Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save wangg12/e7a93f88c2f691b8036c36fe856d2279 to your computer and use it in GitHub Desktop.
Save wangg12/e7a93f88c2f691b8036c36fe856d2279 to your computer and use it in GitHub Desktop.
Tensorflow tutorial "Deep MNIST for Experts"
from __future__ import print_function
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Input layer
x = tf.placeholder(tf.float32, [None, 784], name='x')
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
x_image = tf.reshape(x, [-1, 28, 28, 1])
# Convolutional layer 1
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# Convolutional layer 2
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Fully connected layer 2 (Output layer)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2, name='y')
# Evaluation functions
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')
# Training algorithm
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# Training steps
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
max_steps = 1000
for step in range(max_steps):
batch_xs, batch_ys = mnist.train.next_batch(50)
if (step % 100) == 0:
print(step, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5})
print(max_steps, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment