Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
LaTeX - TikZ Weihrauch Reducibility Commutative Diagram
% reducing to
\node (1) at (0,1) {$\omega^\omega$};
\node (2) at (1.5,1) {$\textbf{U}$};
\node (3) at (0,0) {$\omega^\omega \rangle$};
\node (4) at (1.5,0) {$\textbf{V}$};
% reducing from
\node (A) at (-1.5,1) {$\omega^\omega$};
\node (B) at (-3,1) {$\textbf{X}$};
\node (C) at (-1.5,0) {$\omega^\omega$};
\node (D) at (-3,0) {$\textbf{Y}$};
% id
\node (id) at (-0.3,0) {$\langle id ,$};
% reducing from comm. diag
(A) edge node[above]{$d_{\textbf{X}}$} (B)
(A) edge node[left]{$F$} (C)
(B) edge node[left]{$f$} (D)
(C) edge node[below]{$d_{\textbf{Y}}$} (D);
% reducing to comm. diag
(1) edge node[above]{$d_{\textbf{U}}$} (2)
(1) edge node[right]{$G$} (3)
(2) edge node[right]{$g$} (4)
(3) edge node[below]{$d_\textbf{V}$} (4);
% reduction path
(A) edge node[above]{$H$} (1)
(-0.2,-0.1) edge [bend left] node[below]{$K$} (C);
%id path
\draw [->,font=\scriptsize] (A) edge [bend left] node[below]{$id$} (-0.3,0.15);
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment