sudo nvpmodel -m 0 # 最大功率
sudo jetson_clocks # 超频
sudo apt update
sudo pip install jetson-stats
sudo reboot # 要重启一次
jtop
-
先强行装一波 ultralytic, 注意, 安装好之大概率后是不可用的, 因为torch 和 torchvision都有版本问题
sudo apt update sudo apt install python3-pip -y pip install -U pip pip install ultralytics[export] # 不要漏了 [export], 这是用来标注需要安装特殊依赖的tag sudo reboot
-
ultralytic 编译好的 torch 和 torchvision
pip3 install https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-2.5.0a0+872d972e41.nv24.08-cp310-cp310-linux_aarch64.whl
pip3 install https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.20.0a0+afc54f7-cp310-cp310-linux_aarch64.whl
- 安装完 torch 和 torchvision 之后, import的时候会报错的, 需要安装
cuSPARSELt
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install libcusparselt0 libcusparselt-dev
- 导出模型功能需要安装
onnxruntime-gpu
:
pip3 install https://github.com/ultralytics/assets/releases/download/v0.0.0/onnxruntime_gpu-1.20.0-cp310-cp310-linux_aarch64.whl
# onnxruntime-gpu will automatically revert back the numpy version to latest. So we need to reinstall numpy to 1.23.5 to fix an issue by executing:
pip3 install numpy==1.23.5
- 测试导出模型功能:
yolo export model=yolo11n.pt format=engine # creates 'yolo11n.engine'
# Run inference with the exported model
yolo predict model=yolo11n.engine source='https://ultralytics.com/images/bus.jpg'
遇到错误F403 ImportError: libcusparseLt.so.0: cannot open shared object file: No such file or directory”:
- Install
cuSPARSELt
wget https://developer.download.nvidia.com/compute/cusparselt/0.7.0/local_installers/cusparselt-local-tegra-repo-ubuntu2204-0.7.0_1.0-1_arm64.deb sudo dpkg -i cusparselt-local-tegra-repo-ubuntu2204-0.7.0_1.0-1_arm64.deb sudo cp /var/cusparselt-local-tegra-repo-ubuntu2204-0.7.0/cusparselt-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get -y install libcusparselt0 libcusparselt-dev ## --- 下面是 ultralytics 给的方案, 解决 torch 2.5.0 出现的上述问题 wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb sudo dpkg -i cuda-keyring_1.1-1_all.deb sudo apt-get update sudo apt-get -y install libcusparselt0 libcusparselt-dev
缺少 onnx
- Install
onnxruntime-gpu
:pip3 install https://github.com/ultralytics/assets/releases/download/v0.0.0/onnxruntime_gpu-1.20.0-cp310-cp310-linux_aarch64.whl # onnxruntime-gpu will automatically revert back the numpy version to latest. So we need to reinstall numpy to 1.23.5 to fix an issue by executing: pip3 install numpy==1.23.5