Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/1615d3b33d26e6679dfdb158cb9847f2 to your computer and use it in GitHub Desktop.
Save anonymous/1615d3b33d26e6679dfdb158cb9847f2 to your computer and use it in GitHub Desktop.
Схема производство кирпича

Схема производство кирпича


Схема производство кирпича



Подробное описание процесса производства силикатного кирпича
Как организовать собственный бизнес по изготовлению кирпича
Технология производства керамического кирпича


























Государственное образовательное учреждение высшего профессионального образования. В данном проекте приведен ассортимент выпускаемой продукции, применяемого сырья. Рассмотрено производство керамического кирпича по методу пластического формования цеха формования, сушки и обжига, выполнен подбор технологической схемы и оборудования. Рассмотрен контроль производства и охрана труда на заводах керамической промышленности. Произведен расчет материального баланса цеха формования, сушки, обжига, составлена производственная программа, а также сделан расчет склада готовой продукции. Строительная керамика — большая группа керамических изделий, применяющихся при строительстве жилых и промышленных зданий и сооружений. Изделия строительной керамики отличаются своей долговечностью, высокими художественными характеристиками, кислотостойкостью и полным отсутствием токсичности. В настоящее время предусматривается преимущественное развитие производства изделий, обеспечивающих снижение металлоёмкости, стоимости и трудоёмкости строительства, веса зданий, сооружений и повышение их теплозащиты, развитие мощности по производству строительных материалов с использованием золы и шлаков тепловых электростанций, металлургических и фосфорных шлаков, отходов горнодобывающих отраслей промышленности и углеобогатительных фабрик, техническое перевооружение производства кирпича на базе новейшей техники. Вот уже несколько тысячелетий кирпич - самый распространенный строительный материал. Кирпич может быть, различным по составу сырьевой смеси, технологии производства и даже форме. Какие же существуют виды и свойства кирпича? Традиционно под кирпичом понимают брусок, изготовленный из глины. Стоящие века церкви, соборы, стены и башни кремлей и по сей день поражающие своей красотой и монументальностью, выполнены именно из керамического кирпича. Помимо неповторимого внешнего вида, прочности и долговечности, к достоинствам такого кирпича можно отнести огнестойкость, высокую звуконепроницаемость, способность сохранять тепло и уравновешивать колебания температур. По назначению керамический кирпич подразделяется на строительный рядовой , облицовочный лицевой и специальный. Строительный кирпич служит для возведения несущих стен и перегородок, которые впоследствии облицовываются, штукатурятся, окрашиваются. Важно, чтобы несущая способность кирпича была достаточной. Для лучшего сцепления с кладочным раствором боковые грани кирпича могут быть рифлеными. Облицовочный кирпич предназначен для отделки фасадов и интерьеров, в нем не допускаются трещины, отколы, известковые включения, пятна, выцветы и другие дефекты. Выбирая лицевой кирпич, надо особенно внимательно следить, чтобы близко к его поверхности или на ней не было известковых включений: Разновидности лицевого кирпича - фактурный с неровным рельефом - "черепашка", "кора дуба" и пр. Последний позволяет изысканно оформлять окна, карнизы, создавать здания с закругленными углами, выполнять арки, своды, колонны. Кроме того, при использовании его исчезает необходимость подрезать обычный лицевой кирпич. Если для строительного кирпича цвет не принципиален, то для лицевого это один из главных параметров. Современный керамический кирпич может быть практически любым, от белого до черного, и даже неоднородного цвета например "плавающего" от темного оттенка к светлому, от коричневого к синему, от желтого к синему и т. Цвет зависит, прежде всего, от технологии обжига, а также от состава, качества и цвета глины-сырца. Для расширения цветовой гаммы производители смешивают глины нескольких видов, добавляют в сырьевую смесь красители. Почти любой оттенок можно получить с помощью ангоба и глазури. Ангоб - это тонкий декоративный слой из белой или цветной глины, который перед обжигом наносится на отформованное изделие. Глазурь - цветной стекловидный слой на поверхности кирпича, имеющий характерный блеск. Кроме того, благодаря двойному обжигу уменьшается водопоглощение кирпича, а значит, повышается его стойкость к воздействиям атмосферы. Среди новых разработок в области "декорирования" кирпича - металлополимерное покрытие, позволяющее создать на поверхности изделия неожиданные сочетания цветов, рисунки и надписи. К специальным относят кирпичи, способные "выживать" в экстремальных условиях. Так, кирпич огнеупорный применяется для устройства печей, каминов, дымовых труб. Он изготавливается из шамотной глины путем ее обжига при очень высокой температуре. Этот кирпич имеет высокую плотность и выдерживает частые колебания температур верхний предел - свыше 0 С ; обычно бывает песочно-желтого цвета. Отдельного упоминания заслуживает клинкерный кирпич. Его получают в результате высокотемпературного обжига пластичных глин отборного качества до полного спекания, без включений и пустот. Благодаря особенностям сырья и специальным технологиям получается исключительно прочное, низкопористое, цвето-, износо-, морозостойкое и, как следствие, долговечное изделие. Строительный керамический кирпич является самым распространённым местным стеновым материалом, позволяющим экономить дефицитные металлы, цемент, а также транспортные средства. В данный момент в производстве строительного керамического кирпича сосредоточено внимание на совершенствовании технологии, улучшении качества выпускаемой продукции и расширении ассортимента. При строительстве новых предприятий предусматривается установление автоматизированных и высокомеханизированных технологических линий на базе современного отечественного и импортного оборудования. Осваивается выпуск эффективной пустотелой продукции, которая должна постепенно заменять традиционный полнотелый кирпич. Это позволит не только экономить сырьё, но и уменьшать толщину и массу наружных стен без снижения их теплозащитных свойств, а также создавать облегчённые конструкции панелей для индустриализации строительства. На действующих заводах наряду с дальнейшей механизацией и автоматизацией производства кирпича будут всемерно улучшаться его качество и повышаться прочностные свойства, требующиеся для строительства зданий повышенной этажности и специальных сооружений. Необходимо более широко развивать производство лицевого кирпича, позволяющего исключать оштукатуривание зданий и улучшать их архитектурный вид. Улучшение качества продукции вызывает необходимость повышения культуры производства, более строгого соблюдения технологических параметров по всем пределам, улучшения обработки, рациональной шихтовки путём ввода различных добавок, в том числе отходов других отраслей промышленности. Кирпич применяется в строительстве для кладки наружных и внутренних стен и других элементов зданий и сооружений, а также для изготовления стеновых панелей и блоков. В России основные размеры лицевого кирпича составляют: На Западе стандарты другие, к тому же их намного больше. Среди самых ходовых - х х 50 65 мм, х х 52 71 мм. Важный параметр для строительного и лицевого кирпича - наличие пустот. Бывают кирпичи полнотелые, пустотелые эффективные и пустотелые поризованные сверхэффективные, "теплая керамика". У полнотелых, как следует из названия, отверстий нет. Их чаще всего применяют там, где нужно выдерживать распределенные нагрузки - фундамент, цоколь, но можно выложить ими и наружную стену. Однако чтобы обеспечить нормативную теплопроводность, стены из них должны быть достаточно толстыми. Другое дело пустотелые кирпичи. У них имеются сквозные отверстия различной формы , благодаря которым они теплее, а значит, стены можно делать тоньше. Кроме того, пустотелые кирпичи легче, поэтому от них меньше нагрузка на фундамент. Следует отметить, что лицевой кирпич почти всегда является пустотелым. Наконец, самый "теплый" кирпич - поризованный. В нем, как и в изделии предыдущего типа, имеются сквозные отверстия, однако структура самого материала принципиально иная. В глину добавляют особые органические или минеральные компоненты, которые выгорают при обжиге, образуя мельчайшие замкнутые поры. В результате, сохранив все достоинства обычной керамики, поризованный кирпич существенно улучшил ее теплозащиту: Причем на прочность поры совершенно не влияют. Более того, изделие становится легче, что позволяет увеличить его размеры они могут достигать х х мм. Благодаря этому стены возводятся значительно быстрее, чем из обычного кирпича, и они становятся тоньше. Предел прочности кирпича при сжатии определяет его марку. Она обозначается буквой "М" и цифрой, показывающей, какую нагрузку может выдержать 1 см изделия. Чаще всего встречаются кирпичи марок М, М, М, М, М, М, М, М Кирпичи марок 75 и подходят для стен 2 - 3х этажного дома, марок и выше - для стен многоэтажных зданий. Марки кирпича относятся ко всем типам изделий, так что пустотелый лицевой кирпич марки будет столь же прочен, как и полнотелый строительный той же марки. В условиях нашего изменчивого климата одна из важнейших характеристик для кирпича - морозостойкость. Она измеряется количеством циклов попеременного замораживания и оттаивания водонасыщенного изделия: В технической документации морозостойкость обозначается буквой "F", а следующая за ней цифра говорит о количестве циклов, которые кирпич может выдержать. Пустоты в кирпиче должны располагаться перпендикулярно или параллельно постели и могут быть сквозными или несквозными. Размер цилиндрических сквозных пустот по наименьшему диаметру должен быть не более 16 мм, ширина щелевидных пустот не более 12 мм. Диаметр не сквозных пустот не регламентируется. Отклонение от установленных размеров и показателей внешнего вида кирпича не должны превышать на одном изделии следующих значений:. Трещины протяжённостью по постели полнотелого кирпича до 30 мм. Половняком считают изделия, состоящие из парных половинок или имеющие трещины, протяженностью по постели полнотелого кирпича более 30 мм. Кирпич в насыщенном водой состоянии должен выдерживать без каких либо признаков видимых повреждений расслоение, шелушение, растрескивание не менее 25 циклов попеременного замораживания и оттаивания. Основным сырьём для производства кирпича являются легкоплавкие глины - горные землистые породы, способные при затворении водой образовывать пластическое тесто, превращающееся после обжига при 0 С в камнеподобный материал. Легкоплавкие глины относятся к остаточным и осадочным породам. Для производства кирпича наибольшее применение нашли элювиальные, ледниково-моренные, гумидные, аллювиальные, морские и некоторые другие глины и суглинки. Для определения возможности использования глин и суглинков для производства стеновых материалов необходимо знать их зерновой, химический и минералогический состав, пластичность и технологические свойства. Очень важно для характеристики глины содержание в ней глинозёма Аl 2 O 3 , повышающего технологические свойства сырья: В глинах часть кремнезёма находится в связанном виде в глинообразующих минералах и в несвязанном виде как примесь, обладающая свойством отощающих материалов. Кальций содержится в глинах в виде карбонатов и сульфатов, а магний - в виде доломита. Обычно соединения кальция и магния отрицательно влияют на спекаемость и прочность керамических изделий. Наибольшее влияние оказывают оксиды железа, находящиеся в глине в виде оксида Fe 2 O 3 и гидроокиси Fe OH 3 и оксиды марганца MnO 2. Они улучшают спекаемость изделий и придают им окраску. Сера присутствует в глинах в различных соединениях, ее содержание не оказывает на качество стеновых керамических изделий. Глинообразующие минералы, определяющие основные свойства глин, представляют собой в основном гидросиликаты глинозема, содержащие кремнезем и окислы железа, а также сульфаты, карбонаты и растворимые в воде соли различных металлов. Химический, минералогический и гранулометрический состав глин, используемых для производства кирпича см. Для улучшения природных свойств глиняного сырья-уменьшения общей усадки, чувствительности к сушке и обжигу, улучшения формовочных свойств, широко применяют добавки. Добавки, используемые при производстве кирпича и керамических камней, по назначению можно разделить на:. В данном проекте для производства керамического кирпича в качестве основного компонента используем глину Малоступкинского месторождения. В качестве корректирующих добавок к сырью выбираем местные промышленные отходы золы ТЭЦ и песок. Золы ТЭЦ представляют собой отходы от сжигания в пылевидном состоянии каменных углей. Добавка золы ТЭЦ делает кирпич менее чувствительным к сушке и повышает его прочность. Также золы ТЭЦ действуют как выгорающая добавка, т. Газообразное топливо отличается от жидкого и твердого рядом преимуществ, важнейшими из которых являются: В состав газообразного топлива входят горючая часть и балласт. Горючая часть представляет собой механическую смесь простейших горючих газов, таких как водород, метан, пропан, бутан и других газообразных углеводородов. Балластом являются негорючие газы, в том числе углекислый газ СО 2 , азот N 2 и кислород О 2. При добыче газа в его составе имеются также водяные пары, смолистые вещества, минеральная пыль. Однако перед подачей газа потребителям его очищают, в результате чего содержание примесей сводится к минимуму. С целью получения необходимых технологических параметров продукции, составы шихт могут быть самые различные см. Поскольку эта глина имеет число пластичности 25 и является среднечувствительной к сушке, необходим ввод добавок. Выбранный шихтовой состав позволяет выпускать керамический кирпич марки , но возможны партии, имеющие марки 75 или , который удовлетворяет ГОСТу по всем требованиям. Глины для производства кирпича добывают открытым способом в карьерах. Открытая разработка месторождений глин включает:. Подготовительные работы — удаление кустарников, пней, отвод вод, устройство дорожных покрытий;. Вскрышные работы — удаление растительного слоя и проведение выработок, обеспечивающих доступ к глинам;. На большинстве глиняных карьеров применяется валовая добыча, при которой глину разрабатывают по всей мощности уступа, без выделения отдельных пластов сырья. В отдельных случаях используют селективную послойную добычу глин. Выбор добычных механизмов зависит от принятого способа формования изделий, горногеологических условий залегания сырья, его физико-механических свойств и способа выемки. При вылеживании сырья добывать его можно любыми машинами, в том числе одноковшовыми экскаваторами и канатно-скреперными установками. Вылеживание сырья весьма целесообразно при любом методе разработки глин. На глиняных карьерах широко применяют автомобильный, рельсовый и реже конвейерный транспорт. Автомобильный транспорт является наиболее простым, надежным и маневренным. При применении экскаваторов с невысокой производительностью весьма эффективны самосвалы грузоподъемностью до 10 т. Совместно с экскаваторами высокой производительности целесообразно использовать большегрузные прицепы с тягачами. В отдельных случаях применяют конвейерный транспорт, создающий условия для непрерывной работы добычного оборудования. Однако при неблагоприятных атмосферных условиях намокшая глина прилипает к ленте конвейера, что затрудняет его работу. На ленточные конвейеры глина поступает через погрузочные бункера, емкость которых должна быть не менее 1, 5—2-кратной емкости ковша экскаватора. В данном проекте для доставки глины с карьера, будем применять автомобильный транспорт, а точнее самосвалы. Данный выбор связан с тем, что этот вид транспорта наиболее прост в обслуживании и легко доступен. При использовании рыхлых глин с невысокой карьерной влажностью применяют глинохранилище простейшего типа, которые представляет собой емкость длиной 40 м и объемом от м 3 до 10 тыс. После вылеживания сырье многоковшовыми экскаваторами подается в производство. Глинохранилища обеспечивают бесперебойное и ритмичное снабжение завода сырьем независимо от метеорологических условий. При производстве керамического кирпича используется метод полусухого прессования и метод пластического формования, каждый из которых имеет свои достоинства и недостатки. Метод полусухого прессования предусматривает предварительное высушивание сырья, последующее измельчение его в порошок, прессование сырца в пресс-формах при удельных давлениях, в десятки раз превышающих давление прессования на ленточных прессах. Преимущества технологии полусухого прессования заключается в том, что спрессованный кирпич-сырец укладывается непосредственно на печные вагонетки и на них высушивается в туннельных сушилках, или же, минуя предварительную досушку, непосредственно поступает на обжиг. Комплексная механизация производства осуществляется проще, чем при методе пластического формования. Однако технология полусухого прессования требует более совершенной системы аспирации на трактах приготовления и транспортирование порошка, использования более высокопроизводительных прессов. Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья. При переработке глин в сыром виде схема подготовки сырья несколько проще и экономичней, поскольку нужно меньше перерабатывающего оборудования, следовательно, меньше энергоемкость. Все оборудование более надежно и просто в обслуживании. Температура обжига изделий примерно на 50 0 С ниже, чем у изделий полусухого прессования, что позволяет также снизить энергозатраты на обжиг и в какой-то мере компенсируют высокие затраты на сушку. Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига. Чтобы получить изделия требуемого качества необходимо из глины удалить каменистые включения, разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а также придать массе надлежащие формовочные свойства. В данном проекте будем использовать схему производства изделий пластическим методом, поскольку используемая глина достаточно высокой влажности, среднепластичная. На керамических заводах сырьевые материалы подвергают грубому, среднему и мелкому дроблению, грубому и тонкому помолу. Обычно тонким помолом завершается механическое измельчение материалов, что обеспечивает более интенсивное их спекание, содействует снижению температуры обжига. Измельчение глинистых материалов проводят последовательно на вальцах грубого и тонкого измельчения. Каменистые включения не могут быть полностью выделены из глины общепринятыми механическими приемами — дезинтеграторными ребристыми вальцами. Опыт показывает, что при пользовании этими машинами в глине может остаться около половины а иногда и более камней. В дальнейшем эти камни будут в значительном своем количестве перемолоты гладкими вальцами или бегунами, что, однако, вызывает быстрый износ бандажей и частые ремонты. Бегуны мокрого помола используют при наличии в глинах трудноразмокаемых включений и для обработки плотных глин и глин, содержащих известковые включения. Предварительное грубое дробление непластичных твердых материалов в керамической технологии производят в щековых или конусных дробилках, работающих по принципу раздавливающего и разламывающего действия. Степень измельчения в щековой дробилке , а в конусной — Среднее и мелкое дробление, грубый помол непластичных материалов выполняется с помощью бегунов, молотковых дробилок, валковых мельниц. Подача и дозировка сырья на большинстве кирпичных заводов происходит при помощи ящичных питателей. В настоящее время на многих керамических и кирпичных заводах широко применяется увлажнение глины паром. Этот способ состоит в том, что в массу подается острый пар, который при соприкосновении с холодной глиной конденсируется на ее поверхности. В результате пароувлажнения обрабатываемая масса нагревается до о С. Иногда производят дополнительную обработку керамической массы, которая осуществляется в вальцах тонкого помола, дырчатых вальцах или в глинорастирателе. Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы. При работе пресса наблюдают за влажностью и качеством бруса, качеством и регулярностью поступления массы, наличием смазки. Наибольшие зазоры между витками лопастного шнека и рубашкой допускаются 5 мм и между нагнетательным валком и витками лопастного вала — 10 мм. Необходимое разрежение в вакуум-камере создается вакуумным насосом. Глина поступает в глиномешалку и верхним шнеком продавливается через решетку в вакуум-камеру, где жгутики ее разрезаются ножами и масса обезвоздушивается. Затем масса захватывается нижним шнеком и продвигается им к головке пресса, где уплотняется и равномерно выходит из мундштука. В данном проекте выбираем вакуум-пресс, который обеспечивает наибольшую производительность, чем безвакуумные. Непрерывно поступающий из пресса брус сырца разрезается отрезным устройством на куски требуемой длины 2,5 м. Отрезанный кусок бруса отделяется ускорительным транспортёром и подаётся на разрезное устройство, где он принимается транспортёром специальной конструкции. После подачи бруса на разрезное устройство, транспортёр останавливается, и находящийся на нём брус, разрезается на отдельные кирпичи путём опускания и подъёма разрезного устройства, в котором поперёк направления подачи бруса натянуты разрезные элементы струны. После окончания операции разрезки транспортёр разрезного устройства начинает двигаться и кирпич сырец перегружается на следующий транспортёр раздвижного погрузочного устройства, причём, за счёт плавной регулировки скорости этого транспортёра кирпичи могут раздвигаться на требуемое расстояние. После передачи всех кирпичей на раздвижной транспортёр, он останавливается, и находящиеся на нем кирпичи толкателем сдвигаются в поперечном направлении на вагонетки, движущиеся прямо под транспортёром с такой же скоростью. Концы разрезанного бруса при этом остаются на раздвижном транспортере. При подаче следующей группы разрезанных кирпичей, с разрезного устройства, на раздвижной транспортёр, отрезки сырца сбрасываются на транспортёр отходов и возвращаются в пресс. Различают сушильные устройства для естественной и искусственной сушки сырца. В первом случае сырец высушивается атмосферным воздухом за счет солнечного тепла в летнее время, во втором — за счет тепла, получаемого от сгорания топлива. Задача организованного процесса сушки состоит в подводе энергии тепловой или электрической к высушиваемому изделию с наименьшими потерями и в наименьшие сроки, допустимые для целостности изделия. Большинство современных кирпичных заводов оборудовано устройствами для искусственной сушки кирпича-сырца, которые по режиму работы подразделяются на сушилки периодического камерные и непрерывного туннельные действия. Сушилки непрерывного действия туннельные являются наиболее современным сушильным агрегатом в кирпичной промышленности. В туннельной сушилке кирпич-сырец, находящийся на вагонетках, в течение цикла сушки перемещается через весь туннель от одного его конца к другому. Расход тепла на сушку кирпича-сырца в туннельных сушилках ниже, чем в камерных. Существенным преимуществом туннельных сушилок перед камерными является то, что туннельные могут быть оснащены аппаратурой, обеспечивающей автоматическое регулирование процесса сушки. Продолжительность процесса сушки и качество высушенного кирпича-сырца в значительной степени зависят от плотности и системы садки сырца на сушильных вагонетках. Необходимо обеспечить равномерность омывания теплоносителем сырца и получение надлежащей температуры и относительной влажности теплоносителя в различных частях сушилки. Недостаток туннельных сушилок в том, что в них наблюдается расслоение теплоносителя и более интенсивная сушка сырца на верхних полках. Устранение расслоения и равномерная сушка сырца по высоте туннеля достигаются перемешиванием теплоносителя в туннеле путем устройства воздушных завес за счет дополнительной подачи воздуха сверху в отдельных местах туннеля струйками с большой скоростью. Завершающей стадией технологии всех изделий строительной керамики является их обжиг. При обжиге изделия окончательно формируется структура материала, то есть происходит спекание керамики, в результате чего сырец из конгломерата слабосвязанных частиц превращается в достаточно твердое и прочное тело. Строительные материалы и изделия обжигают в промышленных печах. Промышленной печью называют установку технологического назначения, в которой посредством теплового воздействия при относительно высоких температурах изменяется агрегатное состояние обрабатываемого материала, его химический состав либо его кристаллическая структура. Обжиг кирпича производят в печах периодического и непрерывного действия. В кирпичной промышленности из печей периодического действия применяют преимущественно камерные печи. Из печей непрерывного действия применяют главным образом кольцевые и туннельные. Периодические печи используют для обжига кирпича на заводах малой мощности. Загрузка и разгрузка этих печей производится при сравнительно высоких температурах, что обуславливает тяжелые условия труда обслуживающего персонала. Камерные печи или горны отличаются значительной трудоемкостью обслуживания, большой неравномерностью температур по высоте печи. Для обжига кирпича применяют кольцевые печи. Они отличаются высокой тепловой экономичностью, возможностью использования низкосортных видов топлива, перехода с одного вида топлива на другое без каких-либо значительных переделок, высокой удельной и общей производительностью. Весьма существенным недостатком кольцевых печей является то, что в рабочей зоне садки и выгрузки выставки кирпича очень высокая температура: При этом садка и выгрузка кирпича производится вручную. На новых и реконструируемых кирпичных заводах строительство кольцевых печей не производится. Туннельные печи имеют значительные преимущества перед печами периодического действия и кольцевыми печами. Садка кирпича-сырца на вагонетки туннельных печей и выгрузка обожженного кирпича с этих вагонеток производится вне печи, в нормальных температурных условиях, что значительно облегчает труд обслуживающего персонала и дает возможность механизировать трудоемкие процессы садки и выгрузки кирпича. В туннельных печах можно осуществить полную автоматизацию управления режимом обжига. К достоинствам туннельных печей относится и то, что у них температурный перепад в различных участках обжига незначителен. Многорядовые по высоте туннельные печи, применительно к обжигу стеновой керамики, обладают крупным недостатком — большим перепадом температур по высоте, достигающим в зоне подогрева 0 С, который на участке максимальных температур уменьшается до 0 С. Борьба эта не всегда успешна. Лучшие условия эксплуатации туннельных печей достигается при наличии давления или разряжения в зоне обжига порядка 0,,3мм вод. Совершенствование конструкций туннельных печей с целью увеличения обжигаемой физической массы изделий увеличение теплоемкости , совершенствование горелок для развития длины факела, а также полноты сжигания жидкого топлива, улучшение теплоизоляции пода — все это приводит к определенным успехам, но не исключает необходимости разработки и совершенствования конструкций печей для однорядного скоростного обжига. В конструктивном отношении современные туннельные печи обладают некоторыми особенностями. Конструкция свода плоская, что упрощает постройку печи, позволяет расширить печной канал и обеспечить работу автомата — укладчика. Толщина кладки стен туннельных печей снижена до 0,5м. Поверх свода помещена теплоизоляция в виде вспученного вермикулита. Для обжига и сушки кирпича также используют туннельные печи-сушила, которые совмещают в одном агрегате печь и сушило. Принцип работы изложен ниже. В туннеле интенсивной сушки, работающему по принципу противотока, кирпичи движутся стоя в один слой, через участки с различными температурными режимами и интенсивной вентиляцией. Благодаря чему обеспечивается быстрая, равномерная сушка. Для высокочувствительных изделий может быть предусмотрено применение дополнительных зонных нагревателей. В зоне сушильного туннеля подмешивается горячий воздух из печного пространства. После прохождения подсушки вагонетки с садкой перемещаются загрузочным механизмом, который находится на противоположном конце сушилки, в печь для обжига, расположенную над сушилкой. В печи интенсивного обжига кирпича обжиг производится пламенем, направленным равномерно сверху. По длинному узкому туннелю печи навстречу теплоносителю, непрерывно, вплотную одна к другой, передвигаются вагонетки с обжигаемым изделием через постоянные тепловые зоны подогрева, обжига и охлаждения. Сначала вагонетки с изделиями подогреваются продуктами горения, отходящих из зоны обжига, затем проходят через зону обжига, где подвергаются воздействию газов высокой температуры и, наконец остывают отдавая тепло стенкам туннеля или непосредственно охлаждаясь воздухом. По всей длине печи между стенками и вагонетками имеется песочный затвор и лабиринт. Они служат для уменьшения газообмена между обжигательным каналом печи и подвагонеточным пространством. Печь работает на газообразном топливе и оборудована горелками. В зоне обжига установлено 5 групп горелок по 8 штук в каждой. Горячий воздух из печи отбирают в нескольких местах по длине зоны. Увеличение сечения отборных окон и канала, соединяющего печь с сушилкой, обеспечивает почти полный отбор тепла охлаждающихся изделий и вагонеток, и передачу его в сушилку. С помощью автоматических контрольных устройств системы интенсивной сушки и обжига кирпича, а так же благодаря малой высоте садки, как в сушильном туннеле, так и в туннеле обжига могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами. Наиболее важным преимуществом является значительное повышение культуры производства на кирпичных заводах, улучшение санитарно-гигиенических условии труда и возможность полной механизации трудоёмких ручных процессов. В данной работе выбираем интенсивную технологию обжига, так как в этом устройстве происходит совмещение сушки и обжига, а также могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами. Эта технология состоит из единой линии от запасного пути после печи обжига до автомата укладчика. Кирпич снимается с вагонеток, устанавливается на поддоны, упаковывается в транспортные пакеты и транспортируется с помощью автопогрузчика. На кирпичных заводах применяются автопогрузчики самых различных типов со щитовыми захватами и с зажимами. Вилочные зажимы работают от гидравлической системы либо приводятся в действие от веса поднимаемого пакета. В данной работе выбираем автопогрузчик с вилочным зажимом, т. После чего кирпич отправляется на склад готовой продукции, находящийся на открытых асфальтированных площадках, расположенных на территории предприятия. Склад готовой продукции оборудован мостовыми кранами для загрузки поддонов с кирпичом в автомобили. Тонко измельчённое сырьё от вальцов, ленточным конвейером подаётся в глиномешалку вакуумного пресса, предназначенного для вакуумирования и формования сырца. Далее в технологии производства кирпича, проектом, принята система интенсивной сушки и обжига кирпича, включающая в себя:. Концы разрезанного бруса при этом остаются на раздвижном транспорте. При подаче следующей группы разрезанных кирпичей, с разрезного устройства, на раздвижной транспортёр, обрезки сырца сбрасываются на транспортёр отходов и возвращаются в пресс. Таким образом, кирпичи, группа за группой, поперечными рядами сажаются на вагонетку. Загруженные вагонетки с помощью цепного толкателя загружаются в накопительный буферный туннель, для предварительного подогрева, пройдя который, вагонетки попадают на загрузочно-выгрузочный механизм, который загружает их в сушилку. В настоящем проекте в зоне сушильного туннеля подмешивается горячий воздух из печного пространства. Отработанный теплоноситель после очистки поступает в атмосферу. Для нормального протекания процесса сушки сырца, т. После прохождения сушки кирпичи с сушильных вагонеток автоматом-садчиком переносятся на обжиговые. В печи интенсивного обжига кирпича обжиг производится пламенем. Обжиг проводят в печи при температуре о С. В качестве теплоносителя используются продукты сгорания газа. При обжиге за счет удаления влаги и сближения в результате этого частиц, вследствие фазовых и химических превращений, частичного получения жидкой фазы протекают структурообразующие процессы. Из печи забирается горячий воздух на сушку в сушило, а отработанные дымовые газы после очистки выбрасываются в атмосферу. Пройдя обжиг, вагонетки попадают на начальное загрузочное устройство которое перемещает их на пути расположенные над буферным туннелем. Затем, кирпич снимается с вагонеток, устанавливается на поддоны и упаковывается в транспортные пакеты. Формованием называется процесс придания массе заданных форм и размеров, т. Структура заготовки в значительной мере определяет строение и свойства изделий после обжига. При формовании стремятся максимально увеличить содержание твердой фазы, чтобы снизить усадки в сушке и обжиге. Пластичность глин предопределяет наличие специфических деформационных свойств — малой вязкости и достаточно высокого предела текучести. Показателем формовочных свойств масс является соотношение между внешним и внутренним трением. Считают, что формование возможно, если внутреннее трение массы когезия больше, чем трение о формующий орган машины аутогезия. Для оценки формовочных свойств используют коэффициенты внутреннего трения и сцепления массы. Основные свойства пластичной формовочной массы зависят от минерального состава, формы и размеров частиц твердой фазы, вида и количества временной технологической связки, интенсивности образования гидратных слоев на поверхностях частиц. С увеличением содержания жидкой фазы коэффициент внутреннего трения растет, проходя через максимум. Другие показатели уменьшаются монотонно, но с разной интенсивностью. Это позволяет для каждой массы выбрать оптимальное значение формовочной влажности. Лучшие формовочные свойства имеет масса с максимально развитыми слоями физически связанной воды при минимальном содержании свободной воды в системе. Возрастание дисперсности твердой фазы увеличивает количество контактов между частицами в единице объема и прочность. Одновременно растут оптимальная формовочная влажность, предел текучести, вязкость, модули деформации, коэффициент внутреннего трения и связность массы, повышается пластичность. Чрезмерное повышение дисперсности увеличивает усадки в сушке и обжиге, поэтому оптимальный зерновой состав должен обеспечивать создание каркаса из сравнительно крупных зерен для повышения предела текучести и уменьшения усадок. Пластическое формование осуществляют тремя способами: Заготовка сохраняет форму благодаря наличию предела текучести. Важнейшей задачей при пластическом формовании является подбор оптимальной формовочной влажности. Для оценки формовочной влажности W Ф по П. Ребиндеру используют зависимость пластической прочности структуры Р m , от влажности Wабc рис. Пластической прочностью называют механическое напряжение, которое способна выдерживать масса без нарушения сплошности. Считают, что формовочной влажности соответствует точка перехода зависимости Р m - влажность от прямолинейного участка. Чем сложнее форма изделия, тем при более высокой влажности проводят формование. Для его облегчения иногда в массы добавляют высокопластичные монтмориллонитовые глины. Выдавливание является окончательной операцией формования изделий грубой строительной керамики кирпич и промежуточным этапом переработки пластичной тонкокерамической массы перед раскаткой и допрессовкой. Выдавливание может быть горизонтальным и вертикальным. Его осуществляют на шнековых вакуумных прессах. В шнековом прессе при движении массы возникает сложное объемно-напряженное состояние. Лопасти шнека сообщают массе поступательное и вращательное движение, а стенки корпуса пресса замедляют перемещение массы в прилегающим к ним слоям. По мере продвижения массы к головке пресса ее вращение замедляется, но периферийные слои движутся с большей скоростью. Окончательно уплотняет массу последний виток шнека. Он выжимает массу из цилиндра в головку пресса с различными по сечению скоростями, сообщая ей частичное вращение. В заготовке могут возникать дефекты, связанные с неравномерным движением массы. Под действием бокового давления линейная скорость массы у стенки меньше, а окружная выше, чем в центре. В массе образуются два параболоидальных потока, скорости которых в мундштуке постепенно выравниваются. Более пластичные массы характеризуются большим градиентом скоростей по сравнению с жесткими рис. Для снижения неравномерности течения используют шнеки с переменным шагом винта и двухзаходной выпорной лопастью. Крупнозернистые включения снижают склонность массы к расслаиванию. Выдавливание сопровождается образованием анизотропной структуры масс, так как пластинчатые частицы глины ориентируются своей тонкой гранью в направлении максимальной скорости течения. Анизотропия проявляется в неравномерной усадке и различной прочности образцов в разных направлениях. При неблагоприятных условиях возможно появление дефектов. S-образные трещины образуются при нарушении сплошности массы из-за разной продольной и окружной скорости ее течения. Дефекты устраняют подбором размеров головки пресса и мундштука отношение длины к диаметру должно быть не менее 4, увеличиваясь для сильно пластичных и жестких масс , конусности мундштука, смазкой головки и мундштука. Сушкой называют удаление воды из влажного керамического полуфабриката или сырья испарением. Наиболее ответственной является сушка высоковлажного полуфабриката изделий хозяйственной и строительной керамики, изготовленного пластическим формованием или шликерным литьем и содержащего значительное количество глинистых компонентов. Процесс сушки керамических изделий представляет собой превращение содержащейся в них воды из жидкого состояния в парообразное и последующее удаление ее в окружающую среду. При этом необходимым условием сушки является наличие внешнего источника тепла, нагревающего изделия. Наиболее ответственной является сушка высоковлажного полуфабриката изделий хозяйственной и строительной керамики, изготовленного пластическим формованием. Физической называется та часть воды материала, которая не входит ни в какие соединения с ним. При этом керамическая масса становится непластичной, но с добавлением воды пластические свойства массы восстанавливаются. Химически связанной водой называется вода, находящаяся в химическом соединении с отдельными элементами керамической массы, так например. При этом керамическая масса безвозвратно теряет свои пластические свойства. При сушке изменяется от коагуляционных к конденсационным природа контактов между частицами твердой фазы за счет удаления механически и физико-химически связанной воды. Химически связанная вода в сушке не удаляется. Простейшим видом сушки является сушка изделий на воздухе, когда испарение влаги из материала происходит за счет тепловой энергии солнца. В настоящее время сушка изделий осуществляется за счет тепла, получаемого от специальных установок. В этом случае имеет место поверхностное испарение или так называемая внешняя диффузия влаги;. Происходит так называемая внутренняя диффузия влаги. Если в процессе сушки замерять температуры материала и окружающей среды, то обнаруживается, что температура изделия ниже температуры воздуха. Следовательно, во время сушки поверхность твердого тела, имеющего относительно низкую температуру, соприкасается с газом, нагретым до более высокой температуры. Между ними происходит теплообмен. Поэтому процесс сушки можно рассматривать как комплекс параллельно протекающих явлений:. При испарении влаги с поверхности изделий влажность поверхностных слоев по сравнению с внутренними слоями уменьшается и возникает так называемый перепад градиент влажности. Внешним показателем процесса сушки является изменение веса материала во времени. Графическое изображение зависимости влажности материала от длительности сушки носит название кривой сушки. Характер кривой определяется влажностью и размерами изделия, способом его формования, а также температурой, влажностью и скоростью теплоносителя. Совокупность указанных факторов определяет режим сушки. Режимом сушки называется изменение интенсивности влагоотдачи изделия путем изменения температуры, относительной влажности и скорости движения теплоносителя. Изменение режима сушки вызывает изменение интенсивности влагоотдачи изделия, которая определяется количеством влаги, испаряемой с единицы поверхности высушиваемого изделия в единицу времени. Сушка зависит от параметров окружающей среды температуры, влажности и скорости движения теплоносителя , формы связи влаги с материалом, состава, структуры, влажности и температуры полуфабриката. Различают кинетику сушки изменение средних значений влажности и температуры заготовки во времени и ее динамику изменение влажности и температуры в каждой точке заготовки. Распределение меняющихся во времени полей влажности и температуры в объеме изделия определяет возможность появления опасных напряжений и брака. Если сушку проводят при малых перепадах температуры между полуфабрикатом и средой, малых скоростях и высокой влажности теплоносителя, то влажность полуфабриката медленно уменьшается от исходной w 0 , а температура повышается до температуры мокрого термометра t М. Центр заготовки прогревается медленнее, чем поверхность. Это период прогрева полуфабриката. На втором этапе период постоянной скорости сушки влажность заготовки меняется по линейному закону при постоянной температуре. После достижения критической влажности Wкp температура поверхности заготовки увеличивается, приближаясь к температуре сухого термометра t СУХ , скорость сушки уменьшается, а влажность асимптоматически приближается к равновесной Wp. Температура в объеме полуфабриката растет медленнее, чем на поверхности. Этот период называется периодом падающей скорости сушки. Величина критической влажности Wкp зависит от скорости сушки, размеров и строения полуфабриката. Равновесная влажность Wp зависит от температуры и влажности в помещении. Сушить полуфабрикат до влажности меньше Wp нецелесообразно. Все процессы происходящие при сушке золо-песчаной повторяют сушку полуфабриката. При сушке испарение воды происходит диффузионным путем. Движущей силой является разность парциальных давлений пара у поверхности и в объеме теплоносителя. Уменьшение влажности во внешних слоях заготовки сопровождается появлением градиента влажности в ее объеме, что вызывает диффузию капельножидкой воды из объема заготовки к поверхности. При наличии градиента температуры на процесс влагопроводности накладывается процесс термовлагопроводностни: Термовлагопроводность связана с уменьшением поверхностного натяжения и вязкости воды при повышении температуры и движением пузырьков воздуха в капиллярах. При интенсивном подводе теплоты возможно испарение влаги в глубинных слоях заготовки и удалении воды по механизму паропроводности. Движущей силой процесса является перепад давления водяного пара. При удалении воды в порах заготовки образуются вогнутые мениски жидкости. Капиллярное давление увеличивается, уменьшается толщина прослоек жидкости, частицы сближаются, образуя каркас. При влажности, близкой к критической, капиллярные силы уравновешиваются силами трения, сближение частиц и усадка заготовки прекращается. Дальнейшее снижение влажности происходит за счет освобождения объема пор без изменения размеров. Изменение размеров полуфабриката в сушке характеризуют линейной или объемной усадкой, выраженной в процентах. Усадка зависит от влажности заготовки и размера частиц твердой фазы. Величины критической влажности и усадки зависят от режима сушки. Наибольшую усадку имеют заготовки, высушенные в равновесных условиях. Чем выше температура и ниже влажность теплоносителя, тем меньше усадка. Рост градиента влажности в объеме заготовки увеличивает разницу между фактической и максимально возможной усадками. Эта разница недопущенная усадка вызывает появление механического напряжения. Если последнее превысит предел прочности материала, то в теле заготовки образуется трещина. Причиной появления трещин в период постоянной скорости сушки полуфабриката является перепад влажности между наружными и внутренними частями заготовки. Продолжительность сушки зависит от толщины высушиваемого изделия и не зависит от его плотности и площади поверхности. В период падающей скорости сушки усадки отсутствуют, поэтому сушку можно интенсифицировать, повысив температуру и скорость движения теплоносителя. Тотальные трещины, проходящие через тело заготовки, возникают из-за больших скоростей прогрева заготовки, имеющей малый коэффициент влагопроводности, на первой стадии сушки. Срединные трещины возникают после образования жесткого каркаса частиц на краях заготовки, препятствующего усадке влажных центральных частей. Предотвратить образование краевых и срединных трещин можно, покрыв края влагоизолирующим веществом маслами, растворами сульфитно-спиртовой барды или поливинилового спирта и т. Рамочные трещины могут возникнуть при трении заготовки о подставку в процессе усадки. Этот вид брака характерен для кирпича пластического формования. Его можно предотвратить, периодически перекладывая изделия с грани на грань и используя подсыпки песок, опилки, шамот. Микротрещины и волосяные трещины возникают при адсорбции воды из воздуха или дымовых газов высушенным полуфабрикатом. Этот вид брака можно предотвратить, прекратив сушку при влажности несколько выше, чем максимальная влагоемкость материала при данной температуре. Коробление изделий может возникнуть при односторонней сушке плоских изделий, например облицовочных плиток, при анизотропной структуре полуфабриката, неравномерном распределении влаги в заготовке. Такое производственное деление на периоды не вскрывает сущности реакций в керамической массе при обжиге. При производственном обжиге керамических изделий никогда не достигается термодинамическое равновесие. Группа реакций в твердых фазах глин, обязанных диффузионным процессам диффузия происходит благодаря перепаду химического потенциала на границе фаз , довольно узко описывается известными уравнениями кинетики и характеризуются сравнительно. Не менее важную роль играет и газовая среда в печи, которая влияет на процессы, протекающие при формировании черепка, и поэтому она также должна регламентироваться режимом обжига. Эта среда может быть окислительной, нейтральной и восстановительной. Окислительная среда характеризуется избытком воздуха против того количества, которое теоретически необходимо для полного сгорания топлива. Появление стеклофазы содействует дальнейшему растворению в ней некоторой части минеральных составляющих глины и новому минералообразованию. Стеклофаза обеспечивает спекание и образование черепа. С физической стороны действие стеклофазы характеризуется усадкой изделия. В зависимости от степени развития стеклофазы, что регулируется выдержкой и созреванием черепа, можно сообщить ему ту или иную плотность пористость. Кроме того, выдержка необходима для выравнивания температурного поля в печи. Спекание материала - существенный момент процесса обжига, так как к этому времени заканчивается формирование керамического изделия. Окончание спекания изделия характеризуется прекращением его усадки. Условными показателями спекшегося материала являются его водопоглощение. На процесс формирования керамического черепка влияют: Процесс спекания первоначально пористого тела начинается с образования контактов между частицами и их роста по мере повышения тем пера туры. Модель стадии припекания двух сферических частиц с образовавшейся перемычкой представлена на рис. Вогнутая поверхность образующейся перемычки, растягиваемая силами поверхностного натяжения, становится участком повышенной концентрации вакансий, т. Выпуклая часть поверхности, сжимаемая силами поверхностного натяжения, а также межкристаллическая граница на участке контакта являются поглотителями вакансий. Таким образом, объемный диффузионный поток атомов направляется на поверхность перешейка и увеличивает его диаметр. Поскольку часть потока вещества, направленного к поверхности перешейка, выносится из области межчастичного контакта, частицы сближаются, происходит усадка и уплотнение пористого тела. Образующиеся в процессе обжига глин и керамических масс легкоплавкие соединения проявляют себя двояким образом. Во-первых, они действуют химически, растворяя частицы минералов, образуя жидкую фазу и выделяя из раствора новые, более устойчивые мниералообразования, именуемые эвтектическими смесями. Во-вторых, они действуют физически, благодаря своей энергии поверхностного натяжения, сближая и уплотняя твердые частицы глины. Обжиг изделий грубой строительной керамики ведется до появления минимального количества легкоплавких соединений, которые связывают дегидратированные частицы глинообразующих минералов и зерна кварца, что и обеспечивает достаточную механическую прочность изделий. Охлаждение обожженных изделий — не менее ответственная операция. Из всего выше сказанного можно сделать вывод что, большое значение имеет подбор температурного режима обжига. Он должен быть таким, чтобы реакции дегидратации, декарбонизации, окисления и восстановления отдельных компонентов, составляющих глину, не налагались бы на реакции образования легкоплавких эвтектик. Эти реакции должны следовать одна за другой, но практически, вследствие сложного состава керамических масс, образование жидких соединений начиняется обычно ранее, чем закончатся декарбонизация, окисление и т. Современный этап производства тугоплавких неметаллических и силикатных материалов характеризуется расширением ассортимента, повышением качества, возрастанием единичной мощности технологических линий, внедрением поточных технологий. Все это требует коренного совершенствования структуры, методов и средств контроля производства. Технический контроль — это проверка соответствия объекта материала, изделия или процесса установленным требованием, что относится к системе государственных испытаний, а значит, подчиняется правилам стандартизации и сертификации. Стандартизация — деятельность, направленная на достижение оптимальной степени упорядочения в определенной области посредством установления положений для всеобщего и многократного использования реально существующих или потенциальных задач. Результатом этой деятельности является разработка нормативных документов. В зависимости от специфики объекта стандартизации и содержание установленных к нему требований различают стандарты основополагающие, на продукцию или услуги, а также стандарты на процессы, на методы контроля испытаний, измерений, анализа. Сертификация — подтверждение соответствия товара обязательным нормативным требованиям, которое сопровождается выдачей сертификата соответствия. Вторичная информация используется для выработки соответствующих управляющих воздействий, совершенствование производства, повышения качества продукции и т. Подсистема общезаводского технологического контроля центральная заводская лаборатория должна обеспечивать определение состава и свойств исходного сырья, топлива, добавок, вспомогательных материалов, полуфабрикатов и готовой продукции в объеме, достаточном для практического осуществления процесса оптимизации производства по всему заводу. Подсистема оперативного технологического контроля обслуживающий персонал основного производства, цеховые лаборатории занимается определением состава и свойств материалов на входах и выходах конкретных технологических участков производства и контролем соответствия получаемых результатов требуемым значениям. Объем определений здесь должен быть минимально необходимым и не требующим сложного оборудования для осуществления контроля. Подсистема параметрического контроля служба контрольно-измерительных приборов и автоматизированных систем управления, КИП и АСУ оценивает состояние оборудования и режимы его работы, контролирует технологические параметры, измеряет расходы в технологических потоках, уровни в емкостях и т. Подсистема технического контроля отдел технического контроля, ОТК обеспечивает контроль качества и соответствие выпускаемых материалов и изделий действующей нормативной документации государственным или отраслевым стандартам, техническим условиям, стандартам предприятия , а также осуществляет сертификацию паспортизацию продукции. В функции ОТК входит не только фиксирование появления некачественной продукции, но и предупреждение подобных фактов. С этой целью ОТК контролирует качество поступающих на предприятие материалов, соблюдение установленной технологии, устанавливает причины, вызывающие брак и снижающие качество продукции. ОТК также оформляет необходимые акты и добивается устранения причин негативных явлений и их последствий. ОТК проводит свою работу в тесном контакте с заводской и цеховыми лабораториями. V 1 ,V 2 ,V 3 ,V 4 — объемная доля глины, песка,золы,шамота. На основе расчетов материального баланса и фонда времени производим расчет производственной программы цехов. Результаты сведены в таблицу. Подбор оборудования производим согласно выбранной ранее технологической схеме. Исходными данными для подбора оборудования служит также производственная программа, нормы технологического проектирования керамических заводов. В проект закладываем современное оборудование. Количество единиц оборудования непрерывного действия n определяем исходя из его производительности P и количества материала, которое необходимо на нем переработать R. В качестве оборудования для участка формования выбираем шнековый вакуумный пресс СМК — А, предназначенный для пластического формования масс путем уплотнения, вакуумирования и выдавливания ее через мундштук в виде бруса. Общее количество прессов — 2. В качестве линии по отрезке, укладке и транспортировке кирпича — сырца в ИТО систему принимаем линию, разработанную фирмой "Фукс", с необходимым подбором оборудования. Отрезное устройство, предназначено для отделения бруса определенной длины, выходящего из мундштука пресса:. Отрывной транспортер, предназначен для транспортировки отрезанного бруса в нарезное устройство. Нарезное устройство предназначено для одновременного нарезания нескольких штук кирпича из непрерывно выходящего из мундштука пресса бруса. Передаточное устройство фирмы Фукс предназначено для транспортировки вагонеток в горизонтальном и вертикальном направлении от сушилок к печи, а также после выхода из печи на нулевой уровень пола. Необходимо 2 передаточных устройства. Буферный накопитель предназначен для предварительного подсушивания сырца, а также в качестве накопителя вагонеток с сырцом и готовым кирпичем, находящихся на вагонетках, которые перемещаются к автомату-погрузчику по верху накопителя. ИТО — интенсивная технология обжига состоит из единой линии от запасного пути после печи обжига до автомата укладчика:. Грейферный погрузчик 2шт предназначен для разгрузки обожженного кирпича с туннельных вагонеток. Мощность электродвигателя 5 кВт. Толкатель 1шт предназначен для проталкивания и группировки рядов кирпича от разгрузочного грейфера. Мощность электродвигателя 1,5 кВт. Профильный конвейер 1шт предназначен для приёма обожженных рядов кирпича от продольного толкателя. Сдвоенный толкатель- предназначен для толкания и группировки кирпича от разгрузочного грейфера. Профильный конвейер 1шт предназначен для группировки обожженного кирпича от поперечного толкателя. Определение площади складов готовых изделий проводят по показателю производственной мощности цеха и принятых норм хранения готовой продукции. Охрана труда рассматривается как одно из важнейших социально-экономических, санитарно-гигиенических и экономических мероприятий, направленных на обеспечение безопасных и здоровых условий труда. Охрана здоровья рабочих и служащих в процессе исполнения трудовых обязанностей закреплена в трудовом законодательстве, непосредственно направленном на создание безопасных и здоровых условий труда. Кроме того, разработаны и введены в действие многочисленные правила техники безопасности, санитарии, нормы и правила, соблюдение которых обеспечивает безопасность труда. Ответственность за состояние охраны труда несет администрация предприятия, которая обязана обеспечивать надлежащее техническое оснащение всех рабочих мест и создавать на них условия работы, соответствующие правилам охраны труда, техники безопасности, санитарным нормам. Одним из важнейших принципов организации производства является создание безопасных и безвредных условий труда на всех стадиях производственного процесса. Организация деятельности администрации и служб предприятия по реализации комплекса мер по повышению уровня охраны труда осуществляется через систему управления охраной труда СУОТ. Модернизация технологического, подъемно-транспортного и другого производственного оборудования в соответствии с ГОСТ Внедрение автоматического и дистанционного управления производственным оборудованием, технологическими процессами, подъемными и транспортными устройствами с целью обеспечения безопасности работающих; систем автоматического контроля и сигнализации о наличии и возникновении опасных и вредных производственных факторов, а также блокирующих устройств, обеспечивающих аварийное отключение оборудования в случаях его неисправности; технических средств, обеспечивающих защиту работающих от поражения электрическим током; средств контроля уровней опасных и вредных производственных факторов на рабочих местах в соответствии с ГОСТ ССБТ и другими нормативными документами. Установка предохранительных и защитных приспособлений на паровых, водяных, газовых и других производственных коммуникациях и сооружениях. Устройство на действующих объектах новых и реконструкция старых вентиляционных систем, аспирационных и пылеулавливающих установок, средств коллективной защиты от воздействия опасных и вредных производственных факторов в соответствии с требованиями ГОСТ ССБТ. Устройство тротуаров, переходов, тоннелей, галерей на территории предприятия цеха в целях обеспечения безопасности работающих. Приведение производственных зданий, сооружений, помещений, перепланировка размещения производственного оборудования в соответствии с требованиями СНиП и других нормативных документов. Совершенствование технологических процессов в целях устранения воздействия на работающих опасных и вредных производственных факторов, нанесение на производственное оборудование и коммуникации опознавательной окраски и знаков безопасности в соответствии с требованиями ГОСТ ССБТ. Механизация уборки производственных помещений, складирования и транспортирования сырья, готовой продукции и отходов производства. Приведение уровней шума, вибрации, ультразвука, ионизирующих и других вредных излучений, а также естественного и искусственного освещения на рабочих местах в цехах и местах массового перехода людей в соответствие с требованиями СНиП и ГОСТ ССБТ. Переоборудование отопительных систем, установок кондиционирования воздуха, устройство тепловых, водяных и воздушных завес воздушных душей в целях обеспечения нормального теплового режима и микроклимата на рабочих местах в соответствии с требованиями СНиП и ГОСТ ССБТ. Расширение, реконструкция и оснащение бытовых помещений, мест организованного отдыха и производственной гимнастики, приобретение для этих целей необходимого инвентаря, оплата инструкторов-методистов производственной гимнастики и физкультурно-оздоровительной работы. Приобретение и монтаж сатураторных установок для приготовления газированной воды, устройство централизованной подачи к рабочим местам питьевой и газированной воды, чая, белково-витаминных напитков. Организация кабинетов, уголков, передвижных лабораторий, выставок по охране труда, приобретение для них необходимых приборов, наглядных пособий, демонстрационной аппаратуры. Издание и приобретение нормативно-технической документации и литературы по охране труда. Фундаментом называется подземная часть здания, предназначенная для передачи нагрузки от здания на его основание. Он состоит из стакана, в который устанавливается колонна, и фундаментной балки, которая укладывается на ступени стакана. Последняя образует поверхность, на которую укладываются стены здания. Зазоры между торцами балок заполняют бетоном. Для пролетов 6м фундаментные балки имеют высоту мм и длину мм. Колонны — основной элемент каркаса производственных зданий. Закрепленные бетонированием в фундаментных стаканах, они образуют вместе с элементами покрытия жесткий каркас, обеспечивающий устойчивость здания. В качестве основных строительных конструкций применяются металлические фермы. Для покрытия применяют листы 3х6м. На листы покрытия, уложенные на строительные конструкции, наносят кровлю: Основание под пол уплотняют с добавкой щебня и по нему укладывают подстилающий слой из утрамбованного песка, затем укладывают гидроизоляцию, стяжку из цементно-песчаного раствора и чистый пол — бетонный. Материалом для стен являются бетонные панели толщиной мм. Панели крепят к колоннам каркаса с помощью стальных консолей, привариваемых к закладным металлическим элементам колонн каркаса. В данном проекте детально разработан цех формования, сушки и обжига керамического кирпича. Представлен ассортимент выпускаемой продукции, дана характеристика сырьевых материалов, используемых для производства кирпича. Выбран способ производства пластическое формование , на основе анализа достоинств и недостатков других способов. Произведен подбор необходимого оборудования, составлена производственная программа, а также рассчитан склад готовой продукции. Подробно рассмотрена технологическая схема производства и дано ее обоснование и описание. Описан контроль производства полуфабрикатов и готовой продукции, имеющий большое значение для получения качественной продукции. Рассмотрены вопросы обеспечения безопасной работы сотрудников цехов и завода. Основы проектирования заводов по производству ТН и СМ. Охрана труда в химической промышленности. Все материалы в разделе "Промышленность и производство". Ассортимент выпускаемой продукции, применяемого сырья на заводах керамической промышленности. Производство керамического кирпича по методу пластического формования. Расчет материального баланса цеха формования, сушки, обжига и склада готовой продукции. Ассортимент и характеристика выпускаемой продукции 2. Выбор сырьевой базы и энергоносителей 2. Обоснование состава композиции 4. Аналитический обзор научно-технической литературы и обоснование способа производства 5. Технологическая схема цеха формования, сушки, обжига 5. Теоретические основы технологического процесса 6. Вид продукции Масса, кг. Одинарный полнотелый кирпич 3. Одинарный пустотелый кирпич 2. Элементы характеристики Единица измерения Показатели Производительность Мощность электродвигателя, в том числе: Элементы характеристики Единица измерения Показатели Производительность Режим работы — непрерывный Число вагонеток в канале Время сушки, обжига Температура обжига Емкость вагонетки Длина печи Размер вагонетки: Готовый кирпич Бой на складе Ппп Брак сушки обжига Испаренная влага при: Календарный фонд времени Число праздничных дней Сменность Длительность смены Плановый ремонт Уборка и чистка оборудования Аварийные остановки Фонд рабочего времени. Производительность Мощность электродвигателя, в том числе: Производительность Режим работы — непрерывный Число вагонеток в канале Время сушки, обжига Температура обжига Емкость вагонетки Длина печи Размер вагонетки: Технология производства керамического кирпича. Производство керамического кирпича 3. Бизнес-план по произвоству керамического кирпича. Проект создания предприятия по производству керамического кирпича. Технология производства керамического кирпича на Тульском кирпичном заводе. Модернизация производства керамического кирпича. Материаловедение и технология конструкционных материалов.


Производство керамического кирпича. Нормативные документы. Подготовка, обработка глиняной массы и ее формование, сушка и обжиг


Государственное образовательное учреждение высшего профессионального образования. В данном проекте приведен ассортимент выпускаемой продукции, применяемого сырья. Рассмотрено производство керамического кирпича по методу пластического формования цеха формования, сушки и обжига, выполнен подбор технологической схемы и оборудования. Рассмотрен контроль производства и охрана труда на заводах керамической промышленности. Произведен расчет материального баланса цеха формования, сушки, обжига, составлена производственная программа, а также сделан расчет склада готовой продукции. Строительная керамика — большая группа керамических изделий, применяющихся при строительстве жилых и промышленных зданий и сооружений. Изделия строительной керамики отличаются своей долговечностью, высокими художественными характеристиками, кислотостойкостью и полным отсутствием токсичности. В настоящее время предусматривается преимущественное развитие производства изделий, обеспечивающих снижение металлоёмкости, стоимости и трудоёмкости строительства, веса зданий, сооружений и повышение их теплозащиты, развитие мощности по производству строительных материалов с использованием золы и шлаков тепловых электростанций, металлургических и фосфорных шлаков, отходов горнодобывающих отраслей промышленности и углеобогатительных фабрик, техническое перевооружение производства кирпича на базе новейшей техники. Вот уже несколько тысячелетий кирпич - самый распространенный строительный материал. Кирпич может быть, различным по составу сырьевой смеси, технологии производства и даже форме. Какие же существуют виды и свойства кирпича? Традиционно под кирпичом понимают брусок, изготовленный из глины. Стоящие века церкви, соборы, стены и башни кремлей и по сей день поражающие своей красотой и монументальностью, выполнены именно из керамического кирпича. Помимо неповторимого внешнего вида, прочности и долговечности, к достоинствам такого кирпича можно отнести огнестойкость, высокую звуконепроницаемость, способность сохранять тепло и уравновешивать колебания температур. По назначению керамический кирпич подразделяется на строительный рядовой , облицовочный лицевой и специальный. Строительный кирпич служит для возведения несущих стен и перегородок, которые впоследствии облицовываются, штукатурятся, окрашиваются. Важно, чтобы несущая способность кирпича была достаточной. Для лучшего сцепления с кладочным раствором боковые грани кирпича могут быть рифлеными. Облицовочный кирпич предназначен для отделки фасадов и интерьеров, в нем не допускаются трещины, отколы, известковые включения, пятна, выцветы и другие дефекты. Выбирая лицевой кирпич, надо особенно внимательно следить, чтобы близко к его поверхности или на ней не было известковых включений: Разновидности лицевого кирпича - фактурный с неровным рельефом - "черепашка", "кора дуба" и пр. Последний позволяет изысканно оформлять окна, карнизы, создавать здания с закругленными углами, выполнять арки, своды, колонны. Кроме того, при использовании его исчезает необходимость подрезать обычный лицевой кирпич. Если для строительного кирпича цвет не принципиален, то для лицевого это один из главных параметров. Современный керамический кирпич может быть практически любым, от белого до черного, и даже неоднородного цвета например "плавающего" от темного оттенка к светлому, от коричневого к синему, от желтого к синему и т. Цвет зависит, прежде всего, от технологии обжига, а также от состава, качества и цвета глины-сырца. Для расширения цветовой гаммы производители смешивают глины нескольких видов, добавляют в сырьевую смесь красители. Почти любой оттенок можно получить с помощью ангоба и глазури. Ангоб - это тонкий декоративный слой из белой или цветной глины, который перед обжигом наносится на отформованное изделие. Глазурь - цветной стекловидный слой на поверхности кирпича, имеющий характерный блеск. Кроме того, благодаря двойному обжигу уменьшается водопоглощение кирпича, а значит, повышается его стойкость к воздействиям атмосферы. Среди новых разработок в области "декорирования" кирпича - металлополимерное покрытие, позволяющее создать на поверхности изделия неожиданные сочетания цветов, рисунки и надписи. К специальным относят кирпичи, способные "выживать" в экстремальных условиях. Так, кирпич огнеупорный применяется для устройства печей, каминов, дымовых труб. Он изготавливается из шамотной глины путем ее обжига при очень высокой температуре. Этот кирпич имеет высокую плотность и выдерживает частые колебания температур верхний предел - свыше 0 С ; обычно бывает песочно-желтого цвета. Отдельного упоминания заслуживает клинкерный кирпич. Его получают в результате высокотемпературного обжига пластичных глин отборного качества до полного спекания, без включений и пустот. Благодаря особенностям сырья и специальным технологиям получается исключительно прочное, низкопористое, цвето-, износо-, морозостойкое и, как следствие, долговечное изделие. Строительный керамический кирпич является самым распространённым местным стеновым материалом, позволяющим экономить дефицитные металлы, цемент, а также транспортные средства. В данный момент в производстве строительного керамического кирпича сосредоточено внимание на совершенствовании технологии, улучшении качества выпускаемой продукции и расширении ассортимента. При строительстве новых предприятий предусматривается установление автоматизированных и высокомеханизированных технологических линий на базе современного отечественного и импортного оборудования. Осваивается выпуск эффективной пустотелой продукции, которая должна постепенно заменять традиционный полнотелый кирпич. Это позволит не только экономить сырьё, но и уменьшать толщину и массу наружных стен без снижения их теплозащитных свойств, а также создавать облегчённые конструкции панелей для индустриализации строительства. На действующих заводах наряду с дальнейшей механизацией и автоматизацией производства кирпича будут всемерно улучшаться его качество и повышаться прочностные свойства, требующиеся для строительства зданий повышенной этажности и специальных сооружений. Необходимо более широко развивать производство лицевого кирпича, позволяющего исключать оштукатуривание зданий и улучшать их архитектурный вид. Улучшение качества продукции вызывает необходимость повышения культуры производства, более строгого соблюдения технологических параметров по всем пределам, улучшения обработки, рациональной шихтовки путём ввода различных добавок, в том числе отходов других отраслей промышленности. Кирпич применяется в строительстве для кладки наружных и внутренних стен и других элементов зданий и сооружений, а также для изготовления стеновых панелей и блоков. В России основные размеры лицевого кирпича составляют: На Западе стандарты другие, к тому же их намного больше. Среди самых ходовых - х х 50 65 мм, х х 52 71 мм. Важный параметр для строительного и лицевого кирпича - наличие пустот. Бывают кирпичи полнотелые, пустотелые эффективные и пустотелые поризованные сверхэффективные, "теплая керамика". У полнотелых, как следует из названия, отверстий нет. Их чаще всего применяют там, где нужно выдерживать распределенные нагрузки - фундамент, цоколь, но можно выложить ими и наружную стену. Однако чтобы обеспечить нормативную теплопроводность, стены из них должны быть достаточно толстыми. Другое дело пустотелые кирпичи. У них имеются сквозные отверстия различной формы , благодаря которым они теплее, а значит, стены можно делать тоньше. Кроме того, пустотелые кирпичи легче, поэтому от них меньше нагрузка на фундамент. Следует отметить, что лицевой кирпич почти всегда является пустотелым. Наконец, самый "теплый" кирпич - поризованный. В нем, как и в изделии предыдущего типа, имеются сквозные отверстия, однако структура самого материала принципиально иная. В глину добавляют особые органические или минеральные компоненты, которые выгорают при обжиге, образуя мельчайшие замкнутые поры. В результате, сохранив все достоинства обычной керамики, поризованный кирпич существенно улучшил ее теплозащиту: Причем на прочность поры совершенно не влияют. Более того, изделие становится легче, что позволяет увеличить его размеры они могут достигать х х мм. Благодаря этому стены возводятся значительно быстрее, чем из обычного кирпича, и они становятся тоньше. Предел прочности кирпича при сжатии определяет его марку. Она обозначается буквой "М" и цифрой, показывающей, какую нагрузку может выдержать 1 см изделия. Чаще всего встречаются кирпичи марок М, М, М, М, М, М, М, М Кирпичи марок 75 и подходят для стен 2 - 3х этажного дома, марок и выше - для стен многоэтажных зданий. Марки кирпича относятся ко всем типам изделий, так что пустотелый лицевой кирпич марки будет столь же прочен, как и полнотелый строительный той же марки. В условиях нашего изменчивого климата одна из важнейших характеристик для кирпича - морозостойкость. Она измеряется количеством циклов попеременного замораживания и оттаивания водонасыщенного изделия: В технической документации морозостойкость обозначается буквой "F", а следующая за ней цифра говорит о количестве циклов, которые кирпич может выдержать. Пустоты в кирпиче должны располагаться перпендикулярно или параллельно постели и могут быть сквозными или несквозными. Размер цилиндрических сквозных пустот по наименьшему диаметру должен быть не более 16 мм, ширина щелевидных пустот не более 12 мм. Диаметр не сквозных пустот не регламентируется. Отклонение от установленных размеров и показателей внешнего вида кирпича не должны превышать на одном изделии следующих значений:. Трещины протяжённостью по постели полнотелого кирпича до 30 мм. Половняком считают изделия, состоящие из парных половинок или имеющие трещины, протяженностью по постели полнотелого кирпича более 30 мм. Кирпич в насыщенном водой состоянии должен выдерживать без каких либо признаков видимых повреждений расслоение, шелушение, растрескивание не менее 25 циклов попеременного замораживания и оттаивания. Основным сырьём для производства кирпича являются легкоплавкие глины - горные землистые породы, способные при затворении водой образовывать пластическое тесто, превращающееся после обжига при 0 С в камнеподобный материал. Легкоплавкие глины относятся к остаточным и осадочным породам. Для производства кирпича наибольшее применение нашли элювиальные, ледниково-моренные, гумидные, аллювиальные, морские и некоторые другие глины и суглинки. Для определения возможности использования глин и суглинков для производства стеновых материалов необходимо знать их зерновой, химический и минералогический состав, пластичность и технологические свойства. Очень важно для характеристики глины содержание в ней глинозёма Аl 2 O 3 , повышающего технологические свойства сырья: В глинах часть кремнезёма находится в связанном виде в глинообразующих минералах и в несвязанном виде как примесь, обладающая свойством отощающих материалов. Кальций содержится в глинах в виде карбонатов и сульфатов, а магний - в виде доломита. Обычно соединения кальция и магния отрицательно влияют на спекаемость и прочность керамических изделий. Наибольшее влияние оказывают оксиды железа, находящиеся в глине в виде оксида Fe 2 O 3 и гидроокиси Fe OH 3 и оксиды марганца MnO 2. Они улучшают спекаемость изделий и придают им окраску. Сера присутствует в глинах в различных соединениях, ее содержание не оказывает на качество стеновых керамических изделий. Глинообразующие минералы, определяющие основные свойства глин, представляют собой в основном гидросиликаты глинозема, содержащие кремнезем и окислы железа, а также сульфаты, карбонаты и растворимые в воде соли различных металлов. Химический, минералогический и гранулометрический состав глин, используемых для производства кирпича см. Для улучшения природных свойств глиняного сырья-уменьшения общей усадки, чувствительности к сушке и обжигу, улучшения формовочных свойств, широко применяют добавки. Добавки, используемые при производстве кирпича и керамических камней, по назначению можно разделить на:. В данном проекте для производства керамического кирпича в качестве основного компонента используем глину Малоступкинского месторождения. В качестве корректирующих добавок к сырью выбираем местные промышленные отходы золы ТЭЦ и песок. Золы ТЭЦ представляют собой отходы от сжигания в пылевидном состоянии каменных углей. Добавка золы ТЭЦ делает кирпич менее чувствительным к сушке и повышает его прочность. Также золы ТЭЦ действуют как выгорающая добавка, т. Газообразное топливо отличается от жидкого и твердого рядом преимуществ, важнейшими из которых являются: В состав газообразного топлива входят горючая часть и балласт. Горючая часть представляет собой механическую смесь простейших горючих газов, таких как водород, метан, пропан, бутан и других газообразных углеводородов. Балластом являются негорючие газы, в том числе углекислый газ СО 2 , азот N 2 и кислород О 2. При добыче газа в его составе имеются также водяные пары, смолистые вещества, минеральная пыль. Однако перед подачей газа потребителям его очищают, в результате чего содержание примесей сводится к минимуму. С целью получения необходимых технологических параметров продукции, составы шихт могут быть самые различные см. Поскольку эта глина имеет число пластичности 25 и является среднечувствительной к сушке, необходим ввод добавок. Выбранный шихтовой состав позволяет выпускать керамический кирпич марки , но возможны партии, имеющие марки 75 или , который удовлетворяет ГОСТу по всем требованиям. Глины для производства кирпича добывают открытым способом в карьерах. Открытая разработка месторождений глин включает:. Подготовительные работы — удаление кустарников, пней, отвод вод, устройство дорожных покрытий;. Вскрышные работы — удаление растительного слоя и проведение выработок, обеспечивающих доступ к глинам;. На большинстве глиняных карьеров применяется валовая добыча, при которой глину разрабатывают по всей мощности уступа, без выделения отдельных пластов сырья. В отдельных случаях используют селективную послойную добычу глин. Выбор добычных механизмов зависит от принятого способа формования изделий, горногеологических условий залегания сырья, его физико-механических свойств и способа выемки. При вылеживании сырья добывать его можно любыми машинами, в том числе одноковшовыми экскаваторами и канатно-скреперными установками. Вылеживание сырья весьма целесообразно при любом методе разработки глин. На глиняных карьерах широко применяют автомобильный, рельсовый и реже конвейерный транспорт. Автомобильный транспорт является наиболее простым, надежным и маневренным. При применении экскаваторов с невысокой производительностью весьма эффективны самосвалы грузоподъемностью до 10 т. Совместно с экскаваторами высокой производительности целесообразно использовать большегрузные прицепы с тягачами. В отдельных случаях применяют конвейерный транспорт, создающий условия для непрерывной работы добычного оборудования. Однако при неблагоприятных атмосферных условиях намокшая глина прилипает к ленте конвейера, что затрудняет его работу. На ленточные конвейеры глина поступает через погрузочные бункера, емкость которых должна быть не менее 1, 5—2-кратной емкости ковша экскаватора. В данном проекте для доставки глины с карьера, будем применять автомобильный транспорт, а точнее самосвалы. Данный выбор связан с тем, что этот вид транспорта наиболее прост в обслуживании и легко доступен. При использовании рыхлых глин с невысокой карьерной влажностью применяют глинохранилище простейшего типа, которые представляет собой емкость длиной 40 м и объемом от м 3 до 10 тыс. После вылеживания сырье многоковшовыми экскаваторами подается в производство. Глинохранилища обеспечивают бесперебойное и ритмичное снабжение завода сырьем независимо от метеорологических условий. При производстве керамического кирпича используется метод полусухого прессования и метод пластического формования, каждый из которых имеет свои достоинства и недостатки. Метод полусухого прессования предусматривает предварительное высушивание сырья, последующее измельчение его в порошок, прессование сырца в пресс-формах при удельных давлениях, в десятки раз превышающих давление прессования на ленточных прессах. Преимущества технологии полусухого прессования заключается в том, что спрессованный кирпич-сырец укладывается непосредственно на печные вагонетки и на них высушивается в туннельных сушилках, или же, минуя предварительную досушку, непосредственно поступает на обжиг. Комплексная механизация производства осуществляется проще, чем при методе пластического формования. Однако технология полусухого прессования требует более совершенной системы аспирации на трактах приготовления и транспортирование порошка, использования более высокопроизводительных прессов. Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья. При переработке глин в сыром виде схема подготовки сырья несколько проще и экономичней, поскольку нужно меньше перерабатывающего оборудования, следовательно, меньше энергоемкость. Все оборудование более надежно и просто в обслуживании. Температура обжига изделий примерно на 50 0 С ниже, чем у изделий полусухого прессования, что позволяет также снизить энергозатраты на обжиг и в какой-то мере компенсируют высокие затраты на сушку. Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига. Чтобы получить изделия требуемого качества необходимо из глины удалить каменистые включения, разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а также придать массе надлежащие формовочные свойства. В данном проекте будем использовать схему производства изделий пластическим методом, поскольку используемая глина достаточно высокой влажности, среднепластичная. На керамических заводах сырьевые материалы подвергают грубому, среднему и мелкому дроблению, грубому и тонкому помолу. Обычно тонким помолом завершается механическое измельчение материалов, что обеспечивает более интенсивное их спекание, содействует снижению температуры обжига. Измельчение глинистых материалов проводят последовательно на вальцах грубого и тонкого измельчения. Каменистые включения не могут быть полностью выделены из глины общепринятыми механическими приемами — дезинтеграторными ребристыми вальцами. Опыт показывает, что при пользовании этими машинами в глине может остаться около половины а иногда и более камней. В дальнейшем эти камни будут в значительном своем количестве перемолоты гладкими вальцами или бегунами, что, однако, вызывает быстрый износ бандажей и частые ремонты. Бегуны мокрого помола используют при наличии в глинах трудноразмокаемых включений и для обработки плотных глин и глин, содержащих известковые включения. Предварительное грубое дробление непластичных твердых материалов в керамической технологии производят в щековых или конусных дробилках, работающих по принципу раздавливающего и разламывающего действия. Степень измельчения в щековой дробилке , а в конусной — Среднее и мелкое дробление, грубый помол непластичных материалов выполняется с помощью бегунов, молотковых дробилок, валковых мельниц. Подача и дозировка сырья на большинстве кирпичных заводов происходит при помощи ящичных питателей. В настоящее время на многих керамических и кирпичных заводах широко применяется увлажнение глины паром. Этот способ состоит в том, что в массу подается острый пар, который при соприкосновении с холодной глиной конденсируется на ее поверхности. В результате пароувлажнения обрабатываемая масса нагревается до о С. Иногда производят дополнительную обработку керамической массы, которая осуществляется в вальцах тонкого помола, дырчатых вальцах или в глинорастирателе. Глиняный брус формуют в горизонтальных ленточных шнековых прессах часто с вакуумированием массы. При работе пресса наблюдают за влажностью и качеством бруса, качеством и регулярностью поступления массы, наличием смазки. Наибольшие зазоры между витками лопастного шнека и рубашкой допускаются 5 мм и между нагнетательным валком и витками лопастного вала — 10 мм. Необходимое разрежение в вакуум-камере создается вакуумным насосом. Глина поступает в глиномешалку и верхним шнеком продавливается через решетку в вакуум-камеру, где жгутики ее разрезаются ножами и масса обезвоздушивается. Затем масса захватывается нижним шнеком и продвигается им к головке пресса, где уплотняется и равномерно выходит из мундштука. В данном проекте выбираем вакуум-пресс, который обеспечивает наибольшую производительность, чем безвакуумные. Непрерывно поступающий из пресса брус сырца разрезается отрезным устройством на куски требуемой длины 2,5 м. Отрезанный кусок бруса отделяется ускорительным транспортёром и подаётся на разрезное устройство, где он принимается транспортёром специальной конструкции. После подачи бруса на разрезное устройство, транспортёр останавливается, и находящийся на нём брус, разрезается на отдельные кирпичи путём опускания и подъёма разрезного устройства, в котором поперёк направления подачи бруса натянуты разрезные элементы струны. После окончания операции разрезки транспортёр разрезного устройства начинает двигаться и кирпич сырец перегружается на следующий транспортёр раздвижного погрузочного устройства, причём, за счёт плавной регулировки скорости этого транспортёра кирпичи могут раздвигаться на требуемое расстояние. После передачи всех кирпичей на раздвижной транспортёр, он останавливается, и находящиеся на нем кирпичи толкателем сдвигаются в поперечном направлении на вагонетки, движущиеся прямо под транспортёром с такой же скоростью. Концы разрезанного бруса при этом остаются на раздвижном транспортере. При подаче следующей группы разрезанных кирпичей, с разрезного устройства, на раздвижной транспортёр, отрезки сырца сбрасываются на транспортёр отходов и возвращаются в пресс. Различают сушильные устройства для естественной и искусственной сушки сырца. В первом случае сырец высушивается атмосферным воздухом за счет солнечного тепла в летнее время, во втором — за счет тепла, получаемого от сгорания топлива. Задача организованного процесса сушки состоит в подводе энергии тепловой или электрической к высушиваемому изделию с наименьшими потерями и в наименьшие сроки, допустимые для целостности изделия. Большинство современных кирпичных заводов оборудовано устройствами для искусственной сушки кирпича-сырца, которые по режиму работы подразделяются на сушилки периодического камерные и непрерывного туннельные действия. Сушилки непрерывного действия туннельные являются наиболее современным сушильным агрегатом в кирпичной промышленности. В туннельной сушилке кирпич-сырец, находящийся на вагонетках, в течение цикла сушки перемещается через весь туннель от одного его конца к другому. Расход тепла на сушку кирпича-сырца в туннельных сушилках ниже, чем в камерных. Существенным преимуществом туннельных сушилок перед камерными является то, что туннельные могут быть оснащены аппаратурой, обеспечивающей автоматическое регулирование процесса сушки. Продолжительность процесса сушки и качество высушенного кирпича-сырца в значительной степени зависят от плотности и системы садки сырца на сушильных вагонетках. Необходимо обеспечить равномерность омывания теплоносителем сырца и получение надлежащей температуры и относительной влажности теплоносителя в различных частях сушилки. Недостаток туннельных сушилок в том, что в них наблюдается расслоение теплоносителя и более интенсивная сушка сырца на верхних полках. Устранение расслоения и равномерная сушка сырца по высоте туннеля достигаются перемешиванием теплоносителя в туннеле путем устройства воздушных завес за счет дополнительной подачи воздуха сверху в отдельных местах туннеля струйками с большой скоростью. Завершающей стадией технологии всех изделий строительной керамики является их обжиг. При обжиге изделия окончательно формируется структура материала, то есть происходит спекание керамики, в результате чего сырец из конгломерата слабосвязанных частиц превращается в достаточно твердое и прочное тело. Строительные материалы и изделия обжигают в промышленных печах. Промышленной печью называют установку технологического назначения, в которой посредством теплового воздействия при относительно высоких температурах изменяется агрегатное состояние обрабатываемого материала, его химический состав либо его кристаллическая структура. Обжиг кирпича производят в печах периодического и непрерывного действия. В кирпичной промышленности из печей периодического действия применяют преимущественно камерные печи. Из печей непрерывного действия применяют главным образом кольцевые и туннельные. Периодические печи используют для обжига кирпича на заводах малой мощности. Загрузка и разгрузка этих печей производится при сравнительно высоких температурах, что обуславливает тяжелые условия труда обслуживающего персонала. Камерные печи или горны отличаются значительной трудоемкостью обслуживания, большой неравномерностью температур по высоте печи. Для обжига кирпича применяют кольцевые печи. Они отличаются высокой тепловой экономичностью, возможностью использования низкосортных видов топлива, перехода с одного вида топлива на другое без каких-либо значительных переделок, высокой удельной и общей производительностью. Весьма существенным недостатком кольцевых печей является то, что в рабочей зоне садки и выгрузки выставки кирпича очень высокая температура: При этом садка и выгрузка кирпича производится вручную. На новых и реконструируемых кирпичных заводах строительство кольцевых печей не производится. Туннельные печи имеют значительные преимущества перед печами периодического действия и кольцевыми печами. Садка кирпича-сырца на вагонетки туннельных печей и выгрузка обожженного кирпича с этих вагонеток производится вне печи, в нормальных температурных условиях, что значительно облегчает труд обслуживающего персонала и дает возможность механизировать трудоемкие процессы садки и выгрузки кирпича. В туннельных печах можно осуществить полную автоматизацию управления режимом обжига. К достоинствам туннельных печей относится и то, что у них температурный перепад в различных участках обжига незначителен. Многорядовые по высоте туннельные печи, применительно к обжигу стеновой керамики, обладают крупным недостатком — большим перепадом температур по высоте, достигающим в зоне подогрева 0 С, который на участке максимальных температур уменьшается до 0 С. Борьба эта не всегда успешна. Лучшие условия эксплуатации туннельных печей достигается при наличии давления или разряжения в зоне обжига порядка 0,,3мм вод. Совершенствование конструкций туннельных печей с целью увеличения обжигаемой физической массы изделий увеличение теплоемкости , совершенствование горелок для развития длины факела, а также полноты сжигания жидкого топлива, улучшение теплоизоляции пода — все это приводит к определенным успехам, но не исключает необходимости разработки и совершенствования конструкций печей для однорядного скоростного обжига. В конструктивном отношении современные туннельные печи обладают некоторыми особенностями. Конструкция свода плоская, что упрощает постройку печи, позволяет расширить печной канал и обеспечить работу автомата — укладчика. Толщина кладки стен туннельных печей снижена до 0,5м. Поверх свода помещена теплоизоляция в виде вспученного вермикулита. Для обжига и сушки кирпича также используют туннельные печи-сушила, которые совмещают в одном агрегате печь и сушило. Принцип работы изложен ниже. В туннеле интенсивной сушки, работающему по принципу противотока, кирпичи движутся стоя в один слой, через участки с различными температурными режимами и интенсивной вентиляцией. Благодаря чему обеспечивается быстрая, равномерная сушка. Для высокочувствительных изделий может быть предусмотрено применение дополнительных зонных нагревателей. В зоне сушильного туннеля подмешивается горячий воздух из печного пространства. После прохождения подсушки вагонетки с садкой перемещаются загрузочным механизмом, который находится на противоположном конце сушилки, в печь для обжига, расположенную над сушилкой. В печи интенсивного обжига кирпича обжиг производится пламенем, направленным равномерно сверху. По длинному узкому туннелю печи навстречу теплоносителю, непрерывно, вплотную одна к другой, передвигаются вагонетки с обжигаемым изделием через постоянные тепловые зоны подогрева, обжига и охлаждения. Сначала вагонетки с изделиями подогреваются продуктами горения, отходящих из зоны обжига, затем проходят через зону обжига, где подвергаются воздействию газов высокой температуры и, наконец остывают отдавая тепло стенкам туннеля или непосредственно охлаждаясь воздухом. По всей длине печи между стенками и вагонетками имеется песочный затвор и лабиринт. Они служат для уменьшения газообмена между обжигательным каналом печи и подвагонеточным пространством. Печь работает на газообразном топливе и оборудована горелками. В зоне обжига установлено 5 групп горелок по 8 штук в каждой. Горячий воздух из печи отбирают в нескольких местах по длине зоны. Увеличение сечения отборных окон и канала, соединяющего печь с сушилкой, обеспечивает почти полный отбор тепла охлаждающихся изделий и вагонеток, и передачу его в сушилку. С помощью автоматических контрольных устройств системы интенсивной сушки и обжига кирпича, а так же благодаря малой высоте садки, как в сушильном туннеле, так и в туннеле обжига могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами. Наиболее важным преимуществом является значительное повышение культуры производства на кирпичных заводах, улучшение санитарно-гигиенических условии труда и возможность полной механизации трудоёмких ручных процессов. В данной работе выбираем интенсивную технологию обжига, так как в этом устройстве происходит совмещение сушки и обжига, а также могут быть достигнуты значительно более короткие сроки сушки и обжига по сравнению с обычными сушилами и печами. Эта технология состоит из единой линии от запасного пути после печи обжига до автомата укладчика. Кирпич снимается с вагонеток, устанавливается на поддоны, упаковывается в транспортные пакеты и транспортируется с помощью автопогрузчика. На кирпичных заводах применяются автопогрузчики самых различных типов со щитовыми захватами и с зажимами. Вилочные зажимы работают от гидравлической системы либо приводятся в действие от веса поднимаемого пакета. В данной работе выбираем автопогрузчик с вилочным зажимом, т. После чего кирпич отправляется на склад готовой продукции, находящийся на открытых асфальтированных площадках, расположенных на территории предприятия. Склад готовой продукции оборудован мостовыми кранами для загрузки поддонов с кирпичом в автомобили. Тонко измельчённое сырьё от вальцов, ленточным конвейером подаётся в глиномешалку вакуумного пресса, предназначенного для вакуумирования и формования сырца. Далее в технологии производства кирпича, проектом, принята система интенсивной сушки и обжига кирпича, включающая в себя:. Концы разрезанного бруса при этом остаются на раздвижном транспорте. При подаче следующей группы разрезанных кирпичей, с разрезного устройства, на раздвижной транспортёр, обрезки сырца сбрасываются на транспортёр отходов и возвращаются в пресс. Таким образом, кирпичи, группа за группой, поперечными рядами сажаются на вагонетку. Загруженные вагонетки с помощью цепного толкателя загружаются в накопительный буферный туннель, для предварительного подогрева, пройдя который, вагонетки попадают на загрузочно-выгрузочный механизм, который загружает их в сушилку. В настоящем проекте в зоне сушильного туннеля подмешивается горячий воздух из печного пространства. Отработанный теплоноситель после очистки поступает в атмосферу. Для нормального протекания процесса сушки сырца, т. После прохождения сушки кирпичи с сушильных вагонеток автоматом-садчиком переносятся на обжиговые. В печи интенсивного обжига кирпича обжиг производится пламенем. Обжиг проводят в печи при температуре о С. В качестве теплоносителя используются продукты сгорания газа. При обжиге за счет удаления влаги и сближения в результате этого частиц, вследствие фазовых и химических превращений, частичного получения жидкой фазы протекают структурообразующие процессы. Из печи забирается горячий воздух на сушку в сушило, а отработанные дымовые газы после очистки выбрасываются в атмосферу. Пройдя обжиг, вагонетки попадают на начальное загрузочное устройство которое перемещает их на пути расположенные над буферным туннелем. Затем, кирпич снимается с вагонеток, устанавливается на поддоны и упаковывается в транспортные пакеты. Формованием называется процесс придания массе заданных форм и размеров, т. Структура заготовки в значительной мере определяет строение и свойства изделий после обжига. При формовании стремятся максимально увеличить содержание твердой фазы, чтобы снизить усадки в сушке и обжиге. Пластичность глин предопределяет наличие специфических деформационных свойств — малой вязкости и достаточно высокого предела текучести. Показателем формовочных свойств масс является соотношение между внешним и внутренним трением. Считают, что формование возможно, если внутреннее трение массы когезия больше, чем трение о формующий орган машины аутогезия. Для оценки формовочных свойств используют коэффициенты внутреннего трения и сцепления массы. Основные свойства пластичной формовочной массы зависят от минерального состава, формы и размеров частиц твердой фазы, вида и количества временной технологической связки, интенсивности образования гидратных слоев на поверхностях частиц. С увеличением содержания жидкой фазы коэффициент внутреннего трения растет, проходя через максимум. Другие показатели уменьшаются монотонно, но с разной интенсивностью. Это позволяет для каждой массы выбрать оптимальное значение формовочной влажности. Лучшие формовочные свойства имеет масса с максимально развитыми слоями физически связанной воды при минимальном содержании свободной воды в системе. Возрастание дисперсности твердой фазы увеличивает количество контактов между частицами в единице объема и прочность. Одновременно растут оптимальная формовочная влажность, предел текучести, вязкость, модули деформации, коэффициент внутреннего трения и связность массы, повышается пластичность. Чрезмерное повышение дисперсности увеличивает усадки в сушке и обжиге, поэтому оптимальный зерновой состав должен обеспечивать создание каркаса из сравнительно крупных зерен для повышения предела текучести и уменьшения усадок. Пластическое формование осуществляют тремя способами: Заготовка сохраняет форму благодаря наличию предела текучести. Важнейшей задачей при пластическом формовании является подбор оптимальной формовочной влажности. Для оценки формовочной влажности W Ф по П. Ребиндеру используют зависимость пластической прочности структуры Р m , от влажности Wабc рис. Пластической прочностью называют механическое напряжение, которое способна выдерживать масса без нарушения сплошности. Считают, что формовочной влажности соответствует точка перехода зависимости Р m - влажность от прямолинейного участка. Чем сложнее форма изделия, тем при более высокой влажности проводят формование. Для его облегчения иногда в массы добавляют высокопластичные монтмориллонитовые глины. Выдавливание является окончательной операцией формования изделий грубой строительной керамики кирпич и промежуточным этапом переработки пластичной тонкокерамической массы перед раскаткой и допрессовкой. Выдавливание может быть горизонтальным и вертикальным. Его осуществляют на шнековых вакуумных прессах. В шнековом прессе при движении массы возникает сложное объемно-напряженное состояние. Лопасти шнека сообщают массе поступательное и вращательное движение, а стенки корпуса пресса замедляют перемещение массы в прилегающим к ним слоям. По мере продвижения массы к головке пресса ее вращение замедляется, но периферийные слои движутся с большей скоростью. Окончательно уплотняет массу последний виток шнека. Он выжимает массу из цилиндра в головку пресса с различными по сечению скоростями, сообщая ей частичное вращение. В заготовке могут возникать дефекты, связанные с неравномерным движением массы. Под действием бокового давления линейная скорость массы у стенки меньше, а окружная выше, чем в центре. В массе образуются два параболоидальных потока, скорости которых в мундштуке постепенно выравниваются. Более пластичные массы характеризуются большим градиентом скоростей по сравнению с жесткими рис. Для снижения неравномерности течения используют шнеки с переменным шагом винта и двухзаходной выпорной лопастью. Крупнозернистые включения снижают склонность массы к расслаиванию. Выдавливание сопровождается образованием анизотропной структуры масс, так как пластинчатые частицы глины ориентируются своей тонкой гранью в направлении максимальной скорости течения. Анизотропия проявляется в неравномерной усадке и различной прочности образцов в разных направлениях. При неблагоприятных условиях возможно появление дефектов. S-образные трещины образуются при нарушении сплошности массы из-за разной продольной и окружной скорости ее течения. Дефекты устраняют подбором размеров головки пресса и мундштука отношение длины к диаметру должно быть не менее 4, увеличиваясь для сильно пластичных и жестких масс , конусности мундштука, смазкой головки и мундштука. Сушкой называют удаление воды из влажного керамического полуфабриката или сырья испарением. Наиболее ответственной является сушка высоковлажного полуфабриката изделий хозяйственной и строительной керамики, изготовленного пластическим формованием или шликерным литьем и содержащего значительное количество глинистых компонентов. Процесс сушки керамических изделий представляет собой превращение содержащейся в них воды из жидкого состояния в парообразное и последующее удаление ее в окружающую среду. При этом необходимым условием сушки является наличие внешнего источника тепла, нагревающего изделия. Наиболее ответственной является сушка высоковлажного полуфабриката изделий хозяйственной и строительной керамики, изготовленного пластическим формованием. Физической называется та часть воды материала, которая не входит ни в какие соединения с ним. При этом керамическая масса становится непластичной, но с добавлением воды пластические свойства массы восстанавливаются. Химически связанной водой называется вода, находящаяся в химическом соединении с отдельными элементами керамической массы, так например. При этом керамическая масса безвозвратно теряет свои пластические свойства. При сушке изменяется от коагуляционных к конденсационным природа контактов между частицами твердой фазы за счет удаления механически и физико-химически связанной воды. Химически связанная вода в сушке не удаляется. Простейшим видом сушки является сушка изделий на воздухе, когда испарение влаги из материала происходит за счет тепловой энергии солнца. В настоящее время сушка изделий осуществляется за счет тепла, получаемого от специальных установок. В этом случае имеет место поверхностное испарение или так называемая внешняя диффузия влаги;. Происходит так называемая внутренняя диффузия влаги. Если в процессе сушки замерять температуры материала и окружающей среды, то обнаруживается, что температура изделия ниже температуры воздуха. Следовательно, во время сушки поверхность твердого тела, имеющего относительно низкую температуру, соприкасается с газом, нагретым до более высокой температуры. Между ними происходит теплообмен. Поэтому процесс сушки можно рассматривать как комплекс параллельно протекающих явлений:. При испарении влаги с поверхности изделий влажность поверхностных слоев по сравнению с внутренними слоями уменьшается и возникает так называемый перепад градиент влажности. Внешним показателем процесса сушки является изменение веса материала во времени. Графическое изображение зависимости влажности материала от длительности сушки носит название кривой сушки. Характер кривой определяется влажностью и размерами изделия, способом его формования, а также температурой, влажностью и скоростью теплоносителя. Совокупность указанных факторов определяет режим сушки. Режимом сушки называется изменение интенсивности влагоотдачи изделия путем изменения температуры, относительной влажности и скорости движения теплоносителя. Изменение режима сушки вызывает изменение интенсивности влагоотдачи изделия, которая определяется количеством влаги, испаряемой с единицы поверхности высушиваемого изделия в единицу времени. Сушка зависит от параметров окружающей среды температуры, влажности и скорости движения теплоносителя , формы связи влаги с материалом, состава, структуры, влажности и температуры полуфабриката. Различают кинетику сушки изменение средних значений влажности и температуры заготовки во времени и ее динамику изменение влажности и температуры в каждой точке заготовки. Распределение меняющихся во времени полей влажности и температуры в объеме изделия определяет возможность появления опасных напряжений и брака. Если сушку проводят при малых перепадах температуры между полуфабрикатом и средой, малых скоростях и высокой влажности теплоносителя, то влажность полуфабриката медленно уменьшается от исходной w 0 , а температура повышается до температуры мокрого термометра t М. Центр заготовки прогревается медленнее, чем поверхность. Это период прогрева полуфабриката. На втором этапе период постоянной скорости сушки влажность заготовки меняется по линейному закону при постоянной температуре. После достижения критической влажности Wкp температура поверхности заготовки увеличивается, приближаясь к температуре сухого термометра t СУХ , скорость сушки уменьшается, а влажность асимптоматически приближается к равновесной Wp. Температура в объеме полуфабриката растет медленнее, чем на поверхности. Этот период называется периодом падающей скорости сушки. Величина критической влажности Wкp зависит от скорости сушки, размеров и строения полуфабриката. Равновесная влажность Wp зависит от температуры и влажности в помещении. Сушить полуфабрикат до влажности меньше Wp нецелесообразно. Все процессы происходящие при сушке золо-песчаной повторяют сушку полуфабриката. При сушке испарение воды происходит диффузионным путем. Движущей силой является разность парциальных давлений пара у поверхности и в объеме теплоносителя. Уменьшение влажности во внешних слоях заготовки сопровождается появлением градиента влажности в ее объеме, что вызывает диффузию капельножидкой воды из объема заготовки к поверхности. При наличии градиента температуры на процесс влагопроводности накладывается процесс термовлагопроводностни: Термовлагопроводность связана с уменьшением поверхностного натяжения и вязкости воды при повышении температуры и движением пузырьков воздуха в капиллярах. При интенсивном подводе теплоты возможно испарение влаги в глубинных слоях заготовки и удалении воды по механизму паропроводности. Движущей силой процесса является перепад давления водяного пара. При удалении воды в порах заготовки образуются вогнутые мениски жидкости. Капиллярное давление увеличивается, уменьшается толщина прослоек жидкости, частицы сближаются, образуя каркас. При влажности, близкой к критической, капиллярные силы уравновешиваются силами трения, сближение частиц и усадка заготовки прекращается. Дальнейшее снижение влажности происходит за счет освобождения объема пор без изменения размеров. Изменение размеров полуфабриката в сушке характеризуют линейной или объемной усадкой, выраженной в процентах. Усадка зависит от влажности заготовки и размера частиц твердой фазы. Величины критической влажности и усадки зависят от режима сушки. Наибольшую усадку имеют заготовки, высушенные в равновесных условиях. Чем выше температура и ниже влажность теплоносителя, тем меньше усадка. Рост градиента влажности в объеме заготовки увеличивает разницу между фактической и максимально возможной усадками. Эта разница недопущенная усадка вызывает появление механического напряжения. Если последнее превысит предел прочности материала, то в теле заготовки образуется трещина. Причиной появления трещин в период постоянной скорости сушки полуфабриката является перепад влажности между наружными и внутренними частями заготовки. Продолжительность сушки зависит от толщины высушиваемого изделия и не зависит от его плотности и площади поверхности. В период падающей скорости сушки усадки отсутствуют, поэтому сушку можно интенсифицировать, повысив температуру и скорость движения теплоносителя. Тотальные трещины, проходящие через тело заготовки, возникают из-за больших скоростей прогрева заготовки, имеющей малый коэффициент влагопроводности, на первой стадии сушки. Срединные трещины возникают после образования жесткого каркаса частиц на краях заготовки, препятствующего усадке влажных центральных частей. Предотвратить образование краевых и срединных трещин можно, покрыв края влагоизолирующим веществом маслами, растворами сульфитно-спиртовой барды или поливинилового спирта и т. Рамочные трещины могут возникнуть при трении заготовки о подставку в процессе усадки. Этот вид брака характерен для кирпича пластического формования. Его можно предотвратить, периодически перекладывая изделия с грани на грань и используя подсыпки песок, опилки, шамот. Микротрещины и волосяные трещины возникают при адсорбции воды из воздуха или дымовых газов высушенным полуфабрикатом. Этот вид брака можно предотвратить, прекратив сушку при влажности несколько выше, чем максимальная влагоемкость материала при данной температуре. Коробление изделий может возникнуть при односторонней сушке плоских изделий, например облицовочных плиток, при анизотропной структуре полуфабриката, неравномерном распределении влаги в заготовке. Такое производственное деление на периоды не вскрывает сущности реакций в керамической массе при обжиге. При производственном обжиге керамических изделий никогда не достигается термодинамическое равновесие. Группа реакций в твердых фазах глин, обязанных диффузионным процессам диффузия происходит благодаря перепаду химического потенциала на границе фаз , довольно узко описывается известными уравнениями кинетики и характеризуются сравнительно. Не менее важную роль играет и газовая среда в печи, которая влияет на процессы, протекающие при формировании черепка, и поэтому она также должна регламентироваться режимом обжига. Эта среда может быть окислительной, нейтральной и восстановительной. Окислительная среда характеризуется избытком воздуха против того количества, которое теоретически необходимо для полного сгорания топлива. Появление стеклофазы содействует дальнейшему растворению в ней некоторой части минеральных составляющих глины и новому минералообразованию. Стеклофаза обеспечивает спекание и образование черепа. С физической стороны действие стеклофазы характеризуется усадкой изделия. В зависимости от степени развития стеклофазы, что регулируется выдержкой и созреванием черепа, можно сообщить ему ту или иную плотность пористость. Кроме того, выдержка необходима для выравнивания температурного поля в печи. Спекание материала - существенный момент процесса обжига, так как к этому времени заканчивается формирование керамического изделия. Окончание спекания изделия характеризуется прекращением его усадки. Условными показателями спекшегося материала являются его водопоглощение. На процесс формирования керамического черепка влияют: Процесс спекания первоначально пористого тела начинается с образования контактов между частицами и их роста по мере повышения тем пера туры. Модель стадии припекания двух сферических частиц с образовавшейся перемычкой представлена на рис. Вогнутая поверхность образующейся перемычки, растягиваемая силами поверхностного натяжения, становится участком повышенной концентрации вакансий, т. Выпуклая часть поверхности, сжимаемая силами поверхностного натяжения, а также межкристаллическая граница на участке контакта являются поглотителями вакансий. Таким образом, объемный диффузионный поток атомов направляется на поверхность перешейка и увеличивает его диаметр. Поскольку часть потока вещества, направленного к поверхности перешейка, выносится из области межчастичного контакта, частицы сближаются, происходит усадка и уплотнение пористого тела. Образующиеся в процессе обжига глин и керамических масс легкоплавкие соединения проявляют себя двояким образом. Во-первых, они действуют химически, растворяя частицы минералов, образуя жидкую фазу и выделяя из раствора новые, более устойчивые мниералообразования, именуемые эвтектическими смесями. Во-вторых, они действуют физически, благодаря своей энергии поверхностного натяжения, сближая и уплотняя твердые частицы глины. Обжиг изделий грубой строительной керамики ведется до появления минимального количества легкоплавких соединений, которые связывают дегидратированные частицы глинообразующих минералов и зерна кварца, что и обеспечивает достаточную механическую прочность изделий. Охлаждение обожженных изделий — не менее ответственная операция. Из всего выше сказанного можно сделать вывод что, большое значение имеет подбор температурного режима обжига. Он должен быть таким, чтобы реакции дегидратации, декарбонизации, окисления и восстановления отдельных компонентов, составляющих глину, не налагались бы на реакции образования легкоплавких эвтектик. Эти реакции должны следовать одна за другой, но практически, вследствие сложного состава керамических масс, образование жидких соединений начиняется обычно ранее, чем закончатся декарбонизация, окисление и т. Современный этап производства тугоплавких неметаллических и силикатных материалов характеризуется расширением ассортимента, повышением качества, возрастанием единичной мощности технологических линий, внедрением поточных технологий. Все это требует коренного совершенствования структуры, методов и средств контроля производства. Технический контроль — это проверка соответствия объекта материала, изделия или процесса установленным требованием, что относится к системе государственных испытаний, а значит, подчиняется правилам стандартизации и сертификации. Стандартизация — деятельность, направленная на достижение оптимальной степени упорядочения в определенной области посредством установления положений для всеобщего и многократного использования реально существующих или потенциальных задач. Результатом этой деятельности является разработка нормативных документов. В зависимости от специфики объекта стандартизации и содержание установленных к нему требований различают стандарты основополагающие, на продукцию или услуги, а также стандарты на процессы, на методы контроля испытаний, измерений, анализа. Сертификация — подтверждение соответствия товара обязательным нормативным требованиям, которое сопровождается выдачей сертификата соответствия. Вторичная информация используется для выработки соответствующих управляющих воздействий, совершенствование производства, повышения качества продукции и т. Подсистема общезаводского технологического контроля центральная заводская лаборатория должна обеспечивать определение состава и свойств исходного сырья, топлива, добавок, вспомогательных материалов, полуфабрикатов и готовой продукции в объеме, достаточном для практического осуществления процесса оптимизации производства по всему заводу. Подсистема оперативного технологического контроля обслуживающий персонал основного производства, цеховые лаборатории занимается определением состава и свойств материалов на входах и выходах конкретных технологических участков производства и контролем соответствия получаемых результатов требуемым значениям. Объем определений здесь должен быть минимально необходимым и не требующим сложного оборудования для осуществления контроля. Подсистема параметрического контроля служба контрольно-измерительных приборов и автоматизированных систем управления, КИП и АСУ оценивает состояние оборудования и режимы его работы, контролирует технологические параметры, измеряет расходы в технологических потоках, уровни в емкостях и т. Подсистема технического контроля отдел технического контроля, ОТК обеспечивает контроль качества и соответствие выпускаемых материалов и изделий действующей нормативной документации государственным или отраслевым стандартам, техническим условиям, стандартам предприятия , а также осуществляет сертификацию паспортизацию продукции. В функции ОТК входит не только фиксирование появления некачественной продукции, но и предупреждение подобных фактов. С этой целью ОТК контролирует качество поступающих на предприятие материалов, соблюдение установленной технологии, устанавливает причины, вызывающие брак и снижающие качество продукции. ОТК также оформляет необходимые акты и добивается устранения причин негативных явлений и их последствий. ОТК проводит свою работу в тесном контакте с заводской и цеховыми лабораториями. V 1 ,V 2 ,V 3 ,V 4 — объемная доля глины, песка,золы,шамота. На основе расчетов материального баланса и фонда времени производим расчет производственной программы цехов. Результаты сведены в таблицу. Подбор оборудования производим согласно выбранной ранее технологической схеме. Исходными данными для подбора оборудования служит также производственная программа, нормы технологического проектирования керамических заводов. В проект закладываем современное оборудование. Количество единиц оборудования непрерывного действия n определяем исходя из его производительности P и количества материала, которое необходимо на нем переработать R. В качестве оборудования для участка формования выбираем шнековый вакуумный пресс СМК — А, предназначенный для пластического формования масс путем уплотнения, вакуумирования и выдавливания ее через мундштук в виде бруса. Общее количество прессов — 2. В качестве линии по отрезке, укладке и транспортировке кирпича — сырца в ИТО систему принимаем линию, разработанную фирмой "Фукс", с необходимым подбором оборудования. Отрезное устройство, предназначено для отделения бруса определенной длины, выходящего из мундштука пресса:. Отрывной транспортер, предназначен для транспортировки отрезанного бруса в нарезное устройство. Нарезное устройство предназначено для одновременного нарезания нескольких штук кирпича из непрерывно выходящего из мундштука пресса бруса. Передаточное устройство фирмы Фукс предназначено для транспортировки вагонеток в горизонтальном и вертикальном направлении от сушилок к печи, а также после выхода из печи на нулевой уровень пола. Необходимо 2 передаточных устройства. Буферный накопитель предназначен для предварительного подсушивания сырца, а также в качестве накопителя вагонеток с сырцом и готовым кирпичем, находящихся на вагонетках, которые перемещаются к автомату-погрузчику по верху накопителя. ИТО — интенсивная технология обжига состоит из единой линии от запасного пути после печи обжига до автомата укладчика:. Грейферный погрузчик 2шт предназначен для разгрузки обожженного кирпича с туннельных вагонеток. Мощность электродвигателя 5 кВт. Толкатель 1шт предназначен для проталкивания и группировки рядов кирпича от разгрузочного грейфера. Мощность электродвигателя 1,5 кВт. Профильный конвейер 1шт предназначен для приёма обожженных рядов кирпича от продольного толкателя. Сдвоенный толкатель- предназначен для толкания и группировки кирпича от разгрузочного грейфера. Профильный конвейер 1шт предназначен для группировки обожженного кирпича от поперечного толкателя. Определение площади складов готовых изделий проводят по показателю производственной мощности цеха и принятых норм хранения готовой продукции. Охрана труда рассматривается как одно из важнейших социально-экономических, санитарно-гигиенических и экономических мероприятий, направленных на обеспечение безопасных и здоровых условий труда. Охрана здоровья рабочих и служащих в процессе исполнения трудовых обязанностей закреплена в трудовом законодательстве, непосредственно направленном на создание безопасных и здоровых условий труда. Кроме того, разработаны и введены в действие многочисленные правила техники безопасности, санитарии, нормы и правила, соблюдение которых обеспечивает безопасность труда. Ответственность за состояние охраны труда несет администрация предприятия, которая обязана обеспечивать надлежащее техническое оснащение всех рабочих мест и создавать на них условия работы, соответствующие правилам охраны труда, техники безопасности, санитарным нормам. Одним из важнейших принципов организации производства является создание безопасных и безвредных условий труда на всех стадиях производственного процесса. Организация деятельности администрации и служб предприятия по реализации комплекса мер по повышению уровня охраны труда осуществляется через систему управления охраной труда СУОТ. Модернизация технологического, подъемно-транспортного и другого производственного оборудования в соответствии с ГОСТ Внедрение автоматического и дистанционного управления производственным оборудованием, технологическими процессами, подъемными и транспортными устройствами с целью обеспечения безопасности работающих; систем автоматического контроля и сигнализации о наличии и возникновении опасных и вредных производственных факторов, а также блокирующих устройств, обеспечивающих аварийное отключение оборудования в случаях его неисправности; технических средств, обеспечивающих защиту работающих от поражения электрическим током; средств контроля уровней опасных и вредных производственных факторов на рабочих местах в соответствии с ГОСТ ССБТ и другими нормативными документами. Установка предохранительных и защитных приспособлений на паровых, водяных, газовых и других производственных коммуникациях и сооружениях. Устройство на действующих объектах новых и реконструкция старых вентиляционных систем, аспирационных и пылеулавливающих установок, средств коллективной защиты от воздействия опасных и вредных производственных факторов в соответствии с требованиями ГОСТ ССБТ. Устройство тротуаров, переходов, тоннелей, галерей на территории предприятия цеха в целях обеспечения безопасности работающих. Приведение производственных зданий, сооружений, помещений, перепланировка размещения производственного оборудования в соответствии с требованиями СНиП и других нормативных документов. Совершенствование технологических процессов в целях устранения воздействия на работающих опасных и вредных производственных факторов, нанесение на производственное оборудование и коммуникации опознавательной окраски и знаков безопасности в соответствии с требованиями ГОСТ ССБТ. Механизация уборки производственных помещений, складирования и транспортирования сырья, готовой продукции и отходов производства. Приведение уровней шума, вибрации, ультразвука, ионизирующих и других вредных излучений, а также естественного и искусственного освещения на рабочих местах в цехах и местах массового перехода людей в соответствие с требованиями СНиП и ГОСТ ССБТ. Переоборудование отопительных систем, установок кондиционирования воздуха, устройство тепловых, водяных и воздушных завес воздушных душей в целях обеспечения нормального теплового режима и микроклимата на рабочих местах в соответствии с требованиями СНиП и ГОСТ ССБТ. Расширение, реконструкция и оснащение бытовых помещений, мест организованного отдыха и производственной гимнастики, приобретение для этих целей необходимого инвентаря, оплата инструкторов-методистов производственной гимнастики и физкультурно-оздоровительной работы. Приобретение и монтаж сатураторных установок для приготовления газированной воды, устройство централизованной подачи к рабочим местам питьевой и газированной воды, чая, белково-витаминных напитков. Организация кабинетов, уголков, передвижных лабораторий, выставок по охране труда, приобретение для них необходимых приборов, наглядных пособий, демонстрационной аппаратуры. Издание и приобретение нормативно-технической документации и литературы по охране труда. Фундаментом называется подземная часть здания, предназначенная для передачи нагрузки от здания на его основание. Он состоит из стакана, в который устанавливается колонна, и фундаментной балки, которая укладывается на ступени стакана. Последняя образует поверхность, на которую укладываются стены здания. Зазоры между торцами балок заполняют бетоном. Для пролетов 6м фундаментные балки имеют высоту мм и длину мм. Колонны — основной элемент каркаса производственных зданий. Закрепленные бетонированием в фундаментных стаканах, они образуют вместе с элементами покрытия жесткий каркас, обеспечивающий устойчивость здания. В качестве основных строительных конструкций применяются металлические фермы. Для покрытия применяют листы 3х6м. На листы покрытия, уложенные на строительные конструкции, наносят кровлю: Основание под пол уплотняют с добавкой щебня и по нему укладывают подстилающий слой из утрамбованного песка, затем укладывают гидроизоляцию, стяжку из цементно-песчаного раствора и чистый пол — бетонный. Материалом для стен являются бетонные панели толщиной мм. Панели крепят к колоннам каркаса с помощью стальных консолей, привариваемых к закладным металлическим элементам колонн каркаса. В данном проекте детально разработан цех формования, сушки и обжига керамического кирпича. Представлен ассортимент выпускаемой продукции, дана характеристика сырьевых материалов, используемых для производства кирпича. Выбран способ производства пластическое формование , на основе анализа достоинств и недостатков других способов. Произведен подбор необходимого оборудования, составлена производственная программа, а также рассчитан склад готовой продукции. Подробно рассмотрена технологическая схема производства и дано ее обоснование и описание. Описан контроль производства полуфабрикатов и готовой продукции, имеющий большое значение для получения качественной продукции. Рассмотрены вопросы обеспечения безопасной работы сотрудников цехов и завода. Основы проектирования заводов по производству ТН и СМ. Охрана труда в химической промышленности. Все материалы в разделе "Промышленность и производство". Ассортимент выпускаемой продукции, применяемого сырья на заводах керамической промышленности. Производство керамического кирпича по методу пластического формования. Расчет материального баланса цеха формования, сушки, обжига и склада готовой продукции. Ассортимент и характеристика выпускаемой продукции 2. Выбор сырьевой базы и энергоносителей 2. Обоснование состава композиции 4. Аналитический обзор научно-технической литературы и обоснование способа производства 5. Технологическая схема цеха формования, сушки, обжига 5. Теоретические основы технологического процесса 6. Вид продукции Масса, кг. Одинарный полнотелый кирпич 3. Одинарный пустотелый кирпич 2. Элементы характеристики Единица измерения Показатели Производительность Мощность электродвигателя, в том числе: Элементы характеристики Единица измерения Показатели Производительность Режим работы — непрерывный Число вагонеток в канале Время сушки, обжига Температура обжига Емкость вагонетки Длина печи Размер вагонетки: Готовый кирпич Бой на складе Ппп Брак сушки обжига Испаренная влага при: Календарный фонд времени Число праздничных дней Сменность Длительность смены Плановый ремонт Уборка и чистка оборудования Аварийные остановки Фонд рабочего времени. Производительность Мощность электродвигателя, в том числе: Производительность Режим работы — непрерывный Число вагонеток в канале Время сушки, обжига Температура обжига Емкость вагонетки Длина печи Размер вагонетки: Технология производства керамического кирпича. Производство керамического кирпича 3. Бизнес-план по произвоству керамического кирпича. Проект создания предприятия по производству керамического кирпича. Технология производства керамического кирпича на Тульском кирпичном заводе. Модернизация производства керамического кирпича. Материаловедение и технология конструкционных материалов.


Сколько стоит прошить курсовую
Приказ 214 аптека
Расписание намазов в ханты мансийске
Проблемы классификации затрат
Карта все станции от лубнов до полтави
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment