Skip to content

Instantly share code, notes, and snippets.

Avatar
💭
miles to go before i sleep

Mohit Cheppudira 0xfe

💭
miles to go before i sleep
View GitHub Profile
@0xfe
0xfe / deep-pitchs-errors-by-key.py
Created Feb 23, 2020
Plot prediction errors by key
View deep-pitchs-errors-by-key.py
files = os.listdir("samples")
np.random.shuffle(files)
notes = ['A', 'As', 'B', 'C', 'Cs', 'D', 'Ds', 'E', 'F', 'Fs', 'G', 'Gs']
note_map = {}
for i, note_name in enumerate(notes):
note_map[note_name] = i
count_by_key = np.zeros((8 * 12))
errors_by_key = np.zeros((8 * 12))
@0xfe
0xfe / sine-wave.py
Created Feb 27, 2020
20hz Sine Wave
View sine-wave.py
import numpy as np
import matplotlib.pyplot as plt
# Generate Sine wave
hz = 20
x = np.arange(0, 1, 0.001) # 1 second
y = np.sin(2 * np.pi * hz * x)
plt.figure(figsize=(10, 3))
plt.plot(x, y)
plt.show()
@0xfe
0xfe / sine-wave-fft.py
Created Feb 27, 2020
FFT of Sine Wave
View sine-wave-fft.py
# Generate an integer-period sine wave to
# eliminate spectral leak.
hz = 20
x = np.linspace(0, 2 * np.pi * hz, 128 * hz)
y = np.sin(x)
plt.figure(figsize=(10, 3))
plt.plot(x, y)
plt.show()
# We're only interested in the real components
View impulse-signal.py
points = 256
y = np.zeros(points, dtype="complex64")
y[20] = np.complex(1,0) # stick a 1 into the 20th position
plt.figure(figsize=(10, 3))
plt.bar(np.arange(100), np.absolute(y)[:100]) # Show the first 100 points
plt.show()
@0xfe
0xfe / impulse-fft.py
Created Feb 28, 2020
FFT of Impulse Signal
View impulse-fft.py
points = 256
y = np.zeros(points, dtype="complex64")
y[20] = np.complex(1,0)
ifft_y = fft.irfft(y) * points
plt.figure(figsize=(10, 3))
plt.plot(ifft_y)
plt.show()
@0xfe
0xfe / impulse-fft-inverse.py
Created Feb 28, 2020
Inverse FFT on Sine Wave
View impulse-fft-inverse.py
x = np.linspace(0, 2 * np.pi * hz, points * hz)
y = np.sin(x)
plt.figure(figsize=(10, 3))
plt.bar(np.arange(75), y[:75 * 10:10]) # sample every 10th element for bar graph
plt.show()
fft_y = fft.ifft(y.astype("complex64")) * 2
plt.figure(figsize=(10, 3))
plt.bar(np.arange(100), np.absolute(fft_y[:100]))
plt.show()
@0xfe
0xfe / spectrogram.py
Created Mar 2, 2020
Return the spectrogram of a complex-valued signal
View spectrogram.py
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
def spectrogram(xs):
return signal.spectrogram(xs, 256, window=('hann'), nperseg=256, nfft=256, noverlap=200, mode='complex')
@0xfe
0xfe / spectrogram_build_training_data.py
Created Mar 2, 2020
Generate training data for spectrogram
View spectrogram_build_training_data.py
def build_training_data(batch_size, sample_size):
xs = np.random.randn(batch_size, sample_size)
f, t, ys = spectrogram(xs)
(num_rows, num_cols) = (ys.shape[1], ys.shape[2])
print(ys.shape)
ys = ys.reshape(batch_size, num_rows * num_cols)
Ys = np.hstack([ys.real, ys.imag])
return (xs, Ys, num_rows, num_cols)
@0xfe
0xfe / spectrogram_keras_model.py
Created Mar 2, 2020
Keras model for training spectrogram NN
View spectrogram_keras_model.py
import tensorflow as tf
size = 2048
N = 15000
(xs, ys, rows, cols) = build_training_data(N, size)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(rows * cols * 2, input_dim=size, use_bias=False)
])
@0xfe
0xfe / spectrogram_scipy_vs_nn.py
Created Mar 2, 2020
Compare SciPy vs ANN in generating spectrograms
View spectrogram_scipy_vs_nn.py
def make_wave():
# Create four evenly-spaced tones
waves = []
hz = 0
for i in range(0, size, 512):
hz = hz + 50
waves.append(np.sin(np.linspace(0, 2 * np.pi * hz, 512)))
return np.hstack(waves)
wave = make_wave()