Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
modified version of convert_marian_to_pytorch.py for FuguMT conversion
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import socket
import time
import warnings
from pathlib import Path
from typing import Dict, List, Union
from zipfile import ZipFile
import numpy as np
import torch
from torch import nn
from tqdm import tqdm
from transformers import MarianConfig, MarianMTModel, MarianTokenizer
from transformers.hf_api import HfApi
def remove_suffix(text: str, suffix: str):
if text.endswith(suffix):
return text[: -len(suffix)]
return text # or whatever
def remove_prefix(text: str, prefix: str):
if text.startswith(prefix):
return text[len(prefix) :]
return text # or whatever
def convert_encoder_layer(opus_dict, layer_prefix: str, converter: dict):
sd = {}
for k in opus_dict:
if not k.startswith(layer_prefix):
continue
stripped = remove_prefix(k, layer_prefix)
v = opus_dict[k].T # besides embeddings, everything must be transposed.
sd[converter[stripped]] = torch.tensor(v).squeeze()
return sd
def load_layers_(layer_lst: nn.ModuleList, opus_state: dict, converter, is_decoder=False):
for i, layer in enumerate(layer_lst):
layer_tag = f"decoder_l{i + 1}_" if is_decoder else f"encoder_l{i + 1}_"
sd = convert_encoder_layer(opus_state, layer_tag, converter)
layer.load_state_dict(sd, strict=True)
def find_pretrained_model(src_lang: str, tgt_lang: str) -> List[str]:
"""Find models that can accept src_lang as input and return tgt_lang as output."""
prefix = "Helsinki-NLP/opus-mt-"
api = HfApi()
model_list = api.model_list()
model_ids = [x.modelId for x in model_list if x.modelId.startswith("Helsinki-NLP")]
src_and_targ = [
remove_prefix(m, prefix).lower().split("-") for m in model_ids if "+" not in m
] # + cant be loaded.
matching = [f"{prefix}{a}-{b}" for (a, b) in src_and_targ if src_lang in a and tgt_lang in b]
return matching
def add_emb_entries(wemb, final_bias, n_special_tokens=1):
vsize, d_model = wemb.shape
embs_to_add = np.zeros((n_special_tokens, d_model))
new_embs = np.concatenate([wemb, embs_to_add])
bias_to_add = np.zeros((n_special_tokens, 1))
new_bias = np.concatenate((final_bias, bias_to_add), axis=1)
return new_embs, new_bias
def _cast_yaml_str(v):
bool_dct = {"true": True, "false": False}
if not isinstance(v, str):
return v
elif v in bool_dct:
return bool_dct[v]
try:
return int(v)
except (TypeError, ValueError):
return v
def cast_marian_config(raw_cfg: Dict[str, str]) -> Dict:
return {k: _cast_yaml_str(v) for k, v in raw_cfg.items()}
CONFIG_KEY = "special:model.yml"
def load_config_from_state_dict(opus_dict):
import yaml
cfg_str = "".join([chr(x) for x in opus_dict[CONFIG_KEY]])
yaml_cfg = yaml.load(cfg_str[:-1], Loader=yaml.BaseLoader)
return cast_marian_config(yaml_cfg)
def find_model_file(dest_dir): # this one better
model_files = list(Path(dest_dir).glob("*.npz"))
assert len(model_files) == 1, model_files
model_file = model_files[0]
return model_file
# Group Names Logic: change long opus model names to something shorter, like opus-mt-en-ROMANCE
ROM_GROUP = (
"fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT"
"+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co"
"+nap+scn+vec+sc+ro+la"
)
GROUPS = [
("cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh", "ZH"),
(ROM_GROUP, "ROMANCE"),
("de+nl+fy+af+da+fo+is+no+nb+nn+sv", "NORTH_EU"),
("da+fo+is+no+nb+nn+sv", "SCANDINAVIA"),
("se+sma+smj+smn+sms", "SAMI"),
("nb_NO+nb+nn_NO+nn+nog+no_nb+no", "NORWAY"),
("ga+cy+br+gd+kw+gv", "CELTIC"), # https://en.wikipedia.org/wiki/Insular_Celtic_languages
]
GROUP_TO_OPUS_NAME = {
"opus-mt-ZH-de": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-de",
"opus-mt-ZH-fi": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
"opus-mt-ZH-sv": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-sv",
"opus-mt-SCANDINAVIA-SCANDINAVIA": "da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv",
"opus-mt-NORTH_EU-NORTH_EU": "de+nl+fy+af+da+fo+is+no+nb+nn+sv-de+nl+fy+af+da+fo+is+no+nb+nn+sv",
"opus-mt-de-ZH": "de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh",
"opus-mt-en_el_es_fi-en_el_es_fi": "en+el+es+fi-en+el+es+fi",
"opus-mt-en-ROMANCE": "en-fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO"
"+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR"
"+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la",
"opus-mt-en-CELTIC": "en-ga+cy+br+gd+kw+gv",
"opus-mt-es-NORWAY": "es-nb_NO+nb+nn_NO+nn+nog+no_nb+no",
"opus-mt-fi_nb_no_nn_ru_sv_en-SAMI": "fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms",
"opus-mt-fi-ZH": "fi-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh",
"opus-mt-fi-NORWAY": "fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no",
"opus-mt-ROMANCE-en": "fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO"
"+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR"
"+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en",
"opus-mt-CELTIC-en": "ga+cy+br+gd+kw+gv-en",
"opus-mt-sv-ZH": "sv-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh",
"opus-mt-sv-NORWAY": "sv-nb_NO+nb+nn_NO+nn+nog+no_nb+no",
}
OPUS_GITHUB_URL = "https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/"
ORG_NAME = "Helsinki-NLP/"
def convert_opus_name_to_hf_name(x):
"""For OPUS-MT-Train/ DEPRECATED"""
for substr, grp_name in GROUPS:
x = x.replace(substr, grp_name)
return x.replace("+", "_")
def convert_hf_name_to_opus_name(hf_model_name):
"""
Relies on the assumption that there are no language codes like pt_br in models that are not in GROUP_TO_OPUS_NAME.
"""
hf_model_name = remove_prefix(hf_model_name, ORG_NAME)
if hf_model_name in GROUP_TO_OPUS_NAME:
opus_w_prefix = GROUP_TO_OPUS_NAME[hf_model_name]
else:
opus_w_prefix = hf_model_name.replace("_", "+")
return remove_prefix(opus_w_prefix, "opus-mt-")
def get_system_metadata(repo_root):
import git
return dict(
helsinki_git_sha=git.Repo(path=repo_root, search_parent_directories=True).head.object.hexsha,
transformers_git_sha=git.Repo(path=".", search_parent_directories=True).head.object.hexsha,
port_machine=socket.gethostname(),
port_time=time.strftime("%Y-%m-%d-%H:%M"),
)
# docstyle-ignore
FRONT_MATTER_TEMPLATE = """---
language:
{}
tags:
- translation
license: apache-2.0
---
"""
DEFAULT_REPO = "Tatoeba-Challenge"
DEFAULT_MODEL_DIR = os.path.join(DEFAULT_REPO, "models")
def write_model_card(
hf_model_name: str,
repo_root=DEFAULT_REPO,
save_dir=Path("marian_converted"),
dry_run=False,
extra_metadata={},
) -> str:
"""
Copy the most recent model's readme section from opus, and add metadata. upload command: aws s3 sync model_card_dir
s3://models.huggingface.co/bert/Helsinki-NLP/ --dryrun
"""
import pandas as pd
hf_model_name = remove_prefix(hf_model_name, ORG_NAME)
opus_name: str = convert_hf_name_to_opus_name(hf_model_name)
assert repo_root in ("OPUS-MT-train", "Tatoeba-Challenge")
opus_readme_path = Path(repo_root).joinpath("models", opus_name, "README.md")
assert opus_readme_path.exists(), f"Readme file {opus_readme_path} not found"
opus_src, opus_tgt = [x.split("+") for x in opus_name.split("-")]
readme_url = f"https://github.com/Helsinki-NLP/{repo_root}/tree/master/models/{opus_name}/README.md"
s, t = ",".join(opus_src), ",".join(opus_tgt)
metadata = {
"hf_name": hf_model_name,
"source_languages": s,
"target_languages": t,
"opus_readme_url": readme_url,
"original_repo": repo_root,
"tags": ["translation"],
}
metadata.update(extra_metadata)
metadata.update(get_system_metadata(repo_root))
# combine with opus markdown
extra_markdown = (
f"### {hf_model_name}¥n¥n* source group: {metadata['src_name']} ¥n* target group: "
f"{metadata['tgt_name']} ¥n* OPUS readme: [{opus_name}]({readme_url})¥n"
)
content = opus_readme_path.open().read()
content = content.split("¥n# ")[-1] # Get the lowest level 1 header in the README -- the most recent model.
splat = content.split("*")[2:]
print(splat[3])
content = "*".join(splat)
content = (
FRONT_MATTER_TEMPLATE.format(metadata["src_alpha2"])
+ extra_markdown
+ "¥n* "
+ content.replace("download", "download original weights")
)
items = "¥n¥n".join([f"- {k}: {v}" for k, v in metadata.items()])
sec3 = "¥n### System Info: ¥n" + items
content += sec3
if dry_run:
return content, metadata
sub_dir = save_dir / f"opus-mt-{hf_model_name}"
sub_dir.mkdir(exist_ok=True)
dest = sub_dir / "README.md"
dest.open("w").write(content)
pd.Series(metadata).to_json(sub_dir / "metadata.json")
# if dry_run:
return content, metadata
def make_registry(repo_path="Opus-MT-train/models"):
if not (Path(repo_path) / "fr-en" / "README.md").exists():
raise ValueError(
f"repo_path:{repo_path} does not exist: "
"You must run: git clone git@github.com:Helsinki-NLP/Opus-MT-train.git before calling."
)
results = {}
for p in Path(repo_path).iterdir():
n_dash = p.name.count("-")
if n_dash == 0:
continue
else:
lns = list(open(p / "README.md").readlines())
results[p.name] = _parse_readme(lns)
return [(k, v["pre-processing"], v["download"], v["download"][:-4] + ".test.txt") for k, v in results.items()]
def convert_all_sentencepiece_models(model_list=None, repo_path=None, dest_dir=Path("marian_converted")):
"""Requires 300GB"""
save_dir = Path("marian_ckpt")
dest_dir = Path(dest_dir)
dest_dir.mkdir(exist_ok=True)
save_paths = []
if model_list is None:
model_list: list = make_registry(repo_path=repo_path)
for k, prepro, download, test_set_url in tqdm(model_list):
if "SentencePiece" not in prepro: # dont convert BPE models.
continue
if not os.path.exists(save_dir / k):
download_and_unzip(download, save_dir / k)
pair_name = convert_opus_name_to_hf_name(k)
convert(save_dir / k, dest_dir / f"opus-mt-{pair_name}")
save_paths.append(dest_dir / f"opus-mt-{pair_name}")
return save_paths
def lmap(f, x) -> List:
return list(map(f, x))
def fetch_test_set(test_set_url):
import wget
fname = wget.download(test_set_url, "opus_test.txt")
lns = Path(fname).open().readlines()
src = lmap(str.strip, lns[::4])
gold = lmap(str.strip, lns[1::4])
mar_model = lmap(str.strip, lns[2::4])
assert (
len(gold) == len(mar_model) == len(src)
), f"Gold, marian and source lengths {len(gold)}, {len(mar_model)}, {len(src)} mismatched"
os.remove(fname)
return src, mar_model, gold
def convert_whole_dir(path=Path("marian_ckpt/")):
for subdir in tqdm(list(path.ls())):
dest_dir = f"marian_converted/{subdir.name}"
if (dest_dir / "pytorch_model.bin").exists():
continue
convert(source_dir, dest_dir)
def _parse_readme(lns):
"""Get link and metadata from opus model card equivalent."""
subres = {}
for ln in [x.strip() for x in lns]:
if not ln.startswith("*"):
continue
ln = ln[1:].strip()
for k in ["download", "dataset", "models", "model", "pre-processing"]:
if ln.startswith(k):
break
else:
continue
if k in ["dataset", "model", "pre-processing"]:
splat = ln.split(":")
_, v = splat
subres[k] = v
elif k == "download":
v = ln.split("(")[-1][:-1]
subres[k] = v
return subres
def save_tokenizer_config(dest_dir: Path):
dname = dest_dir.name.split("-")
dct = dict(target_lang=dname[-1], source_lang="-".join(dname[:-1]))
save_json(dct, dest_dir / "tokenizer_config.json")
def add_to_vocab_(vocab: Dict[str, int], special_tokens: List[str]):
start = max(vocab.values()) + 1
added = 0
for tok in special_tokens:
if tok in vocab:
continue
vocab[tok] = start + added
added += 1
return added
def find_vocab_file(model_dir):
return list(model_dir.glob("*vocab.yml"))[0]
def add_special_tokens_to_vocab(model_dir: Path, spm_path) -> None:
#vocab = load_yaml(find_vocab_file(model_dir))
#vocab = {k: int(v) for k, v in vocab.items()}
vocab = load_spm(spm_path)
num_added = add_to_vocab_(vocab, ["<pad>"])
print(f"added {num_added} tokens to vocab")
save_json(vocab, model_dir / "vocab.json")
#save_tokenizer_config(model_dir)
def check_equal(marian_cfg, k1, k2):
v1, v2 = marian_cfg[k1], marian_cfg[k2]
assert v1 == v2, f"hparams {k1},{k2} differ: {v1} != {v2}"
def check_marian_cfg_assumptions(marian_cfg):
assumed_settings = {
"tied-embeddings-all": True,
"layer-normalization": True,
"right-left": False,
"transformer-ffn-depth": 2,
"transformer-aan-depth": 2,
"transformer-no-projection": False,
"transformer-postprocess-emb": "d",
"transformer-postprocess": "dan", # Dropout, add, normalize
"transformer-preprocess": "",
"type": "transformer",
"ulr-dim-emb": 0,
"dec-cell-base-depth": 2,
"dec-cell-high-depth": 1,
"transformer-aan-nogate": False,
}
for k, v in assumed_settings.items():
actual = marian_cfg[k]
assert actual == v, f"Unexpected config value for {k} expected {v} got {actual}"
check_equal(marian_cfg, "transformer-ffn-activation", "transformer-aan-activation")
check_equal(marian_cfg, "transformer-ffn-depth", "transformer-aan-depth")
check_equal(marian_cfg, "transformer-dim-ffn", "transformer-dim-aan")
BIAS_KEY = "decoder_ff_logit_out_b"
BART_CONVERTER = { # for each encoder and decoder layer
"self_Wq": "self_attn.q_proj.weight",
"self_Wk": "self_attn.k_proj.weight",
"self_Wv": "self_attn.v_proj.weight",
"self_Wo": "self_attn.out_proj.weight",
"self_bq": "self_attn.q_proj.bias",
"self_bk": "self_attn.k_proj.bias",
"self_bv": "self_attn.v_proj.bias",
"self_bo": "self_attn.out_proj.bias",
"self_Wo_ln_scale": "self_attn_layer_norm.weight",
"self_Wo_ln_bias": "self_attn_layer_norm.bias",
"ffn_W1": "fc1.weight",
"ffn_b1": "fc1.bias",
"ffn_W2": "fc2.weight",
"ffn_b2": "fc2.bias",
"ffn_ffn_ln_scale": "final_layer_norm.weight",
"ffn_ffn_ln_bias": "final_layer_norm.bias",
# Decoder Cross Attention
"context_Wk": "encoder_attn.k_proj.weight",
"context_Wo": "encoder_attn.out_proj.weight",
"context_Wq": "encoder_attn.q_proj.weight",
"context_Wv": "encoder_attn.v_proj.weight",
"context_bk": "encoder_attn.k_proj.bias",
"context_bo": "encoder_attn.out_proj.bias",
"context_bq": "encoder_attn.q_proj.bias",
"context_bv": "encoder_attn.v_proj.bias",
"context_Wo_ln_scale": "encoder_attn_layer_norm.weight",
"context_Wo_ln_bias": "encoder_attn_layer_norm.bias",
}
class OpusState:
def __init__(self, source_dir):
decoder_yml = cast_marian_config(load_yaml(source_dir / "decoder.yml"))
#npz_path = find_model_file(source_dir)
npz_path = decoder_yml["models"][0]
self.vocab_file = decoder_yml["vocabs"]
self.state_dict = np.load(npz_path)
cfg = load_config_from_state_dict(self.state_dict)
assert cfg["dim-vocabs"][0] == cfg["dim-vocabs"][1]
assert "Wpos" not in self.state_dict, "Wpos key in state dictionary"
self.state_dict = dict(self.state_dict)
self.wemb, self.final_bias = add_emb_entries(self.state_dict["Wemb"], self.state_dict[BIAS_KEY], 1)
self.pad_token_id = self.wemb.shape[0] - 1
cfg["vocab_size"] = self.pad_token_id + 1
# self.state_dict['Wemb'].sha
self.state_keys = list(self.state_dict.keys())
assert "Wtype" not in self.state_dict, "Wtype key in state dictionary"
self._check_layer_entries()
self.source_dir = source_dir
self.cfg = cfg
hidden_size, intermediate_shape = self.state_dict["encoder_l1_ffn_W1"].shape
assert (
hidden_size == cfg["dim-emb"] == 512
), f"Hidden size {hidden_size} and configured size {cfg['dim_emb']} mismatched or not 512"
# Process decoder.yml
#decoder_yml = cast_marian_config(load_yaml(source_dir / "decoder.yml"))
check_marian_cfg_assumptions(cfg)
self.hf_config = MarianConfig(
vocab_size=cfg["vocab_size"],
decoder_layers=cfg["dec-depth"],
encoder_layers=cfg["enc-depth"],
decoder_attention_heads=cfg["transformer-heads"],
encoder_attention_heads=cfg["transformer-heads"],
decoder_ffn_dim=cfg["transformer-dim-ffn"],
encoder_ffn_dim=cfg["transformer-dim-ffn"],
d_model=cfg["dim-emb"],
activation_function=cfg["transformer-aan-activation"],
pad_token_id=self.pad_token_id,
eos_token_id=0,
bos_token_id=0,
max_position_embeddings=cfg["dim-emb"],
scale_embedding=True,
normalize_embedding="n" in cfg["transformer-preprocess"],
static_position_embeddings=not cfg["transformer-train-position-embeddings"],
dropout=0.1, # see opus-mt-train repo/transformer-dropout param.
# default: add_final_layer_norm=False,
num_beams=decoder_yml["beam-size"],
decoder_start_token_id=self.pad_token_id,
bad_words_ids=[[self.pad_token_id]],
max_length=512,
)
def _check_layer_entries(self):
self.encoder_l1 = self.sub_keys("encoder_l1")
self.decoder_l1 = self.sub_keys("decoder_l1")
self.decoder_l2 = self.sub_keys("decoder_l2")
if len(self.encoder_l1) != 16:
warnings.warn(f"Expected 16 keys for each encoder layer, got {len(self.encoder_l1)}")
if len(self.decoder_l1) != 26:
warnings.warn(f"Expected 26 keys for each decoder layer, got {len(self.decoder_l1)}")
if len(self.decoder_l2) != 26:
warnings.warn(f"Expected 26 keys for each decoder layer, got {len(self.decoder_l1)}")
@property
def extra_keys(self):
extra = []
for k in self.state_keys:
if (
k.startswith("encoder_l")
or k.startswith("decoder_l")
or k in [CONFIG_KEY, "Wemb", "Wpos", "decoder_ff_logit_out_b"]
):
continue
else:
extra.append(k)
return extra
def sub_keys(self, layer_prefix):
return [remove_prefix(k, layer_prefix) for k in self.state_dict if k.startswith(layer_prefix)]
def load_marian_model(self) -> MarianMTModel:
state_dict, cfg = self.state_dict, self.hf_config
assert cfg.static_position_embeddings, "config.static_position_embeddings should be True"
model = MarianMTModel(cfg)
assert "hidden_size" not in cfg.to_dict()
load_layers_(
model.model.encoder.layers,
state_dict,
BART_CONVERTER,
)
load_layers_(model.model.decoder.layers, state_dict, BART_CONVERTER, is_decoder=True)
# handle tensors not associated with layers
wemb_tensor = nn.Parameter(torch.FloatTensor(self.wemb))
bias_tensor = nn.Parameter(torch.FloatTensor(self.final_bias))
model.model.shared.weight = wemb_tensor
model.model.encoder.embed_tokens = model.model.decoder.embed_tokens = model.model.shared
model.final_logits_bias = bias_tensor
if "Wpos" in state_dict:
print("Unexpected: got Wpos")
wpos_tensor = torch.tensor(state_dict["Wpos"])
model.model.encoder.embed_positions.weight = wpos_tensor
model.model.decoder.embed_positions.weight = wpos_tensor
if cfg.normalize_embedding:
assert "encoder_emb_ln_scale_pre" in state_dict
raise NotImplementedError("Need to convert layernorm_embedding")
assert not self.extra_keys, f"Failed to convert {self.extra_keys}"
assert (
model.model.shared.padding_idx == self.pad_token_id
), f"Padding tokens {model.model.shared.padding_idx} and {self.pad_token_id} mismatched"
return model
def download_and_unzip(url, dest_dir):
try:
import wget
except ImportError:
raise ImportError("you must pip install wget")
filename = wget.download(url)
unzip(filename, dest_dir)
os.remove(filename)
def convert(source_dir: Path, dest_dir):
dest_dir = Path(dest_dir)
dest_dir.mkdir(exist_ok=True)
opus_state = OpusState(source_dir)
add_special_tokens_to_vocab(source_dir, opus_state.vocab_file[1])
#tokenizer = MarianTokenizer.from_pretrained(str(source_dir), source_spm=opus_state.vocab_file[0], target_spm=opus_state.vocab_file[1])
tokenizer = MarianTokenizer(source_dir / "vocab.json", source_spm=opus_state.vocab_file[0], target_spm=opus_state.vocab_file[1])
tokenizer.save_pretrained(dest_dir)
save_tokenizer_config(dest_dir)
assert opus_state.cfg["vocab_size"] == len(
tokenizer.encoder
), f"Original vocab size {opus_state.cfg['vocab_size']} and new vocab size {len(tokenizer.encoder)} mismatched"
# save_json(opus_state.cfg, dest_dir / "marian_original_config.json")
# ^^ Uncomment to save human readable marian config for debugging
model = opus_state.load_marian_model()
model = model.half()
model.save_pretrained(dest_dir)
model.from_pretrained(dest_dir) # sanity check
def load_yaml(path):
import yaml
with open(path) as f:
return yaml.load(f, Loader=yaml.BaseLoader)
def load_spm(path):
import sentencepiece as spm
sp = spm.SentencePieceProcessor(model_file='model/vocab.enja.spm')
vocab = {sp.IdToPiece(i): i for i in range(sp.GetPieceSize())}
return vocab
def save_json(content: Union[Dict, List], path: str) -> None:
with open(path, "w") as f:
json.dump(content, f)
def unzip(zip_path: str, dest_dir: str) -> None:
with ZipFile(zip_path, "r") as zipObj:
zipObj.extractall(dest_dir)
if __name__ == "__main__":
"""
Tatoeba conversion instructions in scripts/tatoeba/README.md
"""
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src", type=str, help="path to marian model sub dir", default="en-de")
parser.add_argument("--dest", type=str, default=None, help="Path to the output PyTorch model.")
args = parser.parse_args()
source_dir = Path(args.src)
assert source_dir.exists(), f"Source directory {source_dir} not found"
dest_dir = f"converted-{source_dir.name}" if args.dest is None else args.dest
convert(source_dir, dest_dir)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment