Skip to content

Instantly share code, notes, and snippets.

import qupath.lib.scripting.QP
import qupath.lib.geom.Point2
import qupath.lib.roi.PolygonROI
import qupath.lib.objects.PathAnnotationObject
import qupath.lib.images.servers.ImageServer
//Aperio Image Scope displays images in a different orientation
def rotated = false
@doraneko94
doraneko94 / roc_auc_ci.py
Last active January 4, 2025 08:56
Calculating confidence interval of ROC-AUC.
from sklearn.metrics import roc_auc_score
from math import sqrt
def roc_auc_ci(y_true, y_score, positive=1):
AUC = roc_auc_score(y_true, y_score)
N1 = sum(y_true == positive)
N2 = sum(y_true != positive)
Q1 = AUC / (2 - AUC)
Q2 = 2*AUC**2 / (1 + AUC)
SE_AUC = sqrt((AUC*(1 - AUC) + (N1 - 1)*(Q1 - AUC**2) + (N2 - 1)*(Q2 - AUC**2)) / (N1*N2))
@Mahedi-61
Mahedi-61 / cuda_11.8_installation_on_Ubuntu_22.04
Last active September 28, 2025 01:57
Instructions for CUDA v11.8 and cuDNN 8.9.7 installation on Ubuntu 22.04 for PyTorch 2.1.2
#!/bin/bash
### steps ####
# Verify the system has a cuda-capable gpu
# Download and install the nvidia cuda toolkit and cudnn
# Setup environmental variables
# Verify the installation
###
### to verify your gpu is cuda enable check
@wangruohui
wangruohui / Install NVIDIA Driver and CUDA.md
Last active September 27, 2025 02:50
Install NVIDIA Driver and CUDA on Ubuntu / CentOS / Fedora Linux OS
@fchollet
fchollet / classifier_from_little_data_script_3.py
Last active February 26, 2025 01:37
Fine-tuning a Keras model. Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@fchollet
fchollet / classifier_from_little_data_script_2.py
Last active February 26, 2025 01:37
Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@fchollet
fchollet / classifier_from_little_data_script_1.py
Last active February 26, 2025 01:37
Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@guyskk
guyskk / shadowsocks-server.service
Last active February 17, 2025 05:49
shadowsocks server systemd service
[Unit]
Description=Shadowsocks Server
After=network.target
[Service]
ExecStart=/usr/local/bin/ssserver -c /etc/shadowsocks/ss-config.json
Restart=on-abort
[Install]
WantedBy=multi-user.target
@hustwj
hustwj / Backpropagation.md
Created April 13, 2016 17:58
Notes on Backpropagation

Notes on Backpropagation

Notations

Let's begin with a notation which lets us refer to weights in the network in an unambiguous way. We'll use $w_{jk}^{l}$ to denote the weight for the connection from the $k^{th}$ neuron in the $(l−1)^{th}$ layer to the $j^{th}$ neuron in the $l^{th}$ layer. So, for example, the diagram the below shows the weight on a connection from the $4^{th}$ neuron in the $2^{nd}$ layer to the $2^{nd}$ neuron in the $3^{rd}$ layer of a network:

NN-example

@awjuliani
awjuliani / softmax.ipynb
Last active December 27, 2024 03:41
A simple ipython notebook that walks through the creation of a softmax regression model using MNIST dataset.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.