Skip to content

Instantly share code, notes, and snippets.

@kachayev
Last active January 25, 2022 17:27
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save kachayev/a50e19de0b1a89eb2d63efc704655a43 to your computer and use it in GitHub Desktop.
Save kachayev/a50e19de0b1a89eb2d63efc704655a43 to your computer and use it in GitHub Desktop.
Converting RL loop (PPO, DQN, etc) into a selfplay setting by changing 2 lines
"""
Imagine we have a training loop for an agent. E.g. PPO, or DQN, or whatever.
What is the easiest way to convert this into a selfplay?
To make this happen we want to run 2 identical loop: 1 loop for each agent.
But. There are 2 sync points: `env.reset()`, and each `env.step()`.
Is there a way to avoid duplicating code for setting/loading agent model, creating/updating
buffers, running training loops etc... Yes, it is. By utilizing generators protocol: `yield` and `send`.
The idea is simple: turn loop into a generator by `yield`-ing on `reset` and on each `step`, feed back
the result of interacting with the environment using `.send`. This makes it possible for us to have a single
env, and orchestrate 2 loops independently. Easier to show than to explain. See "__main__" with the
implementation.
Code for PPO is taken from CleanRL: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py
SlimeVolley Gym environment: https://github.com/hardmaru/slimevolleygym
"""
import argparse
import os
import random
import time
from tqdm import tqdm
from distutils.util import strtobool
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.distributions.bernoulli import Bernoulli
from torch.utils.tensorboard import SummaryWriter
import slimevolleygym
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--gym-id", type=str, default="CartPole-v1",
help="the id of the gym environment")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--total-timesteps", type=int, default=25000,
help="total timesteps of the experiments")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="weather to capture videos of the agent performances (check out `videos` folder)")
# Algorithm specific arguments
parser.add_argument("--num-envs", type=int, default=4,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=128,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=4,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=4,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.2,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles wheter or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
args = parser.parse_args()
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
# fmt: on
return args
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
def __init__(self, envs):
super(Agent, self).__init__()
self.critic = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 1), std=1.0),
)
self.actor = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, envs.single_action_space.n), std=0.01),
)
def get_value(self, x):
return self.critic(x)
def get_action_and_value(self, x, action=None):
logits = self.actor(x)
# probs = Categorical(logits=logits)
probs = Bernoulli(logits=logits)
if action is None:
action = probs.sample()
return action, probs.log_prob(action.float()).sum(dim=1), probs.entropy().sum(dim=1), self.critic(x)
def train_loop(args, envs, run_name, agent_id):
run_name = f"{run_name}__{agent_id}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# EDITED HERE
# assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
agent = Agent(envs).to(device)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
# EDITED HERE
# xxx(okachaiev): ideally i need 2 pbars for running env and for epoches
pbar = tqdm(total=args.total_timesteps)
pbar.set_description("Episodic return: n/a")
start_time = time.time()
# EDITED HERE
reset_obs = yield
next_obs = torch.Tensor(reset_obs).to(device)
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size
for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
obs[step] = next_obs
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
# EDITED HERE
next_obs, reward, done, info = yield action.cpu().numpy()
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
for item in info:
if "episode" in item.keys():
# EDITED HERE
pbar.set_description(f"Episodic return: {item['episode']['r']}")
writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step)
break
pbar.update(args.num_envs)
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
# flatten the batch
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizaing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions.long()[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
# old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
# EDITED HERE
# print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
torch.save(agent.state_dict(), f"trained_agents/{run_name}.pt")
pbar.close()
writer.close()
# EDITED HERE: make SlimeVolley a little bit more friendly to Wrappers
class SelfPlayWrapper(gym.Wrapper):
def step(self, action):
action1, action2 = action
obs, reward, done, info = self.env.step(action1, action2)
return (obs, info['otherObs']), reward, done, info
def make_env(gym_id, seed, run_name):
env = gym.make(gym_id)
env.single_observation_space = env.observation_space
env.single_action_space = env.action_space
# EDITED HERE: need to wrap, otherwise the rest of the wrapper
# won't work (step only accepts a single argument)
env = SelfPlayWrapper(env)
env = gym.wrappers.RecordEpisodeStatistics(env)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
if __name__ == "__main__":
args = parse_args()
run_name = f"{args.gym_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
# env setup
# EDITED HERE, SlimeVolley is hard with VecEnv :(
envs = make_env(args.gym_id, args.seed, run_name)
# RUNNING 1-vs-1 BASED ON NORMAL PPO LOOP
# make loops (generators)
loop_agent1 = train_loop(args, envs, run_name, "1")
loop_agent2 = train_loop(args, envs, run_name, "2")
# first yield
next(loop_agent1), next(loop_agent2)
next_obs = envs.reset()
next_obs = np.expand_dims(next_obs, 0)
action1 = loop_agent1.send(next_obs)
action2 = loop_agent2.send(next_obs)
# each following yield
while True:
(next_obs1, next_obs2), reward, done, info = envs.step((action1.squeeze(0), action2.squeeze(0)))
try:
action1 = loop_agent1.send((np.expand_dims(next_obs1,0), np.expand_dims(reward,0), np.array([done]), [info]))
action2 = loop_agent2.send((np.expand_dims(next_obs2,0), np.expand_dims(-reward,0), np.array([done]), [info]))
except StopIteration:
break
envs.close()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment