Williams significance test for WMT-18 sentence-level submissions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
from argparse import ArgumentParser | |
import sys | |
from scipy.stats import pearsonr, t | |
from math import sqrt | |
######################################################################################## | |
# Williams significance test to define significance of Pearson correlation scores | |
# Implemented as described in [1]. The final significance level is modified | |
# with Bonferroni correction for multiple comparisons | |
# | |
# [1] Improving Evaluation of Machine Translation Quality Estimation, Y.Graham | |
######################################################################################## | |
def parse_submission(in_file, score_id=2): | |
out = [] | |
for line in open(in_file): | |
chunks = line.strip('\n').split('\t') | |
out.append(float(chunks[score_id])) | |
return out | |
def williams_test(sub1, sub2, ref): | |
r12 = pearsonr(sub1, sub2)[0] | |
r1 = pearsonr(ref, sub1)[0] | |
r2 = pearsonr(ref, sub2)[0] | |
n_samples = len(sub1) | |
num = (r1 - r2) * sqrt((n_samples-1) * (1 + r12)) | |
K = 1 - r12**2 - r1**2 - r2**2 + 2 * r12 * r1 * r2 | |
denom_sum1 = 2 * K * ((n_samples - 1)/(n_samples - 3)) | |
denom_sum2 = (((r2 + r1)**2)/4)*((1 - r12)**3) | |
denom = sqrt(denom_sum1 + denom_sum2) | |
tval = num/denom | |
pval = t.sf(abs(tval), n_samples - 1)*2 | |
return pval | |
if __name__ == "__main__": | |
parser = ArgumentParser() | |
parser.add_argument("submissions", nargs="+", help="submissions (wmt18 format)") | |
parser.add_argument("reference", help="reference (wmt18 format)") | |
args = parser.parse_args() | |
submissions = [] | |
for sub in args.submissions: | |
submissions.append((sub, parse_submission(sub))) | |
ref = parse_submission(args.reference) | |
for idx in range(len(submissions)): | |
assert(len(ref) == len(submissions[idx][1])) | |
sub_scores = [] | |
for n, sub in submissions: | |
corr = pearsonr(ref, sub)[0] | |
sub_scores.append(corr) | |
sorted_sub = sorted(zip(sub_scores, submissions), key=lambda(val, (n, s)): val, reverse=True) | |
print('Performance: ') | |
for val, (n, sub) in sorted_sub: | |
print('{}\t{}'.format(n, val)) | |
n_subs = len(submissions) | |
comparisons = int((n_subs**2 - n_subs)/2) | |
new_alpha = 0.05/comparisons | |
print('{} comparisons\nalpha with Bonferroni corrections - {}'.format(comparisons, new_alpha)) | |
print('----------------------------') | |
for i in range(len(sorted_sub)): | |
for j in range(i + 1, len(sorted_sub)): | |
pval = williams_test(sorted_sub[i][1][1], sorted_sub[j][1][1], ref) | |
if pval > new_alpha: | |
print('{}\t{}\t{}'.format(sorted_sub[i][1][0], sorted_sub[j][1][0], pval)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment