This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import pickle | |
from glob import iglob | |
import numpy as np | |
import librosa | |
DATA_AUDIO_DIR = './audio' | |
TARGET_SR = 8000 | |
OUTPUT_DIR = './output' | |
OUTPUT_DIR_TRAIN = os.path.join(OUTPUT_DIR, 'train') | |
OUTPUT_DIR_TEST = os.path.join(OUTPUT_DIR, 'test') | |
AUDIO_LENGTH = 10000 | |
class_ids = { | |
'normal': 0, | |
'murmur': 1, | |
'extrahls': 2, | |
'artifact': 3, | |
'unlabelled': 4, | |
} | |
def extract_class_id(wav_filename): | |
if 'normal' in wav_filename: | |
return class_ids.get('normal') | |
elif 'murmur' in wav_filename: | |
return class_ids.get('murmur') | |
elif 'extrahls' in wav_filename: | |
return class_ids.get('extrahls') | |
elif 'artifact' in wav_filename: | |
return class_ids.get('artifact') | |
elif 'unlabelled' in wav_filename: | |
return class_ids.get('unlabelled') | |
else: | |
return class_ids.get('unlabelled') | |
def read_audio_from_filename(filename, target_sr): | |
audio, _ = librosa.load(filename, sr=target_sr, mono=True) | |
audio = audio.reshape(-1, 1) | |
return audio | |
def convert_data(): | |
for i, wav_filename in enumerate(iglob(os.path.join(DATA_AUDIO_DIR, '**/**.wav'), recursive=True)): | |
class_id = extract_class_id(wav_filename) | |
audio_buf = read_audio_from_filename(wav_filename, target_sr=TARGET_SR) | |
# normalize mean 0, variance 1 | |
audio_buf = (audio_buf - np.mean(audio_buf)) / np.std(audio_buf) | |
original_length = len(audio_buf) | |
print(i, wav_filename, original_length, np.round(np.mean(audio_buf), 4), np.std(audio_buf)) | |
if original_length < AUDIO_LENGTH: | |
audio_buf = np.concatenate((audio_buf, np.zeros(shape=(AUDIO_LENGTH - original_length, 1)))) | |
print('PAD New length =', len(audio_buf)) | |
elif original_length > AUDIO_LENGTH: | |
audio_buf = audio_buf[0:AUDIO_LENGTH] | |
print('CUT New length =', len(audio_buf)) | |
output_folder = OUTPUT_DIR_TRAIN | |
if i // 50 == 0: | |
output_folder = OUTPUT_DIR_TEST | |
output_filename = os.path.join(output_folder, str(i) + '.pkl') | |
out = {'class_id': class_id, | |
'audio': audio_buf, | |
'sr': TARGET_SR} | |
with open(output_filename, 'wb') as w: | |
pickle.dump(out, w) | |
if __name__ == '__main__': | |
convert_data() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment