LaTeX - TikZ Weihrauch Reducibility Commutative Diagram
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\begin{center} | |
\begin{tikzpicture}[scale=2.5] | |
% reducing to | |
\node (1) at (0,1) {$\omega^\omega$}; | |
\node (2) at (1.5,1) {$\textbf{U}$}; | |
\node (3) at (0,0) {$\omega^\omega \rangle$}; | |
\node (4) at (1.5,0) {$\textbf{V}$}; | |
% reducing from | |
\node (A) at (-1.5,1) {$\omega^\omega$}; | |
\node (B) at (-3,1) {$\textbf{X}$}; | |
\node (C) at (-1.5,0) {$\omega^\omega$}; | |
\node (D) at (-3,0) {$\textbf{Y}$}; | |
% id | |
\node (id) at (-0.3,0) {$\langle id ,$}; | |
\path[->,font=\scriptsize] | |
% reducing from comm. diag | |
(A) edge node[above]{$d_{\textbf{X}}$} (B) | |
(A) edge node[left]{$F$} (C) | |
(B) edge node[left]{$f$} (D) | |
(C) edge node[below]{$d_{\textbf{Y}}$} (D); | |
\path[->,font=\scriptsize] | |
% reducing to comm. diag | |
(1) edge node[above]{$d_{\textbf{U}}$} (2) | |
(1) edge node[right]{$G$} (3) | |
(2) edge node[right]{$g$} (4) | |
(3) edge node[below]{$d_\textbf{V}$} (4); | |
% reduction path | |
\path[->,font=\scriptsize] | |
(A) edge node[above]{$H$} (1) | |
(-0.2,-0.1) edge [bend left] node[below]{$K$} (C); | |
%id path | |
\draw [->,font=\scriptsize] (A) edge [bend left] node[below]{$id$} (-0.3,0.15); | |
\end{tikzpicture} | |
\end{center} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment