import numpy as np import matplotlib.pyplot as plt %matplotlib inline def traindata(): x1_label0 = np.random.normal(1, 1, (100, 1)) x2_label0 = np.random.normal(1, 1, (100, 1)) x1_label1 = np.random.normal(5, 1, (100, 1)) x2_label1 = np.random.normal(4, 1, (100, 1)) x1_label2 = np.random.normal(8, 1, (100, 1)) x2_label2 = np.random.normal(0, 1, (100, 1)) xs_label0 = np.hstack((x1_label0, x2_label0)) xs_label1 = np.hstack((x1_label1, x2_label1)) xs_label2 = np.hstack((x1_label2, x2_label2)) xs = np.vstack((xs_label0, xs_label1, xs_label2)) labels = np.matrix([[1., 0., 0.]] * len(x1_label0) + [[0., 1., 0.]] * len(x1_label1) + [[0., 0., 1.]] * len(x1_label2)) arr = np.arange(xs.shape[0]) np.random.shuffle(arr) xs = xs[arr, :] labels = labels[arr, :] return xs, labels def testdata(): test_x1_label0 = np.random.normal(1, 1, (10, 1)) test_x2_label0 = np.random.normal(1, 1, (10, 1)) test_x1_label1 = np.random.normal(5, 1, (10, 1)) test_x2_label1 = np.random.normal(4, 1, (10, 1)) test_x1_label2 = np.random.normal(8, 1, (10, 1)) test_x2_label2 = np.random.normal(0, 1, (10, 1)) test_xs_label0 = np.hstack((test_x1_label0, test_x2_label0)) test_xs_label1 = np.hstack((test_x1_label1, test_x2_label1)) test_xs_label2 = np.hstack((test_x1_label2, test_x2_label2)) test_xs = np.vstack((test_xs_label0, test_xs_label1, test_xs_label2)) test_labels = np.matrix([[1., 0., 0.]] * 10 + [[0., 1., 0.]] * 10 + [[0., 0., 1.]] * 10) return test_xs, test_labels train, train_label = traindata() test, test_label = testdata() train_size, num_features = train.shape learning_rate = 0.01 training_epochs = 1000 num_labels = 3 batch_size = 100 X = tf.placeholder("float", shape=[None, num_features]) Y = tf.placeholder("float", shape=[None, num_labels]) W = tf.Variable(tf.zeros([num_features, num_labels])) b = tf.Variable(tf.zeros([num_labels])) y_model = tf.nn.softmax(tf.matmul(X, W) + b) cost = -tf.reduce_sum(Y * tf.log(y_model)) train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) with tf.Session() as sess: tf.global_variables_initializer().run() for step in range(training_epochs * train_size // batch_size): offset = (step * batch_size) % train_size batch_xs = train[offset:(offset + batch_size), :] batch_labels = train_label[offset:(offset + batch_size)] err, _ = sess.run([cost, train_op], feed_dict={X: batch_xs, Y: batch_labels}) print(step,err) W_val = sess.run(W) print('w', W_val) b_val = sess.run(b) print('b', b_val) print("accuracy", accuracy.eval(feed_dict={X: test, Y: test_label}))