LaTeX - TikZ Weihrauch Reducibility Commutative Diagram
\begin{center} | |
\begin{tikzpicture}[scale=2.5] | |
% reducing to | |
\node (1) at (0,1) {$\omega^\omega$}; | |
\node (2) at (1.5,1) {$\textbf{U}$}; | |
\node (3) at (0,0) {$\omega^\omega \rangle$}; | |
\node (4) at (1.5,0) {$\textbf{V}$}; | |
% reducing from | |
\node (A) at (-1.5,1) {$\omega^\omega$}; | |
\node (B) at (-3,1) {$\textbf{X}$}; | |
\node (C) at (-1.5,0) {$\omega^\omega$}; | |
\node (D) at (-3,0) {$\textbf{Y}$}; | |
% id | |
\node (id) at (-0.3,0) {$\langle id ,$}; | |
\path[->,font=\scriptsize] | |
% reducing from comm. diag | |
(A) edge node[above]{$d_{\textbf{X}}$} (B) | |
(A) edge node[left]{$F$} (C) | |
(B) edge node[left]{$f$} (D) | |
(C) edge node[below]{$d_{\textbf{Y}}$} (D); | |
\path[->,font=\scriptsize] | |
% reducing to comm. diag | |
(1) edge node[above]{$d_{\textbf{U}}$} (2) | |
(1) edge node[right]{$G$} (3) | |
(2) edge node[right]{$g$} (4) | |
(3) edge node[below]{$d_\textbf{V}$} (4); | |
% reduction path | |
\path[->,font=\scriptsize] | |
(A) edge node[above]{$H$} (1) | |
(-0.2,-0.1) edge [bend left] node[below]{$K$} (C); | |
%id path | |
\draw [->,font=\scriptsize] (A) edge [bend left] node[below]{$id$} (-0.3,0.15); | |
\end{tikzpicture} | |
\end{center} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment