Skip to content

Instantly share code, notes, and snippets.

@razvanalex
Created February 2, 2025 01:00
Show Gist options
  • Save razvanalex/440468d8a435b9842e025d23a80ca536 to your computer and use it in GitHub Desktop.
Save razvanalex/440468d8a435b9842e025d23a80ca536 to your computer and use it in GitHub Desktop.
Open WebUI search tool
"""
title: Web Search using SearXNG and Scrape first N Pages
author: constLiakos with enhancements by justinh-rahb and ther3zz
funding_url: https://github.com/open-webui
version: 0.1.12
license: MIT
requirements: libmagic,pdfminer.six
"""
# pyright: basic
import os
os.system("apt update && apt install libmagic1")
import concurrent.futures
import json
import re
import time
import unicodedata
from typing import Any, Callable
from urllib.parse import urlparse
import magic
import requests
from bs4 import BeautifulSoup
from langchain.document_loaders.parsers import BS4HTMLParser, PDFMinerParser
from langchain.document_loaders.parsers.generic import MimeTypeBasedParser
from langchain.document_loaders.parsers.txt import TextParser
from langchain_community.document_loaders import Blob
from pydantic import BaseModel, Field
HANDLERS = {
"application/pdf": PDFMinerParser(),
"text/plain": TextParser(),
"text/html": BS4HTMLParser(),
}
MIMETYPE_BASED_PARSER = MimeTypeBasedParser(
handlers=HANDLERS,
fallback_parser=None,
)
class HelpFunctions:
def __init__(self):
pass
def get_base_url(self, url):
parsed_url = urlparse(url)
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
return base_url
def generate_excerpt(self, content, max_length=200):
return content[:max_length] + "..." if len(content) > max_length else content
def format_text(self, original_text):
soup = BeautifulSoup(original_text, "html.parser")
formatted_text = soup.get_text(separator=" ", strip=True)
formatted_text = unicodedata.normalize("NFKC", formatted_text)
formatted_text = re.sub(r"\s+", " ", formatted_text)
formatted_text = formatted_text.strip()
formatted_text = self.remove_emojis(formatted_text)
return formatted_text
def remove_emojis(self, text):
return "".join(c for c in text if not unicodedata.category(c).startswith("So"))
def process_search_result(self, result, valves):
title_site = self.remove_emojis(result["title"])
url_site = result["url"]
snippet = result.get("content", "")
# Check if the website is in the ignored list, but only if IGNORED_WEBSITES is not empty
if valves.IGNORED_WEBSITES:
base_url = self.get_base_url(url_site)
if any(
ignored_site.strip() in base_url
for ignored_site in valves.IGNORED_WEBSITES.split(",")
):
return None
try:
response_site = requests.get(url_site, timeout=20)
response_site.raise_for_status()
html_content = response_site.text
soup = BeautifulSoup(html_content, "html.parser")
content_site = self.format_text(soup.get_text(separator=" ", strip=True))
truncated_content = self.truncate_to_n_words(
content_site, valves.PAGE_CONTENT_WORDS_LIMIT
)
return {
"title": title_site,
"url": url_site,
"content": truncated_content,
"snippet": self.remove_emojis(snippet),
}
except requests.exceptions.RequestException as e:
return None
def truncate_to_n_words(self, text, token_limit):
tokens = text.split()
truncated_tokens = tokens[:token_limit]
return " ".join(truncated_tokens)
class EventEmitter:
def __init__(self, event_emitter: Callable[[dict], Any] | None = None):
self.event_emitter = event_emitter
async def emit(
self,
description="Unknown State",
status="in_progress",
searchQuery=None,
urls=None,
action=None,
done=False,
):
if self.event_emitter:
await self.event_emitter(
{
"type": "status",
"data": {
"action": action,
"status": status,
"description": description,
"query": searchQuery,
"urls": urls,
"done": done,
},
}
)
class Tools:
class Valves(BaseModel):
SEARXNG_ENGINE_API_BASE_URL: str = Field(
default="https://example.com/search",
description="The base URL for Search Engine",
)
IGNORED_WEBSITES: str = Field(
default="",
description="Comma-separated list of websites to ignore",
)
RETURNED_SCRAPPED_PAGES_NO: int = Field(
default=3,
description="The number of Search Engine Results to Parse",
)
SCRAPPED_PAGES_NO: int = Field(
default=5,
description="Total pages scapped. Ideally greater than one of the returned pages",
)
PAGE_CONTENT_WORDS_LIMIT: int = Field(
default=5000,
description="Limit words content for each page.",
)
CITATION_LINKS: bool = Field(
default=False,
description="If True, send custom citations with links",
)
def __init__(self):
self.valves = self.Valves()
self.headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
async def search_web(
self,
query: str,
__event_emitter__: Callable[[dict], Any] | None = None,
) -> str:
"""
Search the web and get the content of the relevant pages. Search for unknown knowledge, news, info, public contact info, weather, etc.
:params query: Web Query used in search engine.
:return: The content of the pages in json format.
"""
start = time.time()
functions = HelpFunctions()
emitter = EventEmitter(__event_emitter__)
await emitter.emit(f"Initiating web search for: {query}")
search_engine_url = self.valves.SEARXNG_ENGINE_API_BASE_URL
# Ensure RETURNED_SCRAPPED_PAGES_NO does not exceed SCRAPPED_PAGES_NO
if self.valves.RETURNED_SCRAPPED_PAGES_NO > self.valves.SCRAPPED_PAGES_NO:
self.valves.RETURNED_SCRAPPED_PAGES_NO = self.valves.SCRAPPED_PAGES_NO
params = {
"q": query,
"format": "json",
"number_of_results": self.valves.RETURNED_SCRAPPED_PAGES_NO,
}
try:
duration = time.time() - start
await emitter.emit(
f"Sending request to search engine. Spent {duration:.1f} seconds."
)
resp = requests.get(
search_engine_url, params=params, headers=self.headers, timeout=120
)
resp.raise_for_status()
data = resp.json()
results = data.get("results", [])
limited_results = results[: self.valves.SCRAPPED_PAGES_NO]
duration = time.time() - start
await emitter.emit(
f"Retrieved {len(limited_results)} search results. Spent {duration:.1f} seconds."
)
except requests.exceptions.RequestException as e:
await emitter.emit(
status="error",
description=f"Error during search: {str(e)}",
done=True,
)
return json.dumps({"error": str(e)})
results_json = []
urls = []
if limited_results:
duration = time.time() - start
await emitter.emit(
f"Processing search results. Spent {duration:.1f} seconds."
)
with concurrent.futures.ProcessPoolExecutor() as executor:
futures = [
executor.submit(
functions.process_search_result, result, self.valves
)
for result in limited_results
]
for future in concurrent.futures.as_completed(futures):
result_json = future.result()
if result_json:
try:
json.dumps(result_json)
results_json.append(result_json)
except (TypeError, ValueError):
continue
if len(results_json) >= self.valves.RETURNED_SCRAPPED_PAGES_NO:
break
results_json = results_json[: self.valves.RETURNED_SCRAPPED_PAGES_NO]
for result in results_json:
if self.valves.CITATION_LINKS and __event_emitter__:
await __event_emitter__(
{
"type": "citation",
"data": {
"document": [result["content"]],
"metadata": [{"source": result["url"]}],
"source": {"name": result["title"]},
},
}
)
urls.append(result["url"])
duration = time.time() - start
await emitter.emit(
status="complete",
description=f"Retrieved content from {len(results_json)} pages in {duration:.1f} seconds.",
searchQuery=query,
action="web_search",
urls=urls,
done=True,
)
return json.dumps(results_json, ensure_ascii=False)
async def get_website(
self, url: str, __event_emitter__: Callable[[dict], Any] | None = None
) -> str:
"""
Web scrape the website provided and get the content of it.
:params url: The URL of the website.
:return: The content of the website in json format.
"""
start = time.time()
functions = HelpFunctions()
emitter = EventEmitter(__event_emitter__)
await emitter.emit(f"Fetching content from URL: {url}")
results_json = []
try:
response_site = requests.get(url, headers=self.headers, timeout=120)
response_site.raise_for_status()
data = response_site.content
mime = magic.Magic(mime=True)
mime_type = mime.from_buffer(data)
blob = Blob.from_data(
data=data,
mime_type=mime_type,
)
parser = HANDLERS[mime_type]
documents = parser.parse(blob=blob)
title_site = url
content_site = documents[0].page_content
truncated_content = functions.truncate_to_n_words(
content_site, self.valves.PAGE_CONTENT_WORDS_LIMIT
)
result_site = {
"title": url,
"url": url,
"content": truncated_content,
"excerpt": functions.generate_excerpt(content_site),
}
results_json.append(result_site)
if self.valves.CITATION_LINKS and __event_emitter__:
await __event_emitter__(
{
"type": "citation",
"data": {
"document": [truncated_content],
"metadata": [{"source": url}],
"source": {"name": title_site},
"distance": 0,
},
}
)
duration = time.time() - start
await emitter.emit(
status="complete",
description=f"Website content retrieved and processed successfully in {duration:.1f} seconds",
done=True,
)
except requests.exceptions.RequestException as e:
results_json.append(
{
"url": url,
"content": f"Failed to retrieve the page. Error: {str(e)}",
}
)
await emitter.emit(
status="error",
description=f"Error fetching website content: {str(e)}",
done=True,
)
return json.dumps(results_json, ensure_ascii=False)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment