Skip to content

Instantly share code, notes, and snippets.

@vedranmarkulj vedranmarkulj/ Secret
Last active Feb 25, 2018

What would you like to do?
from get_historical_data import AlphaVantage
import pandas as pd
import json
def get_main_data_frame(symbol):
# Get historical data as json
historical_data_daily = AlphaVantage(symbol).daily()
# Find and list all relevant keys in the original historical data response
list_keys = []
list_historical_data__daily = []
for key in historical_data_daily['Time Series (Daily)']:
for k in list_keys:
# Extract relevant data from original historical data response
data = historical_data_daily['Time Series (Daily)'][k]
price_open = data['1. open']
price_high = data['2. high']
price_low = data['3. low']
price_close = data['4. close']
dict_data = dict([
(u'date', k),
(u'symbol', symbol),
(u'price_open', price_open),
(u'price_high', price_high),
(u'price_low', price_low),
(u'price_close', price_close),
# convert data to data frame
df = pd.read_json(json.dumps(list_historical_data__daily))
# prepare data, and add calculated fields to data frame
df['date_str'] = df['date']
df.set_index('date', inplace=True)
df['price_close_lag'] = df['price_close'].shift(1)
df['price_close_lead'] = df['price_close'].shift(-1)
df.insert(0, 'date_id', range(1, 1 + len(df)))
# returns data frame
return df
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.