-
-
Save zckly/f3f28ea731e096e53b39b47bf0a2d4b1 to your computer and use it in GitHub Desktop.
| import asyncio | |
| from typing import Optional | |
| from contextlib import AsyncExitStack | |
| from mcp import ClientSession, StdioServerParameters | |
| from mcp.client.stdio import stdio_client | |
| from anthropic import Anthropic | |
| from dotenv import load_dotenv | |
| load_dotenv() # load environment variables from .env | |
| class MCPClient: | |
| def __init__(self): | |
| # Initialize session and client objects | |
| self.session: Optional[ClientSession] = None | |
| self.exit_stack = AsyncExitStack() | |
| self.anthropic = Anthropic() | |
| async def connect_to_server(self, server_script_path: str): | |
| """Connect to an MCP server | |
| Args: | |
| server_script_path: Path to the server script (.py or .js) | |
| """ | |
| is_python = server_script_path.endswith('.py') | |
| is_js = server_script_path.endswith('.js') | |
| if not (is_python or is_js): | |
| raise ValueError("Server script must be a .py or .js file") | |
| command = "python" if is_python else "node" | |
| server_params = StdioServerParameters( | |
| command=command, | |
| args=[server_script_path], | |
| env=None | |
| ) | |
| stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params)) | |
| self.stdio, self.write = stdio_transport | |
| self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write)) | |
| await self.session.initialize() | |
| # List available tools | |
| response = await self.session.list_tools() | |
| tools = response.tools | |
| print("\nConnected to server with tools:", [tool.name for tool in tools]) | |
| async def process_query(self, query: str) -> str: | |
| """Process a query using Claude and available tools""" | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": query | |
| } | |
| ] | |
| response = await self.session.list_tools() | |
| available_tools = [{ | |
| "name": tool.name, | |
| "description": tool.description, | |
| "input_schema": tool.inputSchema | |
| } for tool in response.tools] | |
| # Initial Claude API call | |
| response = self.anthropic.messages.create( | |
| model="claude-3-5-sonnet-20241022", | |
| max_tokens=1000, | |
| messages=messages, | |
| tools=available_tools | |
| ) | |
| # Process response and handle tool calls | |
| tool_results = [] | |
| final_text = [] | |
| for content in response.content: | |
| if content.type == 'text': | |
| final_text.append(content.text) | |
| elif content.type == 'tool_use': | |
| tool_name = content.name | |
| tool_args = content.input | |
| # Execute tool call | |
| result = await self.session.call_tool(tool_name, tool_args) | |
| tool_results.append({"call": tool_name, "result": result}) | |
| final_text.append(f"[Calling tool {tool_name} with args {tool_args}]") | |
| # Continue conversation with tool results | |
| if hasattr(content, 'text') and content.text: | |
| messages.append({ | |
| "role": "assistant", | |
| "content": content.text | |
| }) | |
| messages.append({ | |
| "role": "user", | |
| "content": result.content | |
| }) | |
| # Get next response from Claude | |
| response = self.anthropic.messages.create( | |
| model="claude-3-5-sonnet-20241022", | |
| max_tokens=1000, | |
| messages=messages, | |
| ) | |
| final_text.append(response.content[0].text) | |
| return "\n".join(final_text) | |
| async def chat_loop(self): | |
| """Run an interactive chat loop""" | |
| print("\nMCP Client Started!") | |
| print("Type your queries or 'quit' to exit.") | |
| while True: | |
| try: | |
| query = input("\nQuery: ").strip() | |
| if query.lower() == 'quit': | |
| break | |
| response = await self.process_query(query) | |
| print("\n" + response) | |
| except Exception as e: | |
| print(f"\nError: {str(e)}") | |
| async def cleanup(self): | |
| """Clean up resources""" | |
| await self.exit_stack.aclose() | |
| async def main(): | |
| if len(sys.argv) < 2: | |
| print("Usage: python client.py <path_to_server_script>") | |
| sys.exit(1) | |
| client = MCPClient() | |
| try: | |
| await client.connect_to_server(sys.argv[1]) | |
| await client.chat_loop() | |
| finally: | |
| await client.cleanup() | |
| if __name__ == "__main__": | |
| import sys | |
| asyncio.run(main()) |
We need to purchase the Claude API key right?
yup
can any tell me whether it is importnat to use the uv , can we just simply use pip to install the packages andd creatting the virtual environment
because pip is widely being used to make agentic applications, and one is familiar to it, can we like use it
When I ran the code successfully, I found that the client did not invoke the server's tools. Have you ever encountered such a situation?
`Connected to server with tools: ['get_alerts', 'get_forecast']
MCP Client Started!
Type your queries or 'quit' to exit.
Query: What are the weather alerts in California
I apologize, but I am not able to provide real-time weather alert information for California. As an AI coding assistant, I don't have access to live weather data or alert systems.
To get accurate weather alerts for California, I recommend:
- Visiting the National Weather Service website (weather.gov) and searching for California
- Checking your local news station's weather reports
- Using the official NOAA Weather app
- Setting up alerts through the FEMA app
- Following your local emergency management office on social media
These sources will provide you with current, accurate weather alerts and emergency information for your specific location in California.
Would you like help writing code to integrate weather alert data into an application instead? I'd be happy to assist with that type of programming task.
`
We need to purchase the Claude API key right?
yup
Can we use another API Key from Genmini Google AI Studio? because it's free
help me fix this error, when I run the client .. AttributeError: 'MCPClient' object has no attribute 'connect_to_server'
We need to purchase the Claude API key right?
yup
Can we use another API Key from Genmini Google AI Studio? because it's free
Yes, we can
We need to purchase the Claude API key right?
yup
Can we use another API Key from Genmini Google AI Studio? because it's free
Yes, we can
oki, Got it thank u
Hi there, can anyone help me with
import asyncio from typing import Optional from contextlib import AsyncExitStack import logging import json from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client from anthropic import Anthropic from dotenv import load_dotenv load_dotenv() # load environment variables from .env print("Environment variables loaded from .env file") class MCPClient: def __init__(self): # Initialize session and client objects print("Initializing MCPClient...") self.session: Optional[ClientSession] = None self.exit_stack = AsyncExitStack() self.anthropic = Anthropic() print("MCPClient initialized successfully") async def connect_to_server(self, server_script_path: str): """Connect to an MCP server Args: server_script_path: Path to the server script (.py or .js) """ print(f"Connecting to server with script: {server_script_path}") is_python = server_script_path.endswith('.py') is_js = server_script_path.endswith('.js') if not (is_python or is_js): print(f"Error: Invalid script type for {server_script_path}") raise ValueError("Server script must be a .py or .js file") command = "python" if is_python else "node" print(f"Using {command} to execute server script") server_params = StdioServerParameters( command=command, args=[server_script_path], env=None ) print("Establishing stdio transport connection...") stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params)) self.stdio, self.write = stdio_transport print("Creating client session...") self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write)) print("Initializing session...") await self.session.initialize() # List available tools print("Retrieving available tools...") response = await self.session.list_tools() tools = response.tools print("\nConnected to server with tools:", [tool.name for tool in tools]) print(f"Total tools available: {len(tools)}")``` I have this code but it is getting strucked at Initialing session forever. It is not showing any error or anythingDoes your server.py file throw any error when you run "uv run server.py" command?
Hi, I have the same problem, my code runs until :
await self.session.initialize()
but then nothing happens. I don't get any errors in my server or client when I run these codes.
I'm hitting the following error:
Error: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'Your credit balance is too low to access the Anthropic API. Please go to Plans & Billing to upgrade or purchase credits.'}}
I don't think that I overused the API Key. Is it possible that the key is not consumed?
please how do I connect my server to the client. I'm kinda confuse cos both are on different folders
It is mentioned in the documentation:
server_params = StdioServerParameters( command=command, args=[server_script_path], env=None )
Just add your mcp server's ".py / .js" file path in "args".
please how do I connect my server to the client. I'm kinda confuse cos both are on different folders
Simple. Just run in terminal "uv run client.py [\file path]"
I am using original code in the gist , but getting the following error , hope someone has resolved this before. I am completely novice in python , recently starting working with it.
Traceback (most recent call last):
File "/Users/khurramsyed/work/ai-related/agentic-ai-samples/mcp-client/client.py", line 147, in
asyncio.run(main())
~~~~~~~~~~~^^^^^^^^
File "/opt/homebrew/Cellar/python@3.13/3.13.5/Frameworks/Python.framework/Versions/3.13/lib/python3.13/asyncio/runners.py", line 195, in run
return runner.run(main)
~~~~~~~~~~^^^^^^
File "/opt/homebrew/Cellar/python@3.13/3.13.5/Frameworks/Python.framework/Versions/3.13/lib/python3.13/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^
File "/opt/homebrew/Cellar/python@3.13/3.13.5/Frameworks/Python.framework/Versions/3.13/lib/python3.13/asyncio/base_events.py", line 725, in run_until_complete
return future.result()
~~~~~~~~~~~~~^^
File "/Users/khurramsyed/work/ai-related/agentic-ai-samples/mcp-client/client.py", line 140, in main
await client.connect_to_server(sys.argv[1])
File "/Users/khurramsyed/work/ai-related/agentic-ai-samples/mcp-client/client.py", line 42, in connect_to_server
await self.session.initialize()
File "/Users/khurramsyed/work/ai-related/agentic-ai-samples/mcp-client/.venv/lib/python3.13/site-packages/mcp/client/session.py", line 151, in initialize
result = await self.send_request(
^^^^^^^^^^^^^^^^^^^^^^^^
...<16 lines>...
)
^
File "/Users/khurramsyed/work/ai-related/agentic-ai-samples/mcp-client/.venv/lib/python3.13/site-packages/mcp/shared/session.py", line 286, in send_request
raise McpError(response_or_error.error)
mcp.shared.exceptions.McpError: Connection closed
command = "python" if is_python else "node" # Create a modified environment to include virtual environment path env = os.environ.copy() venv_site_packages = os.path.join(sys.prefix, 'Lib', 'site-packages') if 'PYTHONPATH' in env: env['PYTHONPATH'] = f"{venv_site_packages}:{env['PYTHONPATH']}" else: env['PYTHONPATH'] = venv_site_packages server_params = StdioServerParameters( command=command, args=[server_script_path], env=env )
Where does this code snippet go?
Could anyone provide a reference or example project that uses a free cloud-based model API, including the complete client-side code?
Hi is there any resource to interface this setup with gemini model
@2137942shubham this is a way in which the interface can be setup with gemini
async def connect_to_server(self, server_script_path: str): """Connect to an MCP server Args: server_script_path: Path to the server script (.py or .js) """ is_python = server_script_path.endswith('.py') is_js = server_script_path.endswith('.js') if not (is_python or is_js): raise ValueError("Server script should be a .py or .js file") command = "python" if is_python else "node" server_params = StdioServerParameters( command=command, args=[server_script_path], env = None ) stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params)) self.stdio, self.write = stdio_transport self.sessions = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write)) await self.sessions.initialize() # List available tools response = await self.sessions.list_tools() tools = response.tools print("\nConnected to server with tools:",[tool.name for tool in tools]) available_tools = [] for tool in tools: tool_definition = { "function_declarations": [ { "name": tool.name, "description": tool.description } ] } available_tools.append(tool_definition) self.model = genai.GenerativeModel( model_name="gemini-2.0-flash", tools=available_tools ) self.chat = self.model.start_chat()
Can I get the reference for process_query function ?
Hello Everyone,
Below is the working code of client.py using GOOGLE Gemini API:
`
client.py
import asyncio
import json
import sys
from typing import Optional, List, Dict, Any
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import google.generativeai as genai
from dotenv import load_dotenv
import os
load_dotenv() # load environment variables from .env
class MCPClient:
def __init__(self):
# Initialize session and client objects
self.session: Optional[ClientSession] = None
self.exit_stack = AsyncExitStack()
# Configure Gemini
api_key = os.getenv('GEMINI_API_KEY')
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel('gemini-2.0-flash-001')
async def connect_to_server(self, server_script_path: str):
"""Connect to an MCP server
Args:
server_script_path: Path to the server script (.py or .js)
"""
is_python = server_script_path.endswith('.py')
is_js = server_script_path.endswith('.js')
if not (is_python or is_js):
raise ValueError("Server script must be a .py or .js file")
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_script_path],
env=None
)
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
await self.session.initialize()
# List available tools
response = await self.session.list_tools()
tools = response.tools
print("\nConnected to server with tools:", [tool.name for tool in tools])
def convert_mcp_tools_to_gemini(self, mcp_tools: List) -> List[Dict]:
"""Convert MCP tools to Gemini function calling format"""
gemini_tools = []
for tool in mcp_tools:
function_declaration = {
"name": tool.name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": {},
"required": []
}
}
# Convert input schema to Gemini format
if hasattr(tool, 'inputSchema') and tool.inputSchema:
schema = tool.inputSchema
if isinstance(schema, dict):
if "properties" in schema:
# Clean properties by removing unsupported fields
cleaned_properties = {}
for prop_name, prop_schema in schema["properties"].items():
cleaned_prop = {}
if isinstance(prop_schema, dict):
# Only keep supported fields for Gemini
if "type" in prop_schema:
cleaned_prop["type"] = prop_schema["type"]
if "description" in prop_schema:
cleaned_prop["description"] = prop_schema["description"]
if "enum" in prop_schema:
cleaned_prop["enum"] = prop_schema["enum"]
# Remove unsupported fields like 'title'
cleaned_properties[prop_name] = cleaned_prop
function_declaration["parameters"]["properties"] = cleaned_properties
if "required" in schema:
function_declaration["parameters"]["required"] = schema["required"]
gemini_tools.append({"function_declarations": [function_declaration]})
return gemini_tools
async def execute_tool_call(self, tool_name: str, arguments: Dict[str, Any]) -> str:
"""Execute a tool call via MCP"""
try:
result = await self.session.call_tool(tool_name, arguments)
if result.content:
# Handle different content types
content_parts = []
for content in result.content:
if hasattr(content, 'text'):
content_parts.append(content.text)
elif hasattr(content, 'data'):
content_parts.append(str(content.data))
else:
content_parts.append(str(content))
return "\n".join(content_parts)
else:
return "Tool executed successfully but returned no content"
except Exception as e:
return f"Error executing tool {tool_name}: {str(e)}"
async def process_query(self, query: str) -> str:
"""Process a query using Gemini and available tools"""
# Get available tools
response = await self.session.list_tools()
available_tools = response.tools
# Convert tools to Gemini format
gemini_tools = self.convert_mcp_tools_to_gemini(available_tools)
try:
# Initial request to Gemini
if gemini_tools:
response = self.model.generate_content(
query,
tools=gemini_tools,
tool_config={'function_calling_config': {'mode': 'AUTO'}}
)
else:
response = self.model.generate_content(query)
# Check if Gemini wants to call functions
if response.candidates and response.candidates[0].content.parts:
parts = response.candidates[0].content.parts
final_response_parts = []
for part in parts:
if hasattr(part, 'function_call') and part.function_call:
# Execute the function call
function_call = part.function_call
tool_name = function_call.name
# Convert arguments
arguments = {}
if hasattr(function_call, 'args') and function_call.args:
arguments = dict(function_call.args)
print(f"\nExecuting tool: {tool_name} with arguments: {arguments}")
# Execute the tool
tool_result = await self.execute_tool_call(tool_name, arguments)
# Create a follow-up request with the tool result
follow_up_messages = [
{"role": "user", "parts": [{"text": query}]},
{"role": "model", "parts": [{"function_call": function_call}]},
{"role": "user", "parts": [{"function_response": {
"name": tool_name,
"response": {"result": tool_result}
}}]}
]
# Get final response from Gemini
final_response = self.model.generate_content(follow_up_messages)
if final_response.text:
final_response_parts.append(final_response.text)
elif hasattr(part, 'text') and part.text:
final_response_parts.append(part.text)
return "\n".join(final_response_parts) if final_response_parts else "No response generated"
# If no function calls, return the text response
return response.text if response.text else "No response generated"
except Exception as e:
print(f"Error calling Gemini API: {e}")
return f"Error: {str(e)}"
async def chat_loop(self):
"""Run an interactive chat loop"""
print("\nMCP Client with Gemini Started!")
print("Type your queries or 'quit' to exit.")
while True:
try:
query = input("\nQuery: ").strip()
if query.lower() == 'quit':
break
response = await self.process_query(query)
print(f"\nResponse: {response}")
except Exception as e:
print(f"\nError: {str(e)}")
async def cleanup(self):
"""Clean up resources"""
await self.exit_stack.aclose()
async def main():
if len(sys.argv) < 2:
print("Usage: python client.py <path_to_server_script>")
sys.exit(1)
client = MCPClient()
try:
await client.connect_to_server(sys.argv[1])
await client.chat_loop()
finally:
await client.cleanup()
if __name__ == "__main__":
asyncio.run(main())
`
Hi is there any resource to interface this setup with gemini model
If you find any resource please share with me
We need to purchase the Claude API key right?