ryBXka/DcU4/rrof8wPi4cYmFGt98vSuvvBKvvfYann322bJ/07ZDkiSpaoukaq+5/vrrce211/Kfh4eHMXPmTCxduhQdHR0Wj7525HI5/OrNlQCAExYtxLKjptf5iAg3yeVyePTRR7FkyRJEo9ZTfv9t9aM8JWz2rBlYtmy+24fY8Iy8tA3/t/kNdHZNw7JlRwIo1r+98AQA4OxlZ3haB+c28Td348531qK1YyKWLTsWQNGBt/h9ztV8Hzv30HfXP4XdIxksOu4kHNbr7fj3+IY9wNo1mDu1A2eddbynn+WUqZv34b/fXg0x1oJoIgIMjeDk44/G4gOn1OV4nI4PTknnCvjaann++fBpS3nZS/j1XcAbr6KnawK/Rwn3qXb9d63ajL9u2YCpPb1YtmxhHY7QOo/88TVgZx9OOOIQLDthP9feN71mO/608XV0TpqC/FgWGB3B8ccegw/O63LtM9ym3s93NbY+vRF/3/YOuqcbry1e3LQXWPsSpk1oxbJlJ1n+jHd2jeKWdasgRGJYtuxD8tjy1qvomjQRy5Z9wOlXcJ2dQ2l8d+3T/OcJHW1YtuxETz/zbAAXb9yL6/60DrtGMvjpGzH8+7KDcdHR03HH1heA4WEcdeThOHNBr+X3fumvb2LV7q2Ys/88PLV7M4ACTv/wYtf9cNre6cdvN7wCADhzyamYYtFo8an0eqwZ2IG5Bx6MU46eYbge8hMsc7wavgjsr7rqKjz44IN4+umnMWOGUjPS3d0NQFble3p6+O93797NVfzu7m5ks1ns27evRLXfvXs3TjjhBMPPjMfjiMfLb6RoNNqQA6qakaIr/rTOZMMfK2EPu/dhLBxCrqC0/WjG+6OzRX6uRzMF/v3FVDE9TQBaErGG7p2upSUhp8ZnCxL/PgUT38fKPdSeiGD3SAbjecnze2bboFwCNWdKa8Pfn90TZBlkYDQLpvNNaqv/uFuveSoUVpYUQijMj2G86DrekYzV/dw0A0bXPxmXf5crwDfXYXex5/n0ie6OB+1JeR7I5CWeGp6INf76DmjcdWiiWGudF43vr8GUnJo+pT1u6zu0F+fvdE5ENBqFJMhBWiwSbshz0p4szQCJR2tznCcdOA0rrp6Aa//4Kp56ew+++eAbeGHTPgynmYmczTVkVLnGzJBuQlvC9e/UEldK/jpaE4hGrYWrzCQvJwJZUV7/xMIhtCb92y3M7Dlu6G0LSZJw5ZVX4v7778fjjz+OOXPmlPz7nDlz0N3dXZKWlM1m8dRTT/GgfdGiRYhGoyWv2blzJ9avX18xsPczinmef29gwhuiqp3KZjfPU7viqx3x/RTUAyqTmJxinsfq6936Ph1J/U4CXrC5aJy3X4O3ugMU86exbAG7h+UAZEJL4y0ua0U4JPDSiZzK04PdN9TDvr742RW/u9Pd9UypeV7RWd2nSl6jwJRQrXmmmoExeZy0uz5lBpCpXAGSJPmmjz2jlu79k9viuOOyY/D1Mw9GOCTgr6/txPv9Y46Og/0d6wIDeNXH3mG7u4jyfLNWdy1NYJwHNLhi/6UvfQl33303/u///g/t7e28Jr6zsxPJZBKCIOCaa67B9773PcybNw/z5s3D9773PbS0tODiiy/mr/3sZz+L6667DpMnT8akSZPwla98BQsWLOAu+UFCkiSMsMCe2t0RGtSDeSLanIsY3u5O5Yqf9mkPe0C9WFcWU2637jNqEegFm4qt7mY3eKs7AGiPRxCLhEr6tDezKz4AREMhZAsiD5YApd1dO/Wwryt6Y0UjI4oSdg2zwD7p6nsndF3x/Tf+NxIxlWO6Ef1FR/yudnvrU3WQl8mLyBfHGW0730ZBu6aodRp4KCTgC6fsj2NmT8KX/7AG24vGtLbb3RU3UPaNy9cxEhI8WTex94xHQrY6qSiCh8gzC7xw729EGvpb/sd//AcAYPHixSW/v+OOO3DZZZcBAL761a8ilUrhiiuuwL59+3DsscfikUceQXt7O3/9bbfdhkgkggsvvBCpVAqnnnoqfve73yEcDt7uzUg6j4IkPwSsFRNBMNSTH9vRbDY6WLs7VZCa8WkPe0A55rRKsXer1R1DyXLw3k3WT4q9IAjoao1hR1FVBCiwj4YFZAtAvlCu2HeQYl9XWA9wvwT2A2NZ5AoSBAGYarHGthpKH/sC8mJjt0zzCzETG0esh71dxV49R6dzBd6+rVEVe0EQkIiG+GZ7vcSDRftNxENfPgnf/PM6rH1vJw7pbq/+RzqwzS8W2LfGI55kOU7rSCAcEjBjor0NPaUtYoG3umux0TbPjzT0LCtJ1d1JBUHA8uXLsXz5csPXJBIJ/PznP8fPf/5zF4+uMRkYYw9b2JdBCuEtMUrFR5sqFZ+ZaDLF3o/nhC0U0jqp+HGXsjI6dMoXvCBXELFtn6wozPZBYA8AXe1xHti3xsJNr/pFwiEABQPFvqGXHIGH97H3SSo+62E/pS3u+nOVVG2Isju1UVVfvxA1odgPFAP7LpsZpdFwCJGQgLwot3TN88C+ca9dIhrmgX0977EJLTHc+rGFWLFiW0kLPCuwcpV9xVR8L9LwAVmY/PMVJ2Jiq72NcvW6aDzDfAWaY/5p3CeBsAUL7Ce3Uho+UY5akWj2VPy8KPHJlgXFfkzF5ylnJan4xY0Kl7Iy2DkbTnmr2G/bl0JBlJCIhlxX6LxCPdY2u1oPKGNMTk+xp/NTV3gqfs4fiv3OIXmTr6fT/R6bTL0bzxaQyzd+cOgHzNTY81R8BxmlyqaMUvLTyJsy6sw5v2/8KjX28nX0KrAHgAUzOjFjor2SPHWpDVPsW5tEsff3HUaUMTBKgT1hjHpSiftQnXaD1liYG3wxJZEtdP14TthiPS9KXL1gGxZa4x671Eqx31RMw589uRUhG3V19UC9QKXAVRlj8iWKPZnnNQJ+S8Xv4/X17gf26oV/pkCp+G7AAvtsJfM8lorvILBn83QqW+AmnZEGni/UmYB+bbXGUGrsi4p9g47pCdXmz3hW6QTVDPj7DiPKIMWeqASl4svlO2yXeSQjBxx+Ns9LaMyEAJVi71JWhp7hoBds7mf19Y1vnMdQL1BJsVdqXUtd8Yup+HE6P/XEb674zBG/x2XjPKB005Oljjey6usH4qZS8Zlib3+NmowV06zzBeTyjd/RIEiBPdu4LRRbRNpN6fcadanNWHGd19okrvj+vsOIMrhiT474hA4lrvg+n2Cc0KFxefezeZ56M4IF9O6n4tdKsWeO+P6orwdKF6jN3OqOEQ0V03Hz5an4pNjXlwSvsfeJYj/koWKvM//5PU263kR5Kr6+P1Y6V+Cb6U4UezavpdXGhw2s2CdVG+x+v8e05SrtDRrYs7EunSfFnvA5imLvj/pUoraUuOL7MIh1C63LOzfP8+FmRygk8Otapti7lIrPa+w9Duz95IjP6CLFvgSeii8qi/thHtjT+aknPBWfauwRCYfKFPpGVn39QLV2d2x9GguHHHXI4I7necWks5EDZvVay49ZgWq05SqNqoLzVPysoti3Neixuo2/7zCiDB7Yk2JP6FBqntccg5we7ZqWd2kf19gD5c746eLCyi3FntfYe2yet9lHPewZ6rGWAntVKn5BJxWfFPu6ok7FN9N1qN5wxb7D/cAeKC9Vohp7Z1Rrd6fU18cctUhj81oqK/JxppGND5MBSsXXboa1NWh5laLYq9vdNcf84+87jCiDauyJSpTW2Dfv489r7Fkqvo8Ve0DZkGALqlTWmxp7LxX7fEHE1n1yYL9flz8V+wktNO6yBTZT0rJ5kd+XHaTY1xWm2ItSZYOzRkCSJE9r7IHyhT4rIyHsobS70/dw6FcF9k5IqHqUM8PYWANvypTU2DfwBoQZtJkRjaqCJ1Q19qzdXaNmF7iNv+8wogxyxScqEaVUfADqQLWYiu/jGntAT7Fngb3bNfbeKfY7BtPIFSTEIiH0eKTQeYF6kUqu+EqtK1twq++ZRnVQbhbaExGuHu4YTNf5aCozOJ7jG0JTO7wpLVQb6IVDgm86cTQq8So19v2j7pSKspr1VK6AbPGzGlmxTwSp3Z1G/GjUMV3tik+KPeFr9pJiT1SgpMbepTRtP6I1g8v4uI89UG6KxWpoky4F9kxpzeTFio7HTmCt7vab1OKrBfaklhhvn0ip+MrCNVessWfPWGssjLCPrmsQCYUEzC5mw2zsH63z0VSGqfWTW2OebbiWBlx0bzqlWrs7ptg76WEPlKqxed6qsHHnbnXmnN9T8bXPSeOm4ivtLJl5Hin2hO/IFUQMFmtgJ1GNPaFDqWLfvI8/U+xHMywV39+KvXqhA7ifiq/elfdKtfejcR4gK0UTiyn4FNgrNfaKYk/GeY3E3GJg//6esTofSWX6hmXjPC8c8RlBcitvBGKqVmgFsVy1d6PVHVDayizHA/vG3ZgJco19owbLrKwymxf5HESKPeFLbv/EEbhwbgETaIFJ6KCeVPxqFOcGZa74Lvd9rzVxjWmR26n44ZDAfQm8qrPf5EPjPMbCGZ2IhgUcOK2t3odSd7hir0nFJ+O8xmAOV+wbO7Bf9e4AAGDuFO+eKXUqvt9rnxsBdZp2Tke1H3BZsU/lCjwzKNLA2UCl91njHqcZtBtgjTquq8/5vnF5Q6m1SQL75viWTUI0HMKSQ6cit0milEdCF1LsZbSp+Gmeiu/PzQ6tYq9sVLj3fdoTEYxm8t4r9j4yzmP856eOxnA653jBGgSi3BVfXnAPUw/7hsIPgX2+IOLPa3cAAM49vNezz1ErqRGfB1yNgHpzJJMXy+YfXmPv1DxPVT+dK25mN3KrwkSAFHvtc9KowbK61HRv8b5radDsArfx9x1GEIQlohF5UBaE5lYoymrseSq+P8+JVrFPeWAGqD1nbuNnxT4WCVFQX4SZWGnN8ygVvzGYM6XxA/tn3u1H/2gGk1pjOOXAKZ59TlIVlFAqvnPU6fB6XiyKK75TxV4xz8sXFftG7mgQpMC+rN1dg27YhkICP9aRDPN5acxjdRt/32EEQViCDXSJSNhRH1m/wwxf2IDPFXufliewhUOmTLF3b4hngZkXin1BlLCFB/b+U+wJBeaKzxT7EVLsGwpWY79zKI3xrHftK51w/yvbAchqvZeBkLrGvpk3ut1CEJRgSs9Aj7Vj9qTGPtK465lEgLwcytvdNe64Htesf1pi/lzfWcXfdxhBEJbggb1PlWm3KK+xlxcHfnXF1yr2LMB3yxUfUM6ZFzX2O4dSyBZERMMCeid407OaqA2KKz6Z5zUiE1pimNgiX4tN/eN1PppyhtM5PPJ6HwDggqOme/pZyQC1IWsU2EZMTqPYi6LEuza56YrPAvtIAyv2JeZ5Pr/PytrdNXBgr13/tDbwsbqJv+8wgiAswQZlv7q/u0V5Kr77Nem1pLzG3v1UfNbybjjlvmK/uajWz5zUQv4gPkdJxWeKvXy/dJBi3zA0cp3939btRCYv4oCpbVgwvdPTz0qoFLxGVnz9hFHLu8FUjjvlT3LYjjmpqrFn40wjb8wEKRVf232gkYNl7fqHFHuCIAJHNEyBPaAEqUFT7Nn3SHmSiu9djT3rYU9p+P5HMc/TKvaNuwBsNuZ0yU7zjdjL/r5iGv4FR033vFyMFHv3Yc+/tsae1ddPaIk6PtdsQyaVpXZ3tUadcRANCw29ZlKvf8Khxj5WN2mOb0kQBACl1UqzDHBGsPSxdE5EriAGRrFn38MLl3+lxt79wJ4p9vv50DiPKEVpd1dU7DNkntdozC0a6L3fYIr91r3jeHHjXggCcP4R3qbhA5rAvoFTuf2EkWLPjfMcqvWA0qM8lSvwcaaRN2YSQUrFVx1/azzS0F5N6vPeGmseXynaQieIJiJGqfgASp1cR9N5T1LXa4lWsWeBfdLF1DOtL4GbbOonxT4osHZIeVLsG5ZGTcX/8xpZrT9h/8k18dpooVR81+HmeRrFfmDUnfp6QJnX0rkCT+9v5HaFauXY74q9+jw3cn09oAnsG/xY3cTfdxhBEJaIknkeAPk8MLVmJJ3nSrdfMxniZYq9FzX23qXik2IfHJjyyVJkh8k8r+FoxMBekiTcXwzsLzhyRk0+M0Gp+K4TK2aJGaXiuxHYqz1lWLu7RlbC1Rvsfg/s1Zktfgrsm6W+HqDAniCaimPnTsbB3e01SXNsdJhqP5LJIRMgxb4gSjwNMuHiIqIjWTTPc1mxF0UJm/fKAQYLOAj/orjil5rnkWLfOLDMmMHxHPYVncrrzZqtg9jYP4ZkNIwz5nfX5DPVARcF9u4QM6ixZ4r9ZIet7oBS8zz2OZEGvn6JSHDus1BIQKRocNvwgX2ktGygWfD3HUYQhCWmT0ji79ecjI9/YFa9D6XuqM3g0nn3zeZqibrGnqn2gFep+O4q9rtG0kjnRERCAqZTqzvfQ6n4jU8yFkZvZwJA49TZ3//KNgDAmfO7a7YID1IbskaBt7vT1NgPjLmp2Cs19nnRB+Z5sWDdZ2xzotGDZVLsCYIgmgiWGjw4nuMGPG6azdUStWLP0vCBUqXAKe2aTgJuwXppz5iYbGjVhTCH4oqvbXdHqfiNxJwpjZOOn8kX8JdXdwIALjiqNmn4QGlg38g12n7CyDxvz4h7in1pH3sfmOep5mG/lvupYWN8W4Nv1iZLzPMa+1jdxP93GEEQhA1YzTir/QOCodizVnexcAghF3vCe6XYby62utuPjPMCgeKKL3ecYBtNpNg3Fkqdff1b3j3x1m4MpXLo7kjg+P0n1+xzKRXffdh5zGhT8V1V7Nl8p0rFd3Guc5tkLAxmyB73abmfGrZ509bgwbJ6PdfS4NkFbtI835QgCEIFqw9TB/Z+VewTqprDtAc97IHSdneSJLnWOmZT0ThvNhnnBQKWdZEvSCWbQI1ej9lsKL3s66/Ys9715x85HeEaBmgU2LtPLKyfiq+Y57lXYw8AY1l5jGnk6xeLhHD9mQcjlRXRmfR/5hI7142u2Gvb3TULjX1VCIIgPKJdo9hHw0JNF5VuwtL7Mnl1YO/uRMYyHLIFEZm86Nr7k2IfLKIhloov8jT8lliYyiwajLlFxf79PfUN7PeOZfHEW7sBABccVVtT19Iae3+O/Y0GT8U3Ms9rdU+xBwBJzsRv6MAeAD5/8v71PgTX4IF9g2/Wxktq7Bv7WN2ksZ8EgiAIj2AK9J4RObB3sx691vDUxFzBs8C+NRbh6YRuOuNzxb6LFPsgoHbFJ+O8xoWl4m8aGINY7GBQD/7y6g7kRQkLpnfiwGntNf3sJLW7cx29wH48m8d4Vp6XutqdB/bhkFBmQtfI5nlBg/lRNHpgX1JjH/fv+s4qNJIRBNGUKIq9rCT4ufatVLFnrfvcHd5DIYFP5G7V2UuSxBX72aTYBwK1K/4wb3Xn//TToDFjYhKRkIB0TkTfcNrV95YkCW/sGOabjJVgbvi1VusBIBFTm+fRctgNWMCtDuyZWh+PhFxLidbOb3T9akfMN6n4qhp7UuwJgiCCDQtSmWLvZ7datUswW0wnPdio6FDV2bvBnpEMxrMFhARgxkRS7IOA2jyPFPvGJRIOYVbR18LtOvu/vLYTy372DBb/6En8cfVWFAwyAt7dPYJXtw0hEhJwzuG9rh6DGSgV33302t0p9fVx17xZtBlpQWgj5xf82O6OFHuCIIiAw4JUtujwqyM+UKrYM1d8LzIQFGd8d1LxWRr+9IlJviAk/I0S2KtT8Umxb0R4nb3Lgf2qd/sBAH3DaXz1vtdw5k+fxuNv7YIklQb49xdN8xYfNMUVt3SrRMMhnsJNqfjuwALsTKFcsXfDOI+R1Cj/1K6wdswttsqcN7WtzkdSGVLsCYIgmggWpLLaP7864gNaxV4s+Z2bsM2Q4VRlxT6dK2Dt1sGyhbyWTZSGHzh4Kr6omOeRYt+Y8JZ3LhvovbZtCABw1sIedCajeHvXKD7zu5fw8f/8B9ZuHQQAiKKEB9bIgX0te9drYeNklDYWXSGqU2PPNs8nu7h5o/XEaeR2d0HjR/90OJ792odwSE9HvQ+lIuqMnLYmUuxptiUIoinR1ocFQbHPixLGi+1/kh58H7OK/c0r3sSdz2/G50+ei/+37BDD1ymO+JSGHxSioaJin5f4BlAHBfYNidLyzr1e9ulcAW/vGgEA/L9lh6AtFsHtT72LO57bhBc27sX5v3wOZy3swQcP6MLOoTQ6EhF8+OCprn2+VZLRMEbSeVLsXUKv3d3AmPuKfaKkVaHgWoo/UZ1YJOSL0jlyxScIgmgitOnBXijctUJ97IPjubLfuYUS2Bsr9tm8iD+v3QEA+M+n38eKdTsNX6v0sCfFPiiw1OZciWJPqfiNCFfsXUzFf6tvBHlRwuTWGHo7E+hsieL6Mw/BE19ZjI8eNQOCADz02k58/f51AICzD++t69jLUrqpxt4d9FzxmY+Nu4q9Er7Qpgyhhzqrg2rsCYIgAo42PdjP5nnqY+eBvQelBe3cPM9YsX/uvX4MpZR//+r/9xre26OvCFIP++DB3Knz6hr7BjdZalZYrezWfamyvuN2WbdtEAAwf3pniYo6fUISt1x4OFZ8+YM45cAp/Pf/tKh+afiAkq5LruruENcJ7JliP7nVmxp7SsMn9KAae4IgiCZCG9j7WbEPqfr6sqBaay7kBuycDVdQ7P/6qqzQX3LsLBw7ZxJGM3l84X9fxlim9G8kScLmflmxn0M97AMDV+wLIkYyVGPfyExtj6MlFkZBlLB137gr77luu1xfv3BGp+6/H9LTgTs/8wH8f184Hnd+5gM4atZEVz7XLrzGngJ7V1CbZzIGijX2U1zoYc8o6Wjg4015wjvUa6BWCuwJgiCCTXs8OKn4gKKUDI4XewZ7UGPfkSya5xko9pl8AY+80QcAOO+I6fj5xUdiansc7+wexdfvX1dipjcwlsVIJg+BWt0FCnLF9w+CILhuoMeM8xZM1w/sGUfPnlSi3NeLSUUVmTaf3CGm6tDC4OZ5rS6m4kfVij2FMkQ56qzFFkrFJwiCCDaJaKgkhc/PqfiAYhQzmPIyFb9yjf2z7/RjJJ3H1PY4jt5vIqa2J3D7JUchEhLwl1d34HerNvHXsjT83s6k7zdVCIWoyhWfZXawDSGi8XCzzj6dK+Cd3XLZzQIDxb7R+OoZB+FrZxzcEJsMQYBljmV12t1NdtM8Tx3Ykz8CoUNJH3tS7AmCIIKNIAglKo3fg0u2McFS8b0xz6tcY//Qa3Ia/rIFPQgVN02Onj0J1xed8b/70Jt4efNeAMCmYho+OeIHiwh3xad2d37AzV72b+wcRkGU0NUWR3dHwvH71YKDuzvwxcX7+378bxSUdndyG9l8QcTeceaK76Zir4QvMSqjIHSY0BJFRyKCns6Er7seWaV5vilBEIQGdYqwF6nrtYRNXMw8z9t2d+WKfTpXwKNv7AIAnL2wp+TfPnPibJy9sAd5UcIVd72CPSMZMs4LKBHuiq9OxafAvlGZM4Up9s5b3q3bptTXU/ux5iSmqbHfN56DJAGCAExscS9zJ0mKPVGFRDSMR/71FPzlqpOaajyi2ZYgiKalTeXWHfcgdb2WsOMfSsnqiBcKVEeFwP6Zd/oxksmjuyNRZoglCAJ+8NGFeKtvBO/uHsVVf3iF11vOJsU+UMS4K76i2HdQjX3DovSyd67Ys/r6+VXq64ngonXFHxiT6+sntcRc7Tygnt/I+JAworvTH5lDbkJPA0EQTUtpKr6/h0N2/Ewp8SawNzbP++trcu/6sxYqafhqWuMR/OqTi9AaC+Mf7+/FivVy2v7sLlLsgwRbvIsSkM7Ji3tS7BuXOcWMmV3DmbLOFVZZzxzxKbBvWrR97PtH3K+vB7SKvb/nboJwE3oaCIJoWtSp+F6YzdUSbSDvbY19vsThPp0r4LFiGv5ZmjR8NQdMbcMP/+lwAAD789mUih8o9NJi26iPfcPS2RLl/cWdqPbj2Tze2T0CwD/GeYT7KF0xShV7Nx3xAW2NffOkWRNENSiwJwiiaVEriX6vsde6+nuRgcDOV0GUkMoV+O+f3LAHY9kCpk9I4siZEyq+x1kLe/DZk+YAkOsuZ02iVPwgoTWyaomFSVFrcNxwxn9jxzBECZjaHsc0nxjnEe6jbXfXX3TE73Kxhz1A7e4IwgjaRicIomkpScUnxb4qLbEwwiEBhaIxWkuxhcxD65gbfrcpk5qvn3kwCqKE7s4EkjF/n3eilIimDIPS8BufOV2teGnzPkeB/brtinEe0bxo290pPexdTsVXzRtRn7eqJQg3oRmXIIimJciKfdKDwF4QBLTFIxhK5TCSzmFaRwKpbAEr32Rp+L2m3icaDmH5uYe5fnxE/QmXBfZknNfoKM74DgL7onHegukT3DgkwqfEIvLzz83zioH9FLcVe9VGfFTH04UgmhV/r2QJgiAcQDX21ulIypshQynZaOvJDbsxXkzDP5zUuqZHEISSdHxS7BsfN3rZv1ZU7BfM6HDlmAh/EgvL806uUJqK76liT6U+BMGhp4EgiKZFberlVSBcK2pRYw8A7XFmoCc74//1NTkN/+yFPU3VK5YwRm2gR4p948Nb3u0ZLTHFNMtoJo/39owCoFZ3zY7WFZ8p9pPbvDPPoz72BKFAgT1BEE1LkFLxa6XYt6t62Y9n81j5lpyGf7bJNHwi+Kjr7Emxb3z2m9wCQQCG03nsHcta/vs3dgxDkoCezgSmtpNxXjPDAvu8KEEUJcU8z+V2d9THniD0oaeBIIimpSNAqfjlir1Xgb3S8u7xt3YjnRMxa1IL5k+nFFxCJqa6FzsosG94EtEwejuTAOzV2b+2bRAAqfUEEFWp59mCyM3zulxX7NWBPSn2BMGgwJ4giKalTe2K73PFPl6m2HvzfTq4Yp/DQ8U0/LMoDZ9QoW4/Ran4/mDuFPt19twRnwL7pke9qbdvPMvb3k12WbFXm8NSO02CUKCngSCIpqUkFT9Air0glPcTd4uOpByo7RxK4/G3dgMAzlrQ48lnEf6kpMY+Toq9H3DSy34dN86jwL7ZUc87OwbTAOQ2qaw1qluoFXuv5jqC8CP0NBAE0bSUuOL7XLFXL3SS0bBnCjrbDPnrazuRyYuYPbkFh/VSGj6hQK74/oMH9nusBfYj6RzeL/7NAlLsmx5BEHhq/M6hFAD31XpAo9hTuzuC4Ph7JUsQBOGAUvO84Cj2Xjr8s3PGaicpDZ/QQq74/sOuYr9++zAAYPqEpOvO54Q/YRt7O4uKvdv19UDpfBeNUChDEAzaSicIomlpj0dw7uG9KIiS702+1MF8wsOFjjZQIzd8Qktpjb2/n6tmYS5reTcwBlGUEDKpgq5nafik1hNFYpEQxrIF7GCKfav7gX0oJCAeCSGTFxElxZ4gODTjEgTRtAiCgJ994sh6H4YrlCj2Me8Ve0A23Dq4u92zzyL8iVpBI8XeH0yfmEQ0LCCbF7FjKIUZE1tM/d1rVF9PaGAGejsG5cDe7VZ3jGQsLAf2VGNPEBx6GgiCIAJAqWLvXWCvbhF49gJKwyfKiVIfe98RDgnYb7L1dPx1xVZ3pNgTDBZo9w15l4oPKPMcueIThAI9DQRBEAGgtMbey1R8JVA7i9LwCR3UNfYdpNj7Bqt19kOpHDYNjAOgwJ5Q4Ip9MbD3wjwPkBV7gPrYE4Qa2konCIIIACWKvYfmeftPbcOk1hgO7m7HgdPaPPscwr9EyRXfl8wtBvbvm3TGf72Yhj9jYhITW70J3gj/wczz9ozIBqtemSqyzWxKxScIBZpxCYIgAoC23Z1XdCSieOH/nQpJAqXhE7qoF9ptFNj7BquKPauvX0j19YSKmMa81csae4ACe4JQQzMuQRBEAKhVuzuAFlJEZVhf6WQ0TPeKj7Aa2K/jjvgTvDokwofEwtrA3usae9pgJggGzbgEQRABQB3Mxz2ssSeIajBXfErD9xdzpsiB/bZ948jkC1Vfv24btbojyilX7L0J7I+ZPRGxSAiH9nR48v4E4Udo1iUIgggAasXey1R8gqgGc8WnwN5fTGmLoy0ewWgmj617x3HAVONWloPjWWzZS8Z5RDnqwD4kABOS3hhoXrv0IFzxoQM8z1AjCD9Bsg5BEEQAqJV5HkFUg7Wfoh72/kIQBJ6OX81Ab/32YQDAfpNb0NlC15lQUJffTGqNIxTyLlWe5jqCKIUCe4IgiABQq3Z3BFGNaJhS8f0KC+zf2Dlc8XWvbR8EAMwntZ7QoFbsvTLOIwhCH5p1XaRQKCCXy9X1GHK5HCKRCNLpNAqF6jVyhDOi0SjCYdoxJupPKCQgFg4hWxC5qRBB1APWV5p62PuPw2dOwIOv7sDPVr6DeCSML5wyV7f7BauvX0iBPaEhHlYH9t7U1xMEoQ8F9i4xOjqKbdu2QZKkuh6HJEno7u7G1q1bqRVVDRAEATNmzEBbG/XzJupPPCIH9qwNEEHUg0iIFHu/8snjZuHtvhHc+9JW/ODvb2Hd9kH88J8OR1u89FpyR3xqdUdoiIZJsSeIekGzrgsUCgVs27YNLS0tmDJlSl0DalEUMTo6ira2NoRClI7rJZIkYc+ePdi2bRvmzZtHyj1Rd+LRMEYyecSp7pCoI5OLi/mezmSdj4SwSjwSxvc/ugALZ3Zi+YOvY8W6PryzaxS//tQizJ0ib2DvHcti274UAErFJ8pRp+JPJsWeIGoKBfYukMvlIEkSpkyZgmSyvgsZURSRzWaRSCQosK8BU6ZMwaZNm5DL5SiwJ+oOq7NPROjZJ+rHPx+/H3onJHDqIdPqfSiEDQRBwCXH7oeDuztwxV0v453dozjvF8/htouOwGmHTuNq/ZyuViq3IMooDexJsSeIWkKrPxeh1Pfmg6450Ugw0zxKxSfqSXsiio8cOYOCPp+zaL+J+MtVJ+GY2RMxksnjc//zEm599G28unUQALW5I/SJUo09QdQNCuwJgiACAgvoqY89QRBuMLU9gbs+dxwuPX4/AMDPVr6DXzz+LgBgIdXXEzqQKz5B1A8K7AmCIALCPx8/GycfOAUfmDOp3odCEERAiEVCuOm8+bjlY4dzg06A6usJfdStVye3kmJPELWEAnuipsyePRs/+clP6n0YBBFILjx6Jv7nMx9AO6VAEwThMh9dNAP3ffEEzJrUgt7OBCn2hC4xdSp+OwX2BFFLKLBvUgRBqPjfZZddVvXv//znP7t+XMuXL8cRRxxR8rtnnnkGEyZMwFVXXVX3doIEQRAE0azMn96JJ76yGE/822K0xMh/mSgnGla8hya3Uio+QdQSGpWblJ07d/L/f++99+KGG27Ahg0b+O/q7e7PeOihh/Cxj30M//Zv/4abbrqp3odDEARBEE1NOCQgHCIfD0KfWES+N9rjESTI74UgakpTKfa333475syZg0QigUWLFuGZZ57x5HMkScJ4Nl+X/8wq2t3d3fy/zs5OCIJQ8ru7774b+++/P2KxGA466CD87//+L//b2bNnAwA+8pGPQBAE/vN7772H8847D9OmTUNbWxuOOeYYPPbYY7bP4913340LLrgA3//+90uC+r///e846aSTMGHCBEyePBlnn3023nvvPf7v2WwWV155JXp6epBIJDB79mzcfPPNAIBNmzZBEASsXbuWv35wcBCCIODJJ58EAOzbtw+XXHIJb184b9483HHHHba/B0EQBEEQRDPAzPOo1R1B1J6mUezvvfdeXHPNNbj99ttx4okn4te//jXOPPNMvPHGG5g1a5arn5XKFXDoDQ+7+p5mWb98ieP3eOCBB3D11VfjJz/5CU477TT89a9/xac//WnMmDEDH/rQh7B69WpMnToVd9xxB8444wzev310dBTLli3Dd77zHSQSCdx5550455xzsGHDBsvn+Je//CWuvfZa/Pa3v8UnP/nJkn8bGxvDtddeiwULFmBsbAw33HADPvKRj2Dt2rUIhUL42c9+hgcffBB//OMfMWvWLGzduhVbt241/dnf/OY38cYbb+Bvf/sburq68O677yKVSlk6foIgCIIgiGaDdWWhVncEUXuaJrC/9dZb8dnPfhaf+9znAAA/+clP8PDDD+M//uM/uJpLyPz4xz/GZZddhiuuuAIAcO211+If//gHfvzjH+NDH/oQpkyZAgCYMGECuru7+d8dfvjhOPzww/nP3/nOd/DAAw/gwQcfxJVXXmn68998801ceeWVukE9AHz0ox8t+fm3v/0tpk6dijfeeAPz58/Hli1bMG/ePJx00kkQBAH77befpe+/ZcsWHHnkkTj66KMBKBkKBEEQBEEQhDEnzevCeUf04rwjeut9KATRdDRFYJ/NZvHyyy/j61//esnvly5dilWrVun+TSaTQSaT4T8PDw8DAHK5HHK5XMlrc7kcJEmCKIoQRRHxsOCKcm6HRCSEUYAfjxnY69j/vvnmm/jc5z5X8vcnnHACfvazn5X8jn1fxtjYGL71rW/hoYcewo4dO5DP55FKpbB58+aS11U6NkmSMGPGDEyYMAE//OEPcfrpp6Onp6fkNe+99x5uuOEGvPDCC+jv7+fvtWnTJhx66KH453/+Z5x++uk46KCDcPrpp+Oss87C0qVLy76r9nuz311++eX42Mc+hldeeQVLlizBeeedhxNOOMHw3EmShFwuxzMXvITde9p7kCDMQvdQcKFr29zQ9Q82frm+LRHgxx+dD6Dxj7XZ8Ms9RJRj9po1RWDf39+PQqGAadOmlfx+2rRp6Ovr0/2bm2++Wdes7ZFHHkFLS0vJ7yKRCLq7uzE6OopsNuvegdtgtPi/IyMjpv8mnU5DkiS+eSFJEjKZDP8ZAFKpVMlr2O/UP1933XV4/PHH8e1vfxtz5sxBMpnEpZdeitHRUf46URSRTqdL/k5NJpNBS0sL7rvvPlxwwQVYvHgxHnzwwZLg/pxzzsH06dNx2223obu7G6Io4oQTTsDQ0BCGh4dxwAEHYM2aNXjsscfw1FNP4aKLLsLixYtx5513YmxsTD5PqmPau3cvAGB8fBzDw8M48cQT8dprr+GRRx7Bk08+iSVLluBzn/scvv3tb5cdbzabRSqVwtNPP418Pm/6nDvl0UcfrdlnEcGE7qHgQte2uaHrH2zo+hJOoXvIf4yPj5t6XVME9gxBEEp+liSp7HeM66+/Htdeey3/eXh4GDNnzsTSpUvR0dFR8tp0Oo2tW7eira0NiUTC/QO3gCRJGBkZQXt7u+F305JIJCAIAv9ehx56KF5++WV8/vOf56955ZVXcOihh/LXRKNRxGKxknPx4osv4tOf/jQuvvhiAHLwvHXr1pLXhUIhJBKJsnPIiMfjCIfDmDVrFlauXIkzzzwT5513HlauXInp06djYGAAGzZswK9//Wt88IMfBAA8++yzAGQnf/a+HR0duOyyy3DZZZfh4x//OJYtW4Z8Po+5c+cCkK8ne+0LL7wAAGhpaSn5+y984Qv4whe+gF//+tf42te+hp/+9Kdlx5tOp5FMJnHyySfX5Nrncjk8+uijWLJkCaJR6lVOWIfuoeBC17a5oesfbOj6Ek6he8i/GAmiWpoisO/q6kI4HC5T53fv3l2m4jPi8Tji8XLjj2g0WvYwFAoFCIKAUCiEUKi+jQZYWjk7HjOw17H//bd/+zdceOGFWLRoEU499VT85S9/wQMPPIDHHnuMv2b27Nl44okn8MEPfhDxeBwTJ07EAQccgAceeADnnnsuBEHAN7/5TYiiWHYslY6NbUaEQiFMnDgRjzzyCM444wx8+MMfxhNPPIHe3l5MnjwZ//Vf/4Xp06djy5YtvMSCnf/bbrsNPT09OOKIIxAKhXDfffehu7sbkyZNQigUwnHHHYcf/vCHmDt3Lvr7+3HDDTeU/P0NN9yARYsW4bDDDkMmk8GKFStwyCGH6B5zKBSCIAi694WX1PrziOBB91BwoWvb3ND1DzZ0fQmn0D3kP8xer6ZodxeLxbBo0aKy1JNHH33UsHa6mTn//PPx05/+FD/60Y9w2GGH4de//jXuuOMOLF68mL/mlltuwaOPPoqZM2fiyCOPBADcdtttmDhxIk444QScc845OP3003HUUUc5OpaOjg48/PDDmDZtGhYvXozt27fjnnvuwcsvv4z58+fjX//1X/GjH/2o5G/a2trwgx/8AEcffTSOOeYYbNq0CStWrOCB+X//938jl8vh6KOPxtVXX43vfOc7JX8fi8Vw/fXXY+HChTj55JMRDodxzz33OPoeBEEQBEEQBEEQXiFIZhuf+5x7770Xn/rUp/CrX/0Kxx9/PP7zP/8Tv/nNb/D666+bck0fHh5GZ2cnhoaGdFPxN27ciDlz5tQ9FV8URZ5mXu/sgWag1tc+l8thxYoVWLZsGe22Erageyi40LVtbuj6Bxu6voRT6B7yL5XiUDVNkYoPABdddBEGBgbwrW99Czt37sT8+fOxYsUKy63QCIIgCIIgCIIgCKKRaJrAHgCuuOIK3pudIAiCIAiCIAiCIIIA5WoTBEEQBEEQBEEQhI+hwJ4gCIIgCIIgCIIgfAwF9i7SJD6EhAq65gRBEARBEARB1BsK7F0gHA4DALLZbJ2PhKg17Jqze4AgCIIgCIIgCKLWNJV5nldEIhG0tLRgz549iEajdW0zJ4oistks0uk0tbvzGFEUsWfPHrS0tCASoUeJIAiCIAiCIIj6QNGICwiCgJ6eHmzcuBGbN2+u67FIkoRUKoVkMglBEOp6LM1AKBTCrFmz6FwTBEEQBEEQBFE3KLB3iVgshnnz5tU9HT+Xy+Hpp5/GySefjGg0WtdjaQZisRhlRhAEQRAEQRAEUVcosHeRUCiERCJR12MIh8PI5/NIJBIU2BMEQRAEQRAEQTQBJDUSBEEQBEEQBEEQhI+hwJ4gCIIgCIIgCIIgfAwF9gRBEARBEARBEAThY6jG3iSSJAEAhoeH63wklcnlchgfH8fw8DDV2AcQur6EU+geCi50bZsbuv7Bhq4v4RS6h/wLiz9ZPGoEBfYmGRkZAQDMnDmzzkdCEARBEARBEARBNBMjIyPo7Ow0/HdBqhb6EwAAURSxY8cOtLe3N3TP8uHhYcycORNbt25FR0dHvQ+HcBm6voRT6B4KLnRtmxu6/sGGri/hFLqH/IskSRgZGUFvb2/FNtuk2JskFAphxowZ9T4M03R0dNBDG2Do+hJOoXsouNC1bW7o+gcbur6EU+ge8ieVlHoGmecRBEEQBEEQBEEQhI+hwJ4gCIIgCIIgCIIgfAwF9gEjHo/jxhtvRDwer/ehEB5A15dwCt1DwYWubXND1z/Y0PUlnEL3UPAh8zyCIAiCIAiCIAiC8DGk2BMEQRAEQRAEQRCEj6HAniAIgiAIgiAIgiB8DAX2BEEQBEEQBEEQBOFjKLAnCIIgCIIgCIIgCB9Dgb1Nbr75ZhxzzDFob2/H1KlTcf7552PDhg0lr5EkCcuXL0dvby+SySQWL16M119/nf/73r17cdVVV+Gggw5CS0sLZs2ahS9/+csYGhoqeZ99+/bhU5/6FDo7O9HZ2YlPfepTGBwcrHqM69atwymnnIJkMonp06fjW9/6FtReiTt37sTFF1+Mgw46CKFQCNdcc43p73/77bdjzpw5SCQSWLRoEZ555pmSf7///vtx+umno6urC4IgYO3atabfu94087V9+umncc4556C3txeCIODPf/5z2Wsuu+wyCIJQ8t9xxx1n6v2bhSDcQ/fffz+WLFmCKVOmoKOjA8cffzwefvhhU98/yOMD0NzXl8aIYFz/Z599FieeeCImT56MZDKJgw8+GLfddpup70/Pd3CvLz3f7hCEe0jNc889h0gkgiOOOMLU9w/6GNHQSIQtTj/9dOmOO+6Q1q9fL61du1Y666yzpFmzZkmjo6P8Nd///vel9vZ26b777pPWrVsnXXTRRVJPT480PDwsSZIkrVu3TrrgggukBx98UHr33XellStXSvPmzZM++tGPlnzWGWecIc2fP19atWqVtGrVKmn+/PnS2WefXfH4hoaGpGnTpkkf//jHpXXr1kn33Xef1N7eLv34xz/mr9m4caP05S9/WbrzzjulI444Qrr66qtNffd77rlHikaj0m9+8xvpjTfekK6++mqptbVV2rx5M3/N//zP/0g33XST9Jvf/EYCIK1Zs8bUezcCzXxtV6xYIX3jG9+Q7rvvPgmA9MADD5S95tJLL5XOOOMMaefOnfy/gYEBU+/fLAThHrr66qulH/zgB9KLL74ovf3229L1118vRaNR6ZVXXqn43kEfHySpua8vjRHBuP6vvPKKdPfdd0vr16+XNm7cKP3v//6v1NLSIv3617+u+N70fMsE9frS8+0OQbiHGIODg9LcuXOlpUuXSocffnjV794MY0QjQ4G9S+zevVsCID311FOSJEmSKIpSd3e39P3vf5+/Jp1OS52dndKvfvUrw/f54x//KMViMSmXy0mSJElvvPGGBED6xz/+wV/z/PPPSwCkt956y/B9br/9dqmzs1NKp9P8dzfffLPU29sriaJY9vpTTjnFdPD3gQ98QPrCF75Q8ruDDz5Y+vrXv1722o0bN/r+oW2ma6um0qR+3nnnWX6/Zsbv9xDj0EMPlW666aaK37XZxgdJaq7rq4bGCJmgXP+PfOQj0ic/+cmK35We72BfXzX0fLuHn++hiy66SPr3f/936cYbbzQV2DfjGNFIUCq+S7DUmEmTJgEANm7ciL6+PixdupS/Jh6P45RTTsGqVasqvk9HRwcikQgA4Pnnn0dnZyeOPfZY/prjjjsOnZ2dFd/n+eefxymnnIJ4PM5/d/rpp2PHjh3YtGmTre8IANlsFi+//HLJ9wKApUuXVjweP9Ms19YKTz75JKZOnYoDDzwQ//Iv/4Ldu3fX5HP9ShDuIVEUMTIywr+DHs04PgDNc32t0ExjRBCu/5o1a7Bq1Sqccsophu9Lz3ewr68Vmun5dgO/3kN33HEH3nvvPdx4442mvmezjhGNBAX2LiBJEq699lqcdNJJmD9/PgCgr68PADBt2rSS106bNo3/m5aBgQF8+9vfxuWXX85/19fXh6lTp5a9durUqYbvw/5O77PVx2aH/v5+FAoFS9/LzzTTtTXLmWeeibvuuguPP/44brnlFqxevRof/vCHkclkPP9sPxKUe+iWW27B2NgYLrzwQsP3bbbxAWiu62uWZhoj/H79Z8yYgXg8jqOPPhpf+tKX8LnPfc7wfen5Dvb1NUszPd9u4Nd76J133sHXv/513HXXXXwjoRrNOEY0GhTYu8CVV16J1157DX/4wx/K/k0QhJKfJUkq+x0ADA8P46yzzsKhhx5atjOm93r1+xx22GFoa2tDW1sbzjzzzIqfbfR+ejzzzDP8fdva2nDXXXdZ/l5+pxmvbTUuuuginHXWWZg/fz7OOecc/O1vf8Pbb7+Nhx56yPR7NBNBuIf+8Ic/YPny5bj33nv5IoLGB5lmvL7VaKYxwu/X/5lnnsFLL72EX/3qV/jJT37Cvwc93zLNeH2r0UzPtxv48R4qFAq4+OKLcdNNN+HAAw/U/V40RjQm5rZgCEOuuuoqPPjgg3j66acxY8YM/vvu7m4A8s5XT08P//3u3bvLdrJGRkZwxhlnoK2tDQ888ACi0WjJ++zatavsc/fs2cPfZ8WKFcjlcgCAZDLJ/067O8ZSpbSfb8TRRx9d4lQ5bdo0xONxhMNh3fc2+75+odmurV16enqw33774Z133rH9HkElCPfQvffei89+9rP405/+hNNOO43/vtnHB6D5rq9dgjpGBOH6z5kzBwCwYMEC7Nq1C8uXL8cnPvEJer7RfNfXLkF9vt3Ar/fQyMgIXnrpJaxZswZXXnklALlcS5IkRCIRPPLIIzj++OObfoxoSDyv4g8ooihKX/rSl6Te3l7p7bff1v337u5u6Qc/+AH/XSaTKTPGGBoako477jjplFNOkcbGxsrehxljvPDCC/x3//jHP0wZY0yYMEHKZDL8d9///vddM8/74he/WPK7Qw45JDDGGM18bdXAwDhHS39/vxSPx6U777zT8mcElaDcQ3fffbeUSCRM3QeMoI8PktTc11dNs44RQbn+Wr71rW9J++23n+G/SxI93+zfg3p91TTr8+0Gfr+HCoWCtG7dupL/vvjFL0oHHXSQtG7duhJ3fy3NMEY0MhTY2+SLX/yi1NnZKT355JMlLT/Gx8f5a77//e9LnZ2d0v333y+tW7dO+sQnPlHSymJ4eFg69thjpQULFkjvvvtuyfvk83n+PmeccYa0cOFC6fnnn5eef/55acGCBVVbWQwODkrTpk2TPvGJT0jr1q2T7r//fqmjo6OslcWaNWukNWvWSIsWLZIuvvhiac2aNdLrr79e8b1ZK4vf/va30htvvCFdc801Umtrq7Rp0yb+moGBAWnNmjXSQw89JAGQ7rnnHmnNmjXSzp07TZ/jetHM13ZkZIT/HQDp1ltvldasWcPblIyMjEjXXXedtGrVKmnjxo3SE088IR1//PHS9OnT+XcngnEP3X333VIkEpF++ctflnz24OBgxfcO+vggSc19fWmMCMb1/8UvfiE9+OCD0ttvvy29/fbb0n//939LHR0d0je+8Y2K703Pt0xQry893+4QhHtIi1lX/GYYIxoZCuxtAkD3vzvuuIO/RhRF6cYbb5S6u7uleDwunXzyydK6dev4vz/xxBOG77Nx40b+uoGBAemSSy6R2tvbpfb2dumSSy6R9u3bV/UYX3vtNemDH/ygFI/Hpe7ubmn58uVlu7l6n21mR/eXv/yltN9++0mxWEw66qijeAsPxh133KH73jfeeGPV9643zXxtjY770ksvlSRJksbHx6WlS5dKU6ZMkaLRqDRr1izp0ksvlbZs2VL1mJuJINxDp5xySsV7oRJBHh8kqbmvL40Rwbj+P/vZz6TDDjtMamlpkTo6OqQjjzxSuv3226VCoVD1ven5Du71pefbHYJwD2kxG9hLUvDHiEZGkKSiWwJBEARBEARBEARBEL6DXPEJgiAIgiAIgiAIwsdQYE8QBEEQBEEQBEEQPoYCe4IgCIIgCIIgCILwMRTYEwRBEARBEARBEISPocCeIAiCIAiCIAiCIHwMBfYEQRAEQRAEQRAE4WMosCcIgiAIgiAIgiAIH0OBPUEQBEEQBEEQBEH4GArsCYIgCILwPZdddhnOP//8eh8GQRAEQdQFCuwJgiAIokkRBKHif5dddlm9D5EgCIIgCBNE6n0ABEEQBEHUh507d/L/f++99+KGG27Ahg0b+O+SyWQ9DosgCIIgCIuQYk8QBEEQTUp3dzf/r7OzE4Ig8J+j0Si+8IUvYMaMGWhpacGCBQvwhz/8oeTvFy9ejC9/+cv46le/ikmTJqG7uxvLly8vec1bb72Fk046CYlEAoceeigee+wxCIKAP//5z/w1q1atwhFHHIFEIoGjjz4af/7znyEIAtauXQsAKBQK+OxnP4s5c+YgmUzioIMOwk9/+lOPzw5BEARB+AdS7AmCIAiCKCOdTmPRokX42te+ho6ODjz00EP41Kc+hblz5+LYY4/lr7vzzjtx7bXX4oUXXsDzzz+Pyy67DCeeeCKWLFkCURRx/vnnY9asWXjhhRcwMjKC6667ruRzRkZGcM4552DZsmW4++67sXnzZlxzzTUlrxFFETNmzMAf//hHdHV1YdWqVfj85z+Pnp4eXHjhhbU4HQRBEATR0FBgTxAEQRBEGdOnT8dXvvIV/vNVV12Fv//97/jTn/5UEtgvXLgQN954IwBg3rx5+MUvfoGVK1diyZIleOSRR/Dee+/hySefRHd3NwDgu9/9LpYsWcL//q677oIgCPjNb37DVf3t27fjX/7lX/hrotEobrrpJv7znDlzsGrVKvzxj3+kwJ4gCIIgQIE9QRAEQRA6FAoFfP/738e9996L7du3I5PJIJPJoLW1teR1CxcuLPm5p6cHu3fvBgBs2LABM2fO5EE9AHzgAx8oef2GDRuwcOFCJBIJw9cAwK9+9Sv813/9FzZv3oxUKoVsNosjjjjC6dckCIIgiEBANfYEQRAEQZRxyy234LbbbsNXv/pVPP7441i7di1OP/10ZLPZktdFo9GSnwVBgCiKAABJkiAIQsXP0XuNJEklP//xj3/Ev/7rv+Izn/kMHnnkEaxduxaf/vSny46FIAiCIJoVUuwJgiAIgijjmWeewXnnnYdPfvKTAOQ693feeQeHHHKI6fc4+OCDsWXLFuzatQvTpk0DAKxevbrsNXfddRcymQzi8TgA4KWXXio7lhNOOAFXXHEF/917771n63sRBEEQRBAhxZ4gCIIgiDIOOOAAPProo1i1ahXefPNNXH755ejr67P0HkuWLMH++++PSy+9FK+99hqee+45fOMb3wAArtJffPHFEEURn//85/Hmm2/i4Ycfxo9//OOS1xxwwAF46aWX8PDDD+Ptt9/GN7/5zbINAoIgCIJoZiiwJwiCIAiijG9+85s46qijcPrpp2Px4sXo7u7G+eefb+k9wuEw/vznP2N0dBTHHHMMPve5z+Hf//3fAYDX1Hd0dOAvf/kL1q5diyOOOALf+MY3cMMNN5S85gtf+AIuuOACXHTRRTj22GMxMDBQot4TBEEQRLMjSNpCNoIgCIIgCI947rnncNJJJ+Hdd9/F/vvvr/uau+66C5/+9KcxNDSEZDJZ4yMkCIIgCP9BNfYEQRAEQXjGAw88gLa2NsybNw/vvvsurr76apx44oklQf3//M//YO7cuZg+fTpeffVVfO1rX8OFF15IQT1BEARBmIQCe4IgCIIgPGNkZARf/epXsXXrVnR1deG0007DLbfcUvKavr4+3HDDDejr60NPTw8+9rGP4bvf/W6djpggCIIg/Ael4hMEQRAEQRAEQRCEjyHzPIIgCIIgCIIgCILwMRTYEwRBEARBEARBEISPocCeIAiCIAiCIAiCIHwMBfYEQRAEQRAEQRAE4WMosCcIgiAIgiAIgiAIH0OBPUEQBEEQBEEQBEH4GArsCYIgCIIgCIIgCMLHUGBPEARBEARBEARBED7m/wc/P1CMuvwmOAAAAABJRU5ErkJggg==", | |
"text/plain": [ | |
"<Figure size 1200x600 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Plot menggunakan Seaborn\n", | |
"plt.figure(figsize=(12, 6))\n", | |
"\n", | |
"# Plot garis untuk 'Total Kasus per Juta'\n", | |
"sns.lineplot(data=df_cleaned, x='Tanggal', y='Total Kasus', label='Total Kasus')\n", | |
"\n", | |
"# Plot titik untuk outliers\n", | |
"sns.scatterplot(data=df_cleaned[df_cleaned['Outlier']], x='Tanggal', y='Total Kasus', color='red', s=100, label='Outliers')\n", | |
"\n", | |
"# Menambahkan judul dan label sumbu\n", | |
"plt.title('Total Kasus Harian dengan Outliers')\n", | |
"plt.xlabel('Tanggal')\n", | |
"plt.ylabel('Total Kasus')\n", | |
"plt.legend()\n", | |
"plt.grid(True)\n", | |
"plt.show()\n", | |
"# Plot menggunakan Seaborn\n", | |
"plt.figure(figsize=(12, 6))\n", | |
"\n", | |
"# Plot garis untuk 'Total Kasus per Juta'\n", | |
"sns.lineplot(data=df_cleaned, x='Tanggal', y='Total Kasus', label='Total Kasus')\n", | |
"\n", | |
"# Plot titik untuk outliers\n", | |
"sns.scatterplot(data=df_cleaned[df_cleaned['Outlier']], x='Tanggal', y='Total Kasus', color='red', s=100, label='Outliers')\n", | |
"\n", | |
"# Menambahkan judul dan label sumbu\n", | |
"plt.title('Total Kasus Harian dengan Outliers')\n", | |
"plt.xlabel('Tanggal')\n", | |
"plt.ylabel('Total Kasus')\n", | |
"plt.legend()\n", | |
"plt.grid(True)\n", | |
"plt.show()\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "4bd75dae", | |
"metadata": { | |
"id": "4bd75dae" | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.11.4" | |
}, | |
"colab": { | |
"provenance": [] | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment