Created
October 30, 2019 16:00
-
-
Save yannabraham/2c77013f3da8aebf5c7e2a023ad3bd2e to your computer and use it in GitHub Desktop.
Classically one can use fan plots to visualize the full profile of a given population over a set of conditions, but if you are interested in the effect of treatment on a given channel, you can `pivot` or `invert` the fan plot and visualize the effect of treatment over all populations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(dplyr) | |
library(tidyr) | |
library(cytofan) | |
library(bodenmiller) | |
## let's prepare some data: | |
cur.mat <- cbind(rbind(refPhenoMat,untreatedPhenoMat), | |
rbind(refFuncMat,untreatedFuncMat)) | |
cur.annot <- bind_rows(refAnnots %>% | |
mutate(Treatment='reference') %>% | |
mutate_all(as.character), | |
untreatedAnnots %>% | |
mutate(Treatment=as.character(Treatment)) %>% | |
mutate_all(as.character)) %>% | |
mutate(Treatment=factor(Treatment), | |
Treatment=relevel(Treatment,'reference'), | |
Cells=factor(Cells,levels=levels(refAnnots$Cells))) | |
cur.df <- bind_cols(data.frame(cur.mat),cur.annot) | |
## classically one can use fan plots to visualize the full profile of a given population | |
## over a set of conditions: | |
cur.df %>% | |
filter(Cells=='cd4+') %>% | |
gather('Channel','value',one_of(colnames(cur.mat))) %>% | |
ggplot(aes(x=Channel,y=value))+ | |
geom_fan()+ | |
facet_grid(Treatment~.)+ | |
theme_light(base_size = 18)+ | |
theme(axis.text.x=element_text(angle=45,hjust=1)) | |
## but if you are interested in the effect of treatment on a given channel, | |
## you can `pivot` or `invert` the fan plot and visualize | |
## the effect of treatment over all populations: | |
cur.ch <- 'pS6' | |
cur.annot %>% | |
mutate(value=cur.mat[,cur.ch]) %>% | |
ggplot(aes(x=Cells,y=value))+ | |
geom_fan()+ | |
facet_grid(Treatment~.)+ | |
theme_light(base_size = 18)+ | |
theme(axis.text.x=element_text(angle=45,hjust=1)) | |
## you can add a reference line to make changes easier to visualize: | |
cur.annot %>% | |
mutate(value=cur.mat[,cur.ch]) %>% | |
ggplot(aes(x=Cells,y=value))+ | |
geom_fan()+ | |
geom_line(data=cur.annot %>% | |
mutate(value=cur.mat[,cur.ch]) %>% | |
filter(Treatment=='reference') %>% | |
group_by(Cells) %>% | |
do((function(df,quants=c(0.25,0.5,0.75)) { | |
res <- quantile(df$value,quants) | |
res <- data.frame(Quantile=names(res), | |
value=res) | |
return(res) | |
})(.)) %>% | |
mutate(LineType=ifelse(Quantile=='50%','dashed','dotted')), | |
aes(group=Quantile,linetype=LineType), | |
col='blue')+ | |
scale_linetype_identity()+ | |
facet_grid(Treatment~.)+ | |
theme_light(base_size = 18)+ | |
theme(axis.text.x=element_text(angle=45,hjust=1)) | |
## eg treatment with BCR/FcR-XL increases pS6 in B cells (`igm+` and `igm-`), | |
## cd14-hladrhigh, cd14-hladrmid and | |
## monocytes (`cd14+hladr-`, `cd14+hladrhigh`, `cd14+hladrmid`) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment