Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
# robosat workflow to classify buildings in rutland, vt:
# (to check on any file locally in this process):
# docker cp <IMAGE_ID>:/app/<filename> .
docker pull mapbox/robosat:latest-cpu
docker run -i -t mapbox/robosat:latest-cpu /bin/bash
# configure some things
apt-get update && apt-get install -y sudo && rm -rf /var/lib/apt/lists/*
sudo apt-get update
sudo apt-get install curl software-properties-common -y
curl -sL https://deb.nodesource.com/setup_10.x | bash -
sudo add-apt-repository ppa:ubuntugis/ppa -y && sudo apt-get update
sudo apt-get install wget nodejs gdal-bin vim less -y
pip3 install csvkit
# get vt osm data
wget https://download.geofabrik.de/north-america/us/vermont-latest.osm.pbf
# pull out buildings as geojson
./rs extract --type building vermont-latest.osm.pbf vt-building.geojson
# clip training data to middlebury town:
ogr2ogr -f "GeoJSON" -t_srs "EPSG:4326" middlebury-building.geojson vt-building.geojson -clipsrc -73.2134 43.9801 -73.0891 44.0650
# generate a single geojson feature for rutland area:
echo '{ "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -73.4161376953125, 43.33816367935935 ], [ -72.83935546875, 43.33816367935935 ], [ -72.83935546875, 43.819665724206956 ], [ -73.4161376953125, 43.819665724206956 ], [ -73.4161376953125, 43.33816367935935 ] ] ] } } ] }' > rutland.geojson
# get cover tile list for both
./rs cover --zoom 17 middlebury-building.geojson middlebury-building.csv
./rs cover --zoom 17 rutland.geojson rutland.csv
# download from vcgi tiles (because free is good, and CIR might be dope)
./rs download https://maps.vcgi.vermont.gov/arcgis/rest/services/EGC_services/IMG_VCGI_CIR_WM_CACHE/ImageServer/tile/{z}/{y}/{x} middlebury-building.csv middlebury-images
./rs download https://maps.vcgi.vermont.gov/arcgis/rest/services/EGC_services/IMG_VCGI_CIR_WM_CACHE/ImageServer/tile/{z}/{y}/{x} rutland.csv rutland-images
# rasterize (after setting up the config file)
echo "
# Configuration related to a specific dataset.
# For syntax see: https://github.com/toml-lang/toml#table-of-contents
# Dataset specific common attributes.
[common]
# The slippy map dataset's base directory.
dataset = 'vt/middlebury'
# Human representation for classes.
classes = ['background', 'building']
# Color map for visualization and representing classes in masks.
# Note: available colors can be found in 'robosat/colors.py'
colors = ['denim', 'orange']
# Dataset specific class weights computes on the training data.
# Note: use './rs weights -h' to compute these for new datasets.
[weights]
values = [1.451183, 21.289612]
" > config/dataset-building-middlebury.toml
./rs rasterize --dataset config/dataset-building-middlebury.toml --zoom 17 --size 256 middlebury-building.geojson middlebury-building.csv middlebury-building
# set up some directories
rm -r vt
mkdir vt
mkdir vt/middlebury
mkdir vt/middlebury/training
mkdir vt/middlebury/validation
mkdir vt/middlebury/training/images
mkdir vt/middlebury/training/labels
mkdir vt/middlebury/validation/images
mkdir vt/middlebury/validation/labels
mkdir vt/middlebury/tmp
cp -r middlebury-images/* vt/middlebury/training/images/
cp -r middlebury-building/* vt/middlebury/training/labels/
# weights
./rs weights --dataset config/dataset-building-middlebury.toml
# train (after setting up another config file)
echo "
# Configuration related to a specific model.
# For syntax see: https://github.com/toml-lang/toml#table-of-contents
# Model specific common attributes.
[common]
# Use CUDA for GPU acceleration.
cuda = false
# Batch size for training.
batch_size = 1
# Image side size in pixels.
image_size = 256
# Directory where to save checkpoints to during training.
checkpoint = 'vt/middlebury/tmp/'
# Model specific optimization parameters.
[opt]
# Total number of epochs to train for.
epochs = 12
# Learning rate for the optimizer.
lr = 0.0001
# Weight decay l2 penalty for the optimizer
decay = 0.0001
# Loss function name (e.g 'Lovasz', 'mIoU' or 'CrossEntropy')
loss = 'Lovasz'
" > config/model-unet-middlebury.toml
# peel off a validation set (30%)
THING=$(wc -l < middlebury-building.csv)
THING2=$(( ( $THING - 1 ) / 10 * 3 ))
sort -R middlebury-building.csv | head -n $THING2 > validation.csv
while read p
do
x=$(echo $p | csvcut -c 1)
y=$(echo $p | csvcut -c 2)
z=$(echo $p | csvcut -c 3)
mkdir -p vt/middlebury/validation/images/$z/$x/
mv vt/middlebury/training/images/$z/$x/$y.webp vt/middlebury/validation/images/$z/$x/
mkdir -p vt/middlebury/validation/labels/$z/$x/
mv vt/middlebury/training/labels/$z/$x/$y.png vt/middlebury/validation/labels/$z/$x/
done < validation.csv
./rs train --model config/model-unet-middlebury.toml --dataset config/dataset-building-middlebury.toml --workers 0
# predict
mkdir probs
./rs predict --batch_size 1 --checkpoint vt/middlebury/tmp/checkpoint-00001-of-00001.pth --tile_size 256 --model config/model-unet-middlebury.toml --dataset config/dataset-building-middlebury.toml rutland/validation/images probs
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.