Created
October 2, 2012 00:33
-
-
Save abhirk/3815467 to your computer and use it in GitHub Desktop.
Time taken by Tfidf vectorizer.transform
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| In [34]: cProfile.run("vectorizer.transform(input_txt)") | |
| 8676327 function calls (8676325 primitive calls) in 10.875 CPU seconds | |
| Ordered by: standard name | |
| ncalls tottime percall cumtime percall filename:lineno(function) | |
| 1 0.000 0.000 10.875 10.875 <string>:1(<module>) | |
| 2 0.000 0.000 0.717 0.359 base.py:178(asformat) | |
| 1 0.000 0.000 0.719 0.719 base.py:229(__mul__) | |
| 7 0.000 0.000 0.000 0.000 base.py:51(__init__) | |
| 1 1.193 1.193 7.473 7.473 base.py:529(setdiag) | |
| 9 0.000 0.000 0.000 0.000 base.py:553(isspmatrix) | |
| 7 0.000 0.000 0.000 0.000 base.py:59(set_shape) | |
| 476299 0.109 0.000 0.109 0.000 base.py:81(get_shape) | |
| 5 0.000 0.000 0.001 0.000 compressed.py:101(check_format) | |
| 5/3 0.000 0.000 0.718 0.239 compressed.py:20(__init__) | |
| 1 0.000 0.000 0.719 0.719 compressed.py:276(_mul_sparse_matrix) | |
| 5 0.000 0.000 0.000 0.000 compressed.py:622(prune) | |
| 20 0.000 0.000 0.000 0.000 compressed.py:85(getnnz) | |
| 2 0.000 0.000 0.000 0.000 compressed.py:90(_set_self) | |
| 1 0.000 0.000 0.000 0.000 coo.py:115(__init__) | |
| 2 0.000 0.000 0.000 0.000 coo.py:194(getnnz) | |
| 1 0.000 0.000 0.000 0.000 coo.py:205(_check) | |
| 1 0.000 0.000 0.000 0.000 coo.py:281(tocsr) | |
| 1 0.000 0.000 0.000 0.000 csr.py:129(tocsr) | |
| 17 0.000 0.000 0.000 0.000 csr.py:180(_swap) | |
| 1 0.000 0.000 0.001 0.001 csr.py:244(csr_matmat_pass2) | |
| 1 0.000 0.000 0.000 0.000 csr.py:74(csr_matmat_pass1) | |
| 6 0.000 0.000 0.000 0.000 data.py:17(__init__) | |
| 6 0.000 0.000 0.000 0.000 data.py:20(_get_dtype) | |
| 6441 0.023 0.000 0.034 0.000 fixes.py:22(__init__) | |
| 6441 0.009 0.000 0.012 0.000 fixes.py:29(update) | |
| 1 0.000 0.000 0.002 0.002 fromnumeric.py:1643(cumsum) | |
| 25 0.000 0.000 0.000 0.000 fromnumeric.py:2116(rank) | |
| 476268 2.661 0.000 3.647 0.000 lil.py:244(_insertat2) | |
| 476268 1.241 0.000 6.281 0.000 lil.py:307(__setitem__) | |
| 1 0.341 0.341 0.717 0.717 lil.py:441(tocsr) | |
| 1 2.394 2.394 2.407 2.407 lil.py:77(__init__) | |
| 1 0.000 0.000 0.000 0.000 memmap.py:254(__array_finalize__) | |
| 1 0.000 0.000 0.000 0.000 memmap.py:290(__del__) | |
| 1905073 1.084 0.000 1.788 0.000 numeric.py:1574(isscalar) | |
| 26 0.000 0.000 0.226 0.009 numeric.py:167(asarray) | |
| 1 0.000 0.000 0.000 0.000 numerictypes.py:665(issubclass_) | |
| 1 0.000 0.000 0.000 0.000 numerictypes.py:733(issubdtype) | |
| 1 0.000 0.000 0.000 0.000 preprocessing.py:289(normalize) | |
| 1 0.000 0.000 0.000 0.000 re.py:188(compile) | |
| 1 0.000 0.000 0.000 0.000 re.py:229(_compile) | |
| 5 0.000 0.000 0.000 0.000 sputils.py:111(issequence) | |
| 10 0.000 0.000 0.000 0.000 sputils.py:116(_isinstance) | |
| 1 0.000 0.000 0.000 0.000 sputils.py:124(isdense) | |
| 1 0.000 0.000 0.000 0.000 sputils.py:18(upcast) | |
| 6 0.000 0.000 0.000 0.000 sputils.py:50(to_native) | |
| 4 0.000 0.000 0.000 0.000 sputils.py:54(getdtype) | |
| 1 0.000 0.000 0.000 0.000 sputils.py:77(isscalarlike) | |
| 5 0.000 0.000 0.000 0.000 sputils.py:81(isintlike) | |
| 5 0.000 0.000 0.000 0.000 sputils.py:96(isshape) | |
| 6441 0.007 0.000 0.010 0.000 text.py:248(decode) | |
| 6441 0.022 0.000 0.026 0.000 text.py:263(_word_ngrams) | |
| 1 0.000 0.000 0.000 0.000 text.py:318(build_preprocessor) | |
| 6441 0.001 0.000 0.001 0.000 text.py:328(<lambda>) | |
| 6441 0.007 0.000 0.010 0.000 text.py:344(<lambda>) | |
| 1 0.000 0.000 0.000 0.000 text.py:348(build_tokenizer) | |
| 6441 0.005 0.000 0.014 0.000 text.py:353(<lambda>) | |
| 1 0.000 0.000 0.000 0.000 text.py:355(get_stop_words) | |
| 1 0.000 0.000 0.000 0.000 text.py:359(build_analyzer) | |
| 6441 0.016 0.000 0.077 0.000 text.py:377(<lambda>) | |
| 1 0.006 0.006 0.042 0.042 text.py:384(_term_count_dicts_to_matrix) | |
| 1 0.017 0.017 0.171 0.171 text.py:512(transform) | |
| 1 0.001 0.001 10.600 10.600 text.py:652(transform) | |
| 1 0.000 0.000 0.000 0.000 text.py:78(_check_stop_list) | |
| 1 0.104 0.104 10.875 10.875 text.py:910(transform) | |
| 2 0.000 0.000 0.000 0.000 validation.py:115(_num_samples) | |
| 1 0.000 0.000 0.000 0.000 validation.py:122(check_arrays) | |
| 1 0.000 0.000 0.000 0.000 validation.py:200(warn_if_not_float) | |
| 476268 0.197 0.000 0.197 0.000 {_bisect.bisect_left} | |
| 1 0.000 0.000 0.000 0.000 {_csr.csr_matmat_pass1} | |
| 1 0.001 0.001 0.001 0.001 {_csr.csr_matmat_pass2} | |
| 6441 0.009 0.000 0.009 0.000 {built-in method findall} | |
| 4 0.000 0.000 0.000 0.000 {getattr} | |
| 8 0.000 0.000 0.000 0.000 {hasattr} | |
| 1917980 0.710 0.000 0.710 0.000 {isinstance} | |
| 2 0.000 0.000 0.000 0.000 {issubclass} | |
| 959035 0.114 0.000 0.114 0.000 {len} | |
| 1 0.034 0.034 0.034 0.034 {max} | |
| 952537 0.210 0.000 0.210 0.000 {method 'append' of 'list' objects} | |
| 3 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.ndarray' objects} | |
| 6441 0.001 0.000 0.001 0.000 {method 'clear' of 'dict' objects} | |
| 1 0.002 0.002 0.002 0.002 {method 'cumsum' of 'numpy.ndarray' objects} | |
| 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} | |
| 952536 0.110 0.000 0.110 0.000 {method 'extend' of 'list' objects} | |
| 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} | |
| 6441 0.001 0.000 0.001 0.000 {method 'iteritems' of 'dict' objects} | |
| 1 0.000 0.000 0.000 0.000 {method 'itervalues' of 'dict' objects} | |
| 6441 0.002 0.000 0.002 0.000 {method 'lower' of 'unicode' objects} | |
| 1 0.000 0.000 0.000 0.000 {method 'mro' of 'type' objects} | |
| 6 0.000 0.000 0.000 0.000 {method 'newbyteorder' of 'numpy.dtype' objects} | |
| 4 0.000 0.000 0.000 0.000 {method 'pop' of 'dict' objects} | |
| 20 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects} | |
| 6442 0.003 0.000 0.003 0.000 {min} | |
| 38 0.226 0.006 0.226 0.006 {numpy.core.multiarray.array} | |
| 10 0.000 0.000 0.000 0.000 {numpy.core.multiarray.can_cast} | |
| 1 0.000 0.000 0.000 0.000 {numpy.core.multiarray.concatenate} | |
| 5 0.004 0.001 0.004 0.001 {numpy.core.multiarray.empty} | |
| 3 0.000 0.000 0.000 0.000 {numpy.core.multiarray.zeros} | |
| 1 0.009 0.009 0.009 0.009 {range} | |
| 1 0.000 0.000 0.000 0.000 {sklearn.utils.sparsefuncs.inplace_csr_row_normalize_l2} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment