Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Render of Newton's Principia in XeLaTeX
%!TEX TS-program = xelatex
%!TEX encoding = UTF-8 Unicode
% Tim van Werkhoven (2010)
% newton.tex: Render of Newton's Principia in XeLaTeX
% Some rights reserved: CC-BY-SA
\documentclass[11pt,a4paper]{article}
\usepackage[dvipdfm, colorlinks, breaklinks]{hyperref}
\usepackage{xunicode}
%\usepackage[utf]{inputenc}
\usepackage{xltxtra}
\defaultfontfeatures{Mapping=tex-text}
\begin{document}
\thispagestyle{empty}
\fontspec[Alternate=0,Ligatures={Common, Rare}, Swashes={LineInitial, LineFinal}]{Hoefler Text}
\fontsize{15pt}{19pt}
\selectfont
\begin{center}
[ 14 ]\\
\end{center}
illa \emph{BD}. Eodem argumento in fine temporis ejuſdem reperietur alicubi in linea \emph{CD}, \& idcirco in utriuſq; lineæ concurſu \emph{D} reperiri neceſſe eſt.
\begin{center}
Corol.\ II.\\
\end{center}
\parskip=0ex%
\parindent=0em%
\hspace*{1em}\parbox{\textwidth-1em}{\emph{\hspace*{-1em}Et hinc patet compoſitio vis directæ AD ex viribus quibuſvis obliquis AB \& BD, \& viciſſim reſolutio vis cujuſvis directæ AD in obliquas quaſcunq; AB \& BD. Quæ quidem Compoſitio \& reſolutio abunde conſirmatur ex Mechanica.}}
%\addtolength{\oddsidemargin}{-1em}
\parskip=1em%
\parindent=1em%
Ut ſi de rotæ alicujus centro O exeuntes radij inæquales \emph{OM},
\emph{ON} filis \emph{MA}, \emph{NP} ſuſtineant pondera \emph{A} \& \emph{P},
\& quærantur vires ponderum ad movendam rotam: per centrum O agatur
recta \emph{KOL} filis perpendiculariter occurens in \emph{K} \& \emph{L},
centroq; O \& intervallorum \emph{OK}, \emph{OL} majore \emph{OL}
deſcribatur circulus occurens filo \emph{MA} in \emph{D}: \& actæ rectæ
\emph{OD} parallela ſit \emph{AC} \& perpendicularis \emph{DC}. Quoniam nihil
refert utrum filorum puncta \emph{K}, \emph{L}, \emph{D} affixa ſint vel non
affixa ad planum rotæ, pondera idem valebunt ac ſi ſuſpenderentur a punctis
\emph{K} \& \emph{L} vel \emph{D} \& \emph{L}. Ponderis autem \emph{A}
exponatur vis tota per lineam \emph{AD}, \& hæc reſolvetur in vires \emph{AC},
\emph{CD}, quarum \emph{AC} trahendo radium \emph{OD} directe a centro nihil
valet ad movendam rotam; vis autem altera \emph{DC}, trahendo radium \emph{DO}
perpendiculariter, idem valet ac ſi perpendiculariter traheret radium
\emph{OL} ipſi \emph{OD} æqualem; hoc eſt idem atq; pondus \emph{P}, quod fit
ad pondus \emph{A} ut vis \emph{DC} ad vim \emph{DA}, id eſt (ob ſimilia triangula \emph{ADC}, \emph{DOK},) ut \emph{DO} (ſeu \emph{OL}) ad \emph{OK}. Pondera igitur \emph{A} \& \emph{P}, quæ ſunt reciproce ut radii in directum poſiti \emph{OK} \& \emph{OL}, idem pollebunt \& ſic conſiſtent in æquilibrio: (quæ eſt proprietas notiſſima Libræ,
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.