""" Visualize Microbial Genetic Algorithm to find the maximum point in a graph. Visit my tutorial website for more: https://morvanzhou.github.io/tutorials/ """ import numpy as np import matplotlib.pyplot as plt DNA_SIZE = 10 # DNA length POP_SIZE = 20 # population size CROSS_RATE = 0.6 # mating probability (DNA crossover) MUTATION_RATE = 0.01 # mutation probability N_GENERATIONS = 200 X_BOUND = [0, 5] # x upper and lower bounds def F(x): return np.sin(10*x)*x + np.cos(2*x)*x # to find the maximum of this function class MGA(object): def __init__(self, DNA_size, DNA_bound, cross_rate, mutation_rate, pop_size): self.DNA_size = DNA_size DNA_bound[1] += 1 self.DNA_bound = DNA_bound self.cross_rate = cross_rate self.mutate_rate = mutation_rate self.pop_size = pop_size # initial DNAs for winner and loser self.pop = np.random.randint(*DNA_bound, size=(1, self.DNA_size)).repeat(pop_size, axis=0) def translateDNA(self, pop): # convert binary DNA to decimal and normalize it to a range(0, 5) return pop.dot(2 ** np.arange(self.DNA_size)[::-1]) / float(2 ** self.DNA_size - 1) * X_BOUND[1] def get_fitness(self, product): return product # it is OK to use product value as fitness in here def crossover(self, loser_winner): # crossover for loser cross_idx = np.empty((self.DNA_size,)).astype(np.bool) for i in range(self.DNA_size): cross_idx[i] = True if np.random.rand() < self.cross_rate else False # crossover index loser_winner[0, cross_idx] = loser_winner[1, cross_idx] # assign winners genes to loser return loser_winner def mutate(self, loser_winner): # mutation for loser mutation_idx = np.empty((self.DNA_size,)).astype(np.bool) for i in range(self.DNA_size): mutation_idx[i] = True if np.random.rand() < self.mutate_rate else False # mutation index # flip values in mutation points loser_winner[0, mutation_idx] = ~loser_winner[0, mutation_idx].astype(np.bool) return loser_winner def evolve(self, n): # nature selection wrt pop's fitness for _ in range(n): # random pick and compare n times sub_pop_idx = np.random.choice(np.arange(0, self.pop_size), size=2, replace=False) sub_pop = self.pop[sub_pop_idx] # pick 2 from pop product = F(self.translateDNA(sub_pop)) fitness = self.get_fitness(product) loser_winner_idx = np.argsort(fitness) loser_winner = sub_pop[loser_winner_idx] # the first is loser and second is winner loser_winner = self.crossover(loser_winner) loser_winner = self.mutate(loser_winner) self.pop[sub_pop_idx] = loser_winner DNA_prod = self.translateDNA(self.pop) pred = F(DNA_prod) return DNA_prod, pred plt.ion() # something about plotting x = np.linspace(*X_BOUND, 200) plt.plot(x, F(x)) ga = MGA(DNA_size=DNA_SIZE, DNA_bound=[0, 1], cross_rate=CROSS_RATE, mutation_rate=MUTATION_RATE, pop_size=POP_SIZE) for _ in range(N_GENERATIONS): # 100 generations DNA_prod, pred = ga.evolve(5) # natural selection, crossover and mutation # something about plotting if 'sca' in globals(): sca.remove() sca = plt.scatter(DNA_prod, pred, s=200, lw=0, c='red', alpha=0.5); plt.pause(0.05) plt.ioff();plt.show()