Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/39899961df2ccf1f8d73d6e74380ae89 to your computer and use it in GitHub Desktop.
Save anonymous/39899961df2ccf1f8d73d6e74380ae89 to your computer and use it in GitHub Desktop.
Состав атомного ядра реферат

Состав атомного ядра реферат


Состав атомного ядра реферат



Физика атомного ядра
Структура атомных ядер
Реферат: Модели Атомного Ядра


























Зарождение теории строения вещества 2. Атомистическая теория Дальтона 4. Катодные лучи и электроны 6. Ядерная модель строения атомов 9. Состав атомных ядер Характеристика поведения электронов в атомах Список использованной литературы Атомистическая теория - современная теория строения вещества - зародилась еще в Древней Греции. Древнегреческие мыслители интересовались на первый взгляд отвлеченным вопросом: Основное направление мысли древнегреческих философов, следовавших взглядам Платона и Аристотеля, основывалось на представлении о непрерывности материи. Атомистические представления лежали также в основе естественной философии римского поэта и философа Лукреция, жившего в первом веке до нашей эры. Даже если было бы доказано, что материя имеет атомное строение, возник бы вопрос, чем отличаются друг от друга атомы различных веществ. Лукреций считал, что у атомов и веществ, имеющих горький вкус, на поверхности есть зазубринки, которые царапают язык, тогда как атомы веществ с приятным вкусом должны иметь гладкую поверхность. Атомистические представления о природе веществ не намного продвинулись вперед за последующие 18 веков, прошедших со времен Лукреция. Научная мысль в Европе много веков находилась под влиянием философских идей Платона и Аристотеля, которые не разделяли атомистических воззрений на природу материи. И хотя об атомистических представлениях время от времени вспоминали, в прежние времена сторонники любой конкретной теории строения материи искали подтверждения своих взглядов главным образом в интуиции. Однако и на протяжении этого долгого периода медленно, с перерывами, шла экспериментальная работа. Часто ею двигали ошибочные взгляды: Тем не менее накапливались сведения о том, как химические вещества реагируют друг с другом, и разрабатывались более количественные методы изучения химических реакций. Это подготовило почву для новых, более содержательных формулировок в рамках атомистической теории. Джон Дальтон - большую часть своей жизни преподавал в школе и колледже в Манчестере. Возможно потому, что сам Дальтон не был химиком, он подошел к ее проблемам с иных позиций, чем химики его времени. Его атомистическая теория, опубликованная в период гг. Она оказалась столь успешной, что с этого времени заняла господствующее положение в науке и почти не потребовала дальнейшего пересмотра. Основные постулаты теории Дальтона заключались в следующем:. Каждый элемент состоит из чрезвычайно мелких частиц, называемых атомами. Все атомы одного элемента одинаковы. Атомы различных элементов обладают разными свойствами, в том числе имеют разные массы. Атомы одного элемента не превращаются в атомы других элементов в результате химических реакций; атомы не создаются и не разрушаются в химических реакциях. Соединения образуются в результате комбинации атомов двух или нескольких элементов. В данном соединении относительные количества атомов разных сортов и сорта этих атомов всегда постоянны. Теория Дальтона позволяет мысленно нарисовать картину строения материи. Мы представляем себе элемент состоящим из мельчайших частиц, называемых атомами. Атомы являются основными структурными единицами материи, это мельчайшие частицы элемента, которые могут соединяться с другими элементами. Соединения состоят из атомов двух или нескольких элементов, образующих определенные сочетания друг с другом. До конца XIX века в химии господствовало метафизическое убеждение, что атом есть наименьшая частица простого вещества, последний предел делимости материи. Дальтон и его современники рассматривали атом как неделимый объект. Считалось, что при всех химических превращениях разрушаются и вновь создаются только молекулы, атомы же остаются неизменными и не могут дробиться на более мелкие части. Но все эти предположения в то время еще не могли быть подтверждены какими-либо экспериментальными данными. Лишь в конце XIX века были сделаны открытия, показавшие сложность строения атома и возможность превращения при известных условиях одних атомов в другие. На основе этих открытий начало быстро развиваться учение о строении атома. Первые указания на сложную структуру атомов были получены при изучении катодных исходящих от отрицательно заряженного электрода, или катода лучей, возникающих при электрическом разряде в сильно разреженных газах. Для наблюдения этих лучей из стеклянной трубки, в которую впаяны два металлических электрода, выкачивается по возможности весь воздух и затем пропускается сквозь нее ток высокого напряжения порядка вольт. При таких условиях от катода трубки перпендикулярно к его поверхности распространяются "невидимые" катодные лучи, вызывающие яркое зеленое свечение в том месте, куда они попадают. Катодные лучи обладают способностью приводить в движение на их пути легко подвижные тела и отклоняются от своего первоначального пути в магнитном и электрическом поле в последнем в сторону положительно заряженной пластины. Действие катодных лучей обнаруживается только внутри трубки, так как стекло для них непроницаемо. Изучение свойств катодных лучей привело к заключению, что они представляют собой поток мельчайших частиц, несущих отрицательный электрический заряд и летящих со скоростью, достигающей половины скорости света. Особенно замечательно, что масса частиц и величина их заряда не зависит ни от природы газа, остающегося в трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут быть лишены своих зарядов, не могут быть превращены в электронейтральные частицы: Эти частицы получили название электронов. По современным воззрениям, заряд электрона - это наименьший электрический заряд, наименьшее кол-во электричества, какое только может существовать. В катодных трубках электроны отделяются от катода под влиянием электрического заряда, но они могут возникать и вне всякой связи с электрическим зарядом. Так, например, все металлы испускают электроны при накаливании; в пламени горелки также присутствуют электроны; многие вещества выбрасывают электроны при освещении ультрафиолетовыми, рентгеновскими или лучами света фотоэффект. Выделение электронов самыми разнообразными веществами указывает на то, что эти частицы входят в состав всех атомов, следовательно, атомы являются сложными образованиями, построенными из более мелких структурных единиц. В году английскому физику Дж. В году Роберт Милликен из Чикагского университета определил заряд электрона: Подставив это значение в найденное Томсоном отношение заряда электрона к его массе, можно было вычислить массу электрона: Изучение строения атома практически началось в гг. Факт выделения электронов самыми разнообразными веществами приводил к выводу, что электроны входят в состав всех атомов. Но атом в целом электрически нейтрален, следовательно, он должен содержать в себе еще другую составную часть, заряженную положительно, причем ее заряд должен уравновешивать сумму отрицательных зарядов электронов. Эта положительно заряженная часть атома была открыта в г. Резерфорд предложил следующую схему строения атома. В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Суммарный отрицательный заряд электронов численно равен положительному заряду ядра, так что атом в целом электронейтрален. Так как масса электронов ничтожно мала, то почти вся масса атома сосредоточена в его ядре. Наоборот, размер ядер чрезвычайно мал даже по сравнению с размером самих атомов: Отсюда ясно, что на долю ядра и электронов, число которых, как увидим дальше, сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой. Таким образом, открытия Резерфорда положили начало ядерной теории атома. Со времен Резерфорда физики узнали еще очень многие подробности о строении атомного ядра. Самым легким атомом является атом водорода Н. Атомы других, более тяжелых элементов содержат ядра, обладающие большим зарядом и, очевидно, большей массой. Измерения заряда ядер атомов показали, что заряд ядра атома в указанных условных единицах численно равен атомному, или порядковому, номеру элемента. Однако невозможно было допустить, так как последние, будучи одноименно заряженными, неизбежно отталкивались бы друг от друга и, следовательно, такие ядра оказались бы неустойчивыми. К тому же масса атомных ядер оказалась больше суммарной массы протонов, обуславливающих заряд ядер атомов соответствующих элементов, в два раза и более. Тогда было сделано предположение, что ядра атомов содержат протоны в числе, превышающем атомный номер элемента, а создающийся таким образом избыточный положительный заряд ядра компенсируется входящими в состав ядра электронами. Эти электроны, очевидно, должны удерживать в ядре взаимно отталкивающиеся протоны. Однако это предположение пришлось отвергнуть, так как невозможно было допустить совместное существование в компактном ядре тяжелых протонов и легких электронов частиц. Нейтрон обладает массой, немного превышающей массу протона точно 1, углеродных единиц. Вслед за этим открытием Д. Гейзенберг, независимо друг от друга, предложили теорию состава атомных ядер, ставшую общепринятой. Согласно этой теории, ядра атомов всех элементов за исключением водорода состоят из протонов и нейтронов. Число протонов в ядре определяет значение его положительного заряда, а суммарное число протонов и нейтронов - значение его массы. Таким образом, число протонов в ядре соответствует атомному номеру элемента, а общее число нуклонов, поскольку масса атома в основном сосредоточена в ядре, - его массовому числу, то есть округленной до целого числа его атомной массе А. Тогда число нейтронов а ядре N может быть найдено по разности между массовым числом и атомным номером:. Таким образом, протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой. Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные отклонения от целых чисел можно объяснить недостаточной точностью измерения. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объяснить неточностью измерения и другими случайными причинами. Например, атомная масса хлора CL равна 35, Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть - Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих разные массы, но, очевидно, одинаковые химические свойства, т. С точки зрения протонно-нейтронной теории, изотопами называются разновидности элементов, ядра атомов которых содержат различное число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, которому равно и число электронов в оболочке атома. Изменение же числа нейтронов при неизменном числе протонов не сказывается на химических свойствах атома. Все это дает возможность сформулировать понятие химического элемента как вида атомов, характеризующихся определенным зарядом ядра. Среди изотопов различных элементов были найдены такие, которые содержат в ядре при разном числе протонов одинаковое общее число нуклонов, то есть атомы которых обладают одинаковой массой. Различная химическая природа изобаров убедительно подтверждает то, что природа элемента обуславливается не массой его атома. Для различных изотопов применяются названия и символы самих элементов с указанием массового числа, которое следует за названием элемента или обозначается в виде индекса вверху слева от символа, например: Различные изотопы отличаются друг от друга устойчивостью. У 55 элементов имеется по несколько устойчивых изотопов - они называются полиизотопными большое число изотопов характерно преимущественно для элементов с четными номерами. У остальных элементов известны только неустойчивые, радиоактивные изотопы. Однако радиоактивные изотопы некоторых элементов относительно устойчивы характеризуются большим периодом полураспада , и поэтому эти элементы, например торий, уран, встречаются в природе. В большинстве же радиоактивные изотопы получают искусственно, в том числе и многочисленные радиоактивные изотопы устойчивых элементов. По теории Резерфорда, каждый электрон вращается вокруг ядра, причем сила притяжения ядра уравновешивается центробежной силой, возникающей при вращении электрона. Вращение электрона совершенно аналогично его быстрым колебаниям и должно вызвать испускание электромагнитных волн. Поэтому можно предположить, что вращающийся электрон излучает свет определенной длины волны, зависящий от частоты обращения электрона по орбите. Но, излучая свет, электрон теряет часть своей энергии, вследствие чего нарушается равновесие между ним и ядром. Для восстановления равновесия электрон должен постепенно передвигаться ближе к ядру, причем так же постепенно будет изменяться частота обращения электрона и характер испускаемого им света. В конце концов, исчерпав всю энергию, электрон должен "упасть" на ядро, и излучение света прекратится. Если бы на самом деле происходило подобное непрерывное изменение движения электрона, его "падение" на ядро означало бы разрушение атома и прекращения его существования. Таким образом, наглядная и простая ядерная модель атома, предложенная Резерфордом, явно противоречила классической электродинамике. Система вращающихся вокруг ядра электронов не может быть устойчивой, так как электрон при таком вращении должен непрерывно излучать энергию, что, в свою очередь, должно привести к его падению на ядро и к разрушению атома. Между тем атомы являются устойчивыми системами. Эти существенные противоречия частично разрешил выдающийся датский физик Нильс Бор - , разработавший в году теорию водородного атома, в основу которой он положил особые постулаты, связав их, с одной стороны, с законами классической механики и, с другой стороны, с квантовой теорией излучения энергии немецкого физика Макса Планка - Сущность теории квантов сводится к тому, что энергия испускается и поглощается не непрерывно, как принималось раньше, а отдельными малыми, но вполне определенными порциями - квантами энергии. Запас энергии излучающего тела изменяется скачками, квант за квантом; дробное число квантов тело не может ни испускать, ни поглощать. Величина кванта энергии зависит от частоты излучения: Обозначая квант энергии через Е, запишем уравнение Планка:. Кванты лучистой энергии называются также фотонами. Применив квантовые представления к вращению электронов вокруг ядра, Бор положил в основу своей теории очень смелые предположения, или постулаты. Хотя эти постулаты и противоречат законам классической электродинамики, но они находят свое оправдание в тех поразительных результатах, к которым приводят, и в том полнейшем согласии, которое обнаруживается между теоретическим результатами и огромным числом экспериментальных фактов. Постулаты Бора заключаются в следующем:. Электрон может двигаться вокруг не по любым орбитам, а только по таким, которые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых, стационарных или квантовых орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает электромагнитной энергии. Переход электрона с удаленной орбиты на более близкую сопровождается потерей энергии. Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Чем больше расстояние от орбиты, на которой находится электрон, до той, на которую он переходит, тем больше частота излучения. Простейшим из атомов является атом водорода, вокруг ядра которого вращается только один электрон. Исходя из приведенных постулатов, Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: Величина n получила название главного квантового числа. В дальнейшем теория Бора была распространена и на атомную структуру других элементов, хотя это было связано с некоторыми трудностями из-за ее новизны. Она позволила разрешить очень важный вопрос о расположении электронов в атомах различных элементов и установить зависимость свойств элементов от строения электронных оболочек их атомов. В настоящее время разработаны схемы строения атомов всех химических элементов. Однако надо иметь в виду, что все эти схемы - это лишь более или менее достоверная гипотеза, позволяющая объяснить многие физические и химические свойства элементов. Как было уже сказано раньше, число электронов, вращающихся вокруг ядра атома, соответствует порядковому номеру элемента в периодической системе. Электроны расположены по слоям, то есть каждому слою принадлежит определенное заполняющее или как бы насыщающее его число электронов. Электроны одного и того же слоя характеризуются почти одинаковым запасом энергии, то есть находятся примерно на одинаковом энергетическом уровне. Вся оболочка атома распадается на несколько энергетических уровней. Электроны каждого следующего слоя находятся на более высоком энергетическом уровне, чем электроны предыдущего слоя. Наибольшее число электронов N, имеющих возможность находиться на данном энергетическом уровне, равно удвоенному квадрату номера слоя:. Таким образом на , на , на и т. Кроме того, установлено, что число электронов в наружном слое для всех элементов, кроме палладия, не превышает восьми, а в предпоследнем - восемнадцати. Электроны наружного слоя, как наиболее удаленные от ядра и, следовательно, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся положительно заряженными, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие электроны становятся отрицательно заряженными. Образующиеся таким путем заряженные частицы, качественно отличные от соответствующих атомов, называются ионами. Многие ионы в свою очередь могут терять или присоединять электроны, превращаясь при этом или в электронейтральные атомы, или в новые ионы с другим зарядом. Теория Бора оказала огромные услуги физике и химии. Однако оставалось еще много явлений в этой области, объяснить которые теория Бора не могла. Движение электронов в атомах рисовалось Бору до известной степени как простое механическое перемещение, между тем как оно является весьма сложным и своеобразным. Своеобразие движения электронов было раскрыто новой теорией - квантовой, или волновой, механикой. Квантовая механика показывает, что законы движения электронов имеют много общего с законами распространения волн. Для электрона с массой m и скоростью v можно записать:. Атомы различных элементов характеризуются определенным значением заряда ядра и равным ему числом электронов, которые распределяются по энергетическим уровням. Поведение электронов в атоме характеризуется четырьмя квантовыми числами:. Число может принимать значения ряда натуральных чисел в реальных атомах от одного до семи. Эти числа соответствуют электронным слоям атома или его энергетическим уровням, которые обозначаются прописными буквами латинского алфавита:. Помимо главного квантового числа, состояние электрона в атоме характеризуется еще тремя другими квантовыми числами: Оно определяет форму электронного облака форму орбиты , его сплошность или разрывы и его вытянутость. Принимает целые значения от 0 до n Для данного значения n имеется n различных орбиталей, то есть число значений l определяет количество атомных орбиталей. Энергетические подуровни обозначаются следующим образом:. Число значений m определяет число орбиталей данного s-, p-, d-, f- типа. Изучению распределения электронов в атомах уделяется большое внимание, так как поведение атомов в химических реакциях в значительной мере зависит от того, насколько прочно их электроны удерживаются на своих орбиталях. Главная Опубликовать работу О сайте. Строение атома и атомного ядра. Сохрани ссылку на реферат в одной из сетей: Зарождение теории строения вещества 2 2. Атомистическая теория Дальтона 4 3. Катодные лучи и электроны 6 4. Ядерная модель строения атомов 9 5. Состав атомных ядер 11 6. Теория Бора 17 8. Характеристика поведения электронов в атомах 22 Список использованной литературы 25 1. Зарождение теории строения вещества Атомистическая теория - современная теория строения вещества - зародилась еще в Древней Греции. Атомистическая теория Дальтона Джон Дальтон - большую часть своей жизни преподавал в школе и колледже в Манчестере. Основные постулаты теории Дальтона заключались в следующем: Катодные лучи и электроны До конца XIX века в химии господствовало метафизическое убеждение, что атом есть наименьшая частица простого вещества, последний предел делимости материи. Ядерная модель строения атома Изучение строения атома практически началось в гг. Состав атомных ядер Таким образом, открытия Резерфорда положили начало ядерной теории атома. Тогда число нейтронов а ядре N может быть найдено по разности между массовым числом и атомным номером: Изотопы Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории атома. Обозначая квант энергии через Е, запишем уравнение Планка: Постулаты Бора заключаются в следующем: Наибольшее число электронов N, имеющих возможность находиться на данном энергетическом уровне, равно удвоенному квадрату номера слоя: Характеристика поведения электронов в атомах. Для электрона с массой m и скоростью v можно записать: Поведение электронов в атоме характеризуется четырьмя квантовыми числами: Эти числа соответствуют электронным слоям атома или его энергетическим уровням, которые обозначаются прописными буквами латинского алфавита: Энергетические подуровни обозначаются следующим образом:


Атомное ядро


Атомная физика возникла на рубеже вв. Она занималась изучением строения атома и изучением его свойств. Была разработана количественная теория атома. Последующие исследования свойств атомов и электронов завершились созданием квантовой механики — физической теории, описывающей законы микромира. Квантовая механика является теоретическим фундаментом атомной физики, а она в свою очередь выступает опытным полигоном. Атомной физикой установлены оптические спектры атомов различных химических элементов, связь закономерностей спектров с системой энергетических уровней, подтвердила то, что внутренняя энергия атома квантуется и изменяется дискретно. Вследствие изучения радиоактивности произошло выделение ядерной физики, изучающей взаимопревращение элементарных частиц — физика элементарных частиц. Атомная физика добилась огромных успехов в изучении процессов, происходящих в атомных ядрах и взаимопревращение элементарных частиц. Но эта дисциплина изучает ту часть, в которой не происходит изменение с самим ядром, а только с электронной оболочкой. Ядерная физика изучает превращения атомных ядер, происходящие как в результате радиоактивных распадов, так и в результате различных ядерных реакций. Достижения ядерной физики немыслимы без использования достижений физики и техники ускорителей заряженных частиц. Именно создание различных ускорителей элементарных частиц помогли исследователям во многих проблемах изучения атомных ядер и их превращений. Важной частью ядерной физики является нейтронная физика, занимающаяся ядерными реакциями, происходящими под действием нейтронов. Современная ядерная физика распадается на две взаимосвязанные ветви — теоретическую и экспериментальную ядерную физику. Теоретическая работает с моделями атомных ядер и ядерных реакций. Экспериментальная ядерная физика использует богатый арсенал современных исследовательских средств, включая ядерные реакторы как источники мощных пучков нейтронов , ускорители заряженных частиц как источник ускоренных электронов, протонов, ионов, мезонов и т. Ядерно-физические исследования имеют огромное чисто научное значение, позволяя глубже проникать в тайны природы. В то же время эти исследования важны и для практического использования в ядерной энергетике, медицине, в ядерных реакторах на ледоколах, для изучения ядерных реакций для использования в мирных целях, для синтеза материалов. Наша работа также посвящена ядерным реакциям, радиоактивности и способам защиты от результатов ядерных реакций. Характер связанной системы микрообъекта, как и любой системы, зависит не только от состава и строения ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет связанность и целостность системы. С уровнем достигнутых знаний менялось и представления о структуре вещества. В качестве первичной системы микрообъектов сначала рассматривались молекулы как наименьшие единицы вещества. Сами представления о структуре молекулы постепенно совершенствовались и уточнялись. Существовало мнение, что структура молекулы возникает благодаря взаимодействию разноименно заряженных атомов или групп атомов. Но это было не совершенное суждение. В дальнейшем исследователи установили, что при образовании структур различные атомы не просто взаимодействуют, но известным образом преобразуют друг друга, так в результате получается целостность или связанная система. Позднее структуру молекул стали связывать с понятием валентности элемента. Дальнейшим шагом в этом направлении было изучение того, какую роль в образовании молекул из атомов играет степень напряженности и энергии, с которой они связываются друг с другом. Из всего этого необходимо уяснить главное: В такой химической системе, как молекула, именно специфический характер взаимодействия атомов определяет новые целостные свойства молекулы. Резерфорд положил основу ядерной модели атома как целостной системы. Она заключается во взаимодействии ядра атома, находящегося в центре атома и электронов, вращающихся вокруг ядра. Ядро состоит из положительно заряженных протонов и не имеющих заряда нейтронов. Число электронов в атоме равно числу протонов в ядре. Разные электроны связаны с ядром в разной степени, некоторые из них атом легко теряет, при этом система переходит в другое состояние, атом становиться положительным ионом. Приобретая дополнительный электрон, атом превращается в отрицательный ион. При поглощении электромагнитного излучения, например света, атом возбуждается и совершает квантовый переход с нижнего уровня на более высокий. В связи с этим говорят об энергетических уровнях атома, которые определяют состояние атома как системы. Атомное ядро как целостная система существует благодаря силам притяжения, связывающих протоны и нейтроны в атомном ядре. Эти силы называются ядерными или сильным взаимодействием. Так как по способности к сильному взаимодействию протон и нейтрон не отличаются друг от друга, поэтому их рассматривают как одну частицу — нуклон. Сильное взаимодействие действует на малых расстояниях м и превосходит электромагнитное и гравитационное, но оно уменьшается с увеличением расстояния. Атомное ядро любого химического элемента состоит из протонов и нейтронов, связанных между собой ядерными силами сильным взаимодействием. Протон - ядро атома водорода имеет положительный заряд, равный абсолютной величине заряда электрона и спин собственный механический момент импульса Нейтрон - электронейтральная частица c таким же как у протона спином. Протоны и нейтроны имеют очень близкие массы масса нейтрона больше массы протона приблизительно на две массы электрона и неразличимы с точки зрения ядерных сил т. Ядра, имеющие одинаковое число протонов, но разное число нейтронов, называются изотопами. У легких и средних ядер число протонов и нейтронов примерно одинаково. Дифракционное рассеяние позволяет получить сведения не только о размере, но и о распределении материи внутри ядра. Чтобы объяснить, почему протоны внутри ядра очень прочно связаны, потребовалось ввести новую фундаментальную силу. Для преодоления электростатического отталкивания протонов эти ядерные силы должны быть больше электростатических. В современной физике, основанной на квантовых принципах, вместо сил принято использовать понятие потенциальной энергии взаимодействия, т. Это позволяет найти состояния системы волновые функции , рассчитать уровни энергии и в принципе определить все экспериментально измеряемые характеристики, исследуемого объекта. Так и ядерное взаимодействие вместо введения сил удобно задавать с помощью потенциальной энергии. Если не учитывать довольно слабое электростатическое отталкивание, то сильное взаимодействие протона с протоном, протона с нейтроном и нейтрона с нейтроном будет в любом из этих случаев одним и тем же. Это взаимодействие называют нуклон - нуклонным. Точная аналитическая зависимость энергии нуклон - нуклонного взаимодействия от расстояния между нуклонами до сих пор точно не известна. При расчетах используют полуэмпирический вид потенциала, который получают из опытов по рассеянию протонов и нейтронов на протонах. Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Все атомные ядра состоят из элементарных частиц: Протон имеет положительный электрический заряд, равный по абсолютной величине заряду электрона. Нейтрон не имеет электрического заряда. Зарядом ядра называется величина Ze, где е - величина заряда протона, Z - порядковый номер химического элемента в периодической системе Менделеева, равный числу протонов в ядре. Нуклонам протону и нейтрону приписывается массовое число, равное единице, электрону - нулевое значение А. Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Ядро химического элемента X обозначается , где Х - символ химического элемента. Всего известно около устойчивых изотопов химических элементов и более естественных и искусственно полученных радиоактивных изотопов. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра. Эмпирическая формула для радиуса ядра м, может быть истолкована как пропорциональность объема ядра числу нуклонов в нем. Она значительно превосходит плотности самых плотных обычных веществ. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра Рmяд в целом. Единицей измерения магнитных моментов ядер служит ядерный магнетон mяд:. Здесь е - абсолютная величина заряда электрона, mp - масса протона, с - электродинамическая постоянная. Ядерный магнетон в раз меньше магнетона Бора, откуда следует, что магнитные свойства атомов определяются магнитными свойствами его электронов. Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения от сферически симметричного является квадрупольный электрический момент ядра Q. Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода во всех ядрах имеется не менее двух нуклонов, между которыми существует особое ядерное сильное взаимодействие - притяжение - обеспечивающее устойчивость ядер, несмотря на отталкивание одноименно заряженных протонов. Энергией связи нуклона в ядре называется физическая величина, равная той работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии. Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре. При образовании ядра происходит уменьшение его массы: Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Wсв - величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная. Удельной энергией связи ядра wсв называется энергия связи, приходящаяся на один нуклон: По мере увеличения числа нуклонов в ядре удельная энергия связи убывает. Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике гравитационных и электромагнитных. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка м. Ядерные силы обнаруживают зарядовую независимость: Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития -. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел А. Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием. Чедвиком в г. Именно открытие нейтрона положило начало современной ядерной физике и стало окончательным крушением электромагнитной картины мира, в которой предполагалось существование только трех фундаментальных частиц: После открытия нейтрона Д. Гейзенберг выдвинули гипотезу о протонно - нейтронном строении ядра. Одной из загадок нейтронов было то, что их не удавалось обнаружить в веществе в свободном состоянии. Впоследствии было выяснено, что причиной тому является их нестабильность. Каждый нейтрон вне ядра в течении нескольких минут самопроизвольно распадается на протон, электрон и электронное антинейтрино вследствие т. В результате ядерных реакций образовались все элементы Вселенной. Излучаемая энергия Солнца поддерживается азотно-углеродным синтезом гелия:. Масса частиц, из которых состоит гелий, в изолированном состоянии составляет: В компактном состоянии масса гелия-4 равна 4, Это уменьшение в 0, единицы массы называется дефектом массы; ее энергетический эквивалент в соответствии с уравнением Эйнштейна составляет. Эта огромная величина ядерной энергии связи и служит основой ядерной энергетики. Это означает, что ядра легких элементов при слиянии достигают большей устойчивости ядерный синтез , а ядра тяжелых элементов подвержены радиоактивному распаду или ядерному делению на два три фрагмента. Ядерное деление используется для создания ядерного оружия или ядерных реакторов, в которых ядерные реакции поддаются управлению и которые являются основой атомных электрических станций АЭС. Атомные бомбы, взорванные над Хиросимой и Нагасаки, состояли из двух докритических масс урана, которые при соединении превысили критическую массу. При этом поток нейтронов, взаимодействуя с ураном, образовал неустойчивый изотоп урана, способный к ядерному делению на осколочные ядра и выделению до трех нейтронов на атом. В среднем при делении неустойчивого урана образуются 2—4 нейтрона, что обеспечивает цепной механизм реакции ядерного деления. Такая ядерная реакция возможна с участием медленных тепловых нейтронов с энергией 5—10 эВ. Нейтроны с высокой энергией замедляются большой критической массой урана в атомной бомбе или специальными замедлителями графит, тяжелая вода и поглотителями нейтронов бор, кадмий в атомных реакторах. Это позволяет поддерживать скорость образования нейтронов в пределах, необходимых для выделения энергии, заданной конструкцией реактора. Малое содержание природного изотопа урана привело исследователей к необходимости использования других, более доступных делящихся ядер в реакторах-размножителях:. Вторым направлением в ядерной энергетике является ядерный синтез, подобный происходящему на Солнце в азотно-углеродном цикле. Ядерный синтез предпочтителен по двум причинам: Непреодолимым препятствием для мирного осуществления ядерного синтеза гелия по реакции. Военный вариант этого синтеза был осуществлен в водородной бомбе, где необходимую начальную температуру создавал атомный взрыв:. Проблема получения термоядерной энергии несмотря на научные достижения далека от практической реализации. Свойства радиактивного излучения были изучены вскоре после открытия Беккерелем радиоактивности в г. Оказалось, что существуют три различных вида ядерного излучения альфа, бета и гамма. После многолетних исследований было обнаружено, что а- излучение состоит из ядер гелия 42He, б- излучение - фотоны с очень высокой энергией, г- излучение, как правило, состоит из электронов. В случае бета-распада более тщательные исследования показали, что некоторые ядра вместо электронов испускают их античастицы - позитроны, кроме того, испускание электронов или позитронов всегда сопровождается излучением нейтрино или антинейтрино. Кроме хорошо известных альфа, бета и гамма - распадов в г. Петржаком открыт четвертый тип распада: В была обнаружена протонная радиоактивность: Еще один вид распада - двухпротонную и двухнейтронную радиоактивность, предсказан в г. Экспериментально этот вид распада еще не обнаружен. Радиоактивное излучение воздействует на вещество и, передавая веществу энергию, вызывает в нем электронное возбуждение, ионизацию и разрыв химических связей. Особенно опасно радиоактивное излучение для биологических объектов, поскольку оно может нарушить нормальное функционирование клеток, приводя к необратимым последствиям и даже к летальным исходам. Воздействие радиоактивного излучения на организм зависит от проникающей способности излучения. Бета-излучение способно проникать под кожный покров на глубину до 1 см. Попадание в организм носителей этих радиоактивных излучений весьма опасно. Наибольшую опасность представляет собой гамма-излучение, поскольку оно обладает весьма высокой проникающей способностью. Большие надежды ученые возлагают на реакцию управляемого термоядерного синтеза. Надежды на практическую реализацию управляемого термоядерного синтеза продолжают оставаться "умеренно оптимистическими" на протяжении более 40 лет. Если бы удалось осуществить управляемые термоядерные реакции в промышленных условиях, то это дало бы доступ к практически неисчерпаемым источникам энергии и избавило бы человечество от угрозы энергетического кризиса. С другой стороны, если взорвутся те огромные запасы водородных бомб, которые накоплены и продолжают накапливаться многими странами, несмотря на окончание т. Степень облучения определяется энергией, переданной живой ткани. Единица поглощенной дозы в СИ называется грей Гр: Для человека эта величина равна 3 Гр. Биологическая эффективность воздействия поглощенной дозы характеризуется эквивалентной дозой ЭД ,равной произведению D на коэффициент, зависящий от типа излучения и характера ткани. Единица ЭД - зиверт Зв. Предельно допустимая средняя индивидуальная ЭД равна мЗв: Внесистемная единица - бэр: Другая единица - рентген - связана с оценкой числа ионов, образующихся в результате облучения. Рад — аббревиатура английского radiation absorbed dose поглощенная доза излучения — соответствует поглощению 1 кг вещества энергии излучения 0,01 Дж. Поскольку разные виды излучения неодинаково воздействуют на организм, то действие излучения оценивают в бэрах биологический эквивалент рентгена , представляющих собой произведение поглощенной дозы излучения в радах на коэффициент качества излучения КК:. В среднем ежегодно на человека приходится 0,1—0,2 бэр фонового излучения Земли и космических лучей. В зависимости от места жительства это фоновое излучение может заметно меняться. Как уже упоминалось, наиболее опасными оказываются источники внутреннего облучения, основными из которых являются 14C, 90Sr, 90Y и Cs, а наиболее вредным — 90Sr, поскольку заметная его часть концентрируется в скелете и медленно выводится из организма. Использование радиоактивных материалов требует определенной системы радиационной защиты персонала и населения. Проблема усугубляется тем, что радиоактивные материалы и радиоактивные отходы невозможно ликвидировать, их необходимо складировать. Особые трудности создают жидкие радиоактивные отходы, образующиеся при обработке судовых ядерных двигателей и переработке ядерного горючего. До сих пор экологические службы не признали надежным ни один из разработанных способов длительного хранения радиоактивных отходов, включая наиболее перспективное складирование в виде стеклообразных и керамических блоков в специально оборудованных подземных хранилищах. Работать с радиоактивными препаратами можно только в специально оборудованных радиохимических лаборатория. Необходимость защиты окружающей среды от опасных техногенных воздействий промышленности на экосистемы. Характерные антропогенные радиационные воздействия на окружающую среду -. Более локальные, но не менее неприятные последствия - гибель озер, рек из-за неочищенных радиоактивных сбросов промышленных предприятий. Значительную опасность для живых существ, для популяций организмов в экосистемах представляют аварии на предприятиях химической, атомной промышленности, при транспортировании опасных и вредных веществ. Известные аварии на химическом заводе в Бхопале Индия , на 4-ом блоке Чернобыльской АЭС, аварии с нефтеналивными судами, да и результаты скоротечной войны в Персидском заливе показывают масштабы экологических бедствий современного общества. Очевидно, что необходим радикальный пересмотр наших отношений с природой, нужны решительные шаги по защите окружающей среды, в частности многократное усиление мер воздействия нормативных рычагов на хозяйственную практику. Совершенно недопустимо, чтобы установленные нормативами предельные концентрации вредных веществ в воздухе, воде реально превышались в сотни раз. Нужно сделать невыгодным или даже разорительным пренебрежение к охране окружающей среды. Право людей на чистый воздух, чистые реки и озера должно не только декларироваться, но и реально обеспечиваться всеми доступными для государства средствами. Какой же диапазон концентраций вредных веществ надлежит контролировать? Приведем примеры предельно допустимых концентраций вредных веществ, которые будут служить ориентирами в анализе возможностей радиационального мониторинга окружающей среды. Данные по некоторым важным, биологически активным радионуклидам приведены в Таблице 1. Реальные выбросы и сбросы радиоактивных веществ при нормальной эксплуатации АЭС обычно много ниже допустимых, так что нормы по концентрация радионуклидов в окружающей среде вблизи АЭС безусловно выполняются. Техногенные воздействия на окружающую среду при строительстве и эксплуатации атомных электростанций многообразны. Обычно говорят, что имеются физические, химические, радиационные и другие факторы техногенного воздействия эксплуатации АЭС на объекты окружающей среды. Возникновение мощных источников тепла в виде градирен, водоемов- охладителей при эксплуатации АЭС обычно заметным образом изменяет микроклиматические характеристики прилежащих районов. Движение воды в системе внешнего теплоотвода, сбросы технологических вод, содержащих разнообразные химические компоненты оказывают травмирующее воздействие на популяции, флору и фауну экосистем. Особое значение имеет распространение радиоактивных веществ в окружающем пространстве. В комплексе сложных вопросов по защите окружающей среды большую общественную значимость имеют проблемы безопасности атомных станций АС , идущих на смену тепловым станциям на органическом ископаемом топливе. Общепризнанно, что АС при их нормальной эксплуатации намного - не менее чем в раз "чище" в экологическом отношении тепловых электростанций ТЭС на угле. Однако при авариях АС могут оказывать существенное радиационное воздействие на людей, экосистемы. Поэтому обеспечение безопасности экосферы и защиты окружающей среды от вредных воздействий атомных электростанций - крупная научная и технологическая задача ядерной энергетики, обеспечивающая ее будущее. Отметим важность не только радиационных факторов возможных вредных воздействий АС на экосистемы, но и тепловое и химическое загрязнение окружающей среды, механическое воздействие на обитателей водоемов-охладителей, изменения гидрологических характеристик прилежащих к АС районов, то есть весь комплекс техногенных воздействий, влияющих на экологическое благополучие окружающей среды. Ограничение опасных воздействий АС на окружающую среду. Атомные станции и другие промышленные предприятия региона оказывают разнообразные воздействия на совокупность природных экосистем, составляющих экосферный регион АС. Под влиянием этих постоянно действующих или аварийных воздействий АС, других техногенных нагрузок происходит эволюция экосистем во времени, накапливаются и закрепляются изменения состояний динамического равновесия. Людям совершенно небезразлично в какую сторону направлены эти изменения в экосистемах, насколько они обратимы, каковы запасы устойчивости до значимых возмущений. Нормирование антропогенных нагрузок на экосистемы и предназначено для того, чтобы предотвращать все неблагоприятные изменения в них, а в лучшем варианте направлять эти изменения в благоприятную сторону. Чтобы разумно регулировать отношения АС с окружающей средой нужно конечно знать реакции биоценозов на возмущающие воздействия АС. Выше весьма схематично были обрисованы задачи моделирования таких воздействий. Ясно, что критические значения экологических факторов должны быть предметом специальных исследований биологов. Подход к нормированию антропогенных воздействий может быть основан на эколого-токсикогенной концепции, то есть необходимости предотвратить "отравление" экосистем вредными веществами и деградацию из-за чрезмерных нагрузок. Другими словами нельзя не только травить экосистемы, но и лишать их возможности свободно развиваться, нагружая шумом, пылью, отбросами, ограничивая их ареалы и пищевые ресурсы. Чтобы избежать травмирования экосистем должны быть определены и нормативно зафиксированы некоторые предельные поступления вредных веществ в организмы особей, другие пределы воздействий, которые могли бы вызвать неприемлемые последствия на уровне популяций. Другими словами должны быть известны экологические емкости экосистем, величины которых не должны превышаться при техногенных воздействиях. Экологические емкости экосистем для различных вредных веществ следует определять по интенсивности поступления этих веществ, при которых хотя бы в одном из компонентов биоценоза возникнет критическая ситуация, то есть когда накопление этих веществ приблизится к опасному пределу, будет достигаться критическая концентрация. В значениях предельных концентраций токсикогенов, в том числе радионуклидов, конечно, должны учитывать и синергетические, то есть перекрестные эффекты. Однако этого, по-видимому, недостаточно. Для эффективной защиты окружающей среды необходимо законодательно ввести принцип ограничения вредных техногенных воздействий, в частности выбросов и сбросов опасных веществ. По аналогии с принципами радиационной защиты человека, упомянутыми выше, можно сказать, что принципы защиты окружающей среды состоят в том, что. Важным элементов охраны окружающей среды является мониторинг экосистем, контроль состояния "здоровья" биоценозов. Задачи мониторинга состоят в том, чтобы. Развитие знаний и представлений об окружающем мире шло и идет от открытия одного класса многообразий структурных объектов к другому, более сложному для восприятия на данном историческом этапе. От атомов неразрезаемых - к атому в виде некоторой системы, структурными элементами которой являются электроны оболочки и центральное неделимое ядро. Затем вскрывается нуклонная структура ядра, а в дальнейшем - и структура самих нуклонов И каждый раз человеческий разум ищет то внутреннее единство, которое позволяет охватить новое многообразие. Для эпохи Аристотеля достаточно было четырех первоэлементов, для времени Д. Менделеева многообразие атомов занимало примерно клеток его таблицы. В середине 60х годов нашего столетия число открытых элементарных частиц превысило Современная таблица фундаментальных структурных элементов содержит три поколения элементарных частиц. Это в общем счете 12 кварков и антикварков, 8 глюонов, 6 лептонов с их античастицами, фотоны и гравитоны. Некоторое время назад казалось, что достаточно будет трех кварков, чтобы построить все остальное. Но открываются новые составляющие и идея малого числа фундаментальных основ не подтверждается. В последнее время в современном естествознании все больше вырисовывается другой подход. Он основан на признании принципа обязательной вариативности структурных элементов для сложных природных систем, будь то система элементарных частиц, или биоценоз. Только при наличии некоторого минимального, но разнообразного набора можно построить функционально и структурно сложные системы. Само осознание принципа допустимости и необходимости, обязательности разнообразия элементов становится достоянием общей культуры человечества. Опыт развития естествознания от классического к современному показал, что изучение иерархии структурных уровней частиц вещества неизбежно приводит к более глубокому пониманию свойств пространства и времени. И к осознанию того факта, что геометрические свойства пространственно-временного континиума могут определять численные значения фундаментальных констант нашего мира - гравитационной постоянной, заряда электрона, спектра масс-энергий элементарных частиц. Ещё одно важное положение современного естествознания заключается в признании принципиальной невозможность изолировать отдельную частицу-объект в микромире, выделить полностью её из "контекста" процессов виртуальных взаимопревращений. Здесь только факт наличия наблюдателя - соучастника позволяет реализоваться одному из многих вероятных путей дальнейшей истории микрочастицы и исследуемого процесса в целом. По этой же причине следует считать грубым приближением выделение субъекта - человека из объективной реальности, в которой он существует. Большинство явлений в окружающем человека мире относятся к процессам в открытых динамических системах, в противоположность представлениям классического естествознания об определяющей роли замкнутых или изолированных систем. Это понимание чрезвычайно важно в связи с явлениями самоорганизации в неживой и живой Природе. И о взаимосвязи двух компонент культуры - естественнонаучной и гуманитарной. Эйнштейн говорил, что Достоевский дал ему больше, чем все изучение математики. С другой стороны, по нашему мнению, феномен абстракционизма и авангардизма не мог бы состояться вне атмосферы влияния на гуманитарную культуру специальной теории относительности и идей квантовой физики. В частности, с его искажениями перспективы и форм, изогнутыми циферблатами часов, определенно несет отпечаток времени становления СТО и проникновения идей относительности в общую культуру. Теории, в которой пространство "сжимается", а временные интервалы "растягиваются" в зависимости от условий движения. Новиков "Окружающая среда и человек", Изд. Штейнберг "Безопасность атомных станций и ее государственное регулирование", Атомная энергия, том 68, вып. Публикация МКРЗ N 26, "Радиационная защита", Москва, Атомиздат, г. Санжарова Радиоэкологические проблемы ядерной энергетики", Атомная энергия, том 68, вып. НТД МХО Интератомэнерго Тарасов, Этот удивительно симметричный мир. Фейнберг, Из чего сделан мир? Атомы, лептоны, кварки и другие загадочные частицы. Окунь, Элементарное введение в физику элементарных частиц. Спиридонов, Фундаментальные физические постоянные. Пригожин "От существующего к возникающему", М. Пурмаль "Как превращаются вещества", Наука, Франк-Каменецкий "Самая главная молекула", Наука, Физика атомного ядра Реферат по физике. Закон радиоактивного распада 4. Измерение радиоактивности и радиационная защита Заключение. Основные свойства и строение ядра 1. Единицей измерения магнитных моментов ядер служит ядерный магнетон mяд: Если Wсв - величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная 4. Излучаемая энергия Солнца поддерживается азотно-углеродным синтезом гелия: Это уменьшение в 0, единицы массы называется дефектом массы; ее энергетический эквивалент в соответствии с уравнением Эйнштейна составляет Эта огромная величина ядерной энергии связи и служит основой ядерной энергетики. Малое содержание природного изотопа урана привело исследователей к необходимости использования других, более доступных делящихся ядер в реакторах-размножителях: Изотопы и пригодны в качестве ядерного горючего. Непреодолимым препятствием для мирного осуществления ядерного синтеза гелия по реакции является ее высокая температура десятки млн К. Военный вариант этого синтеза был осуществлен в водородной бомбе, где необходимую начальную температуру создавал атомный взрыв: Закон радиоактивного распада Свойства радиактивного излучения были изучены вскоре после открытия Беккерелем радиоактивности в г. Образец урана U испускает а-частицы по следующей схеме: Теория альфа-распада построена Г. Гамовым в г. Первая теория бета-распада была построена Э. Ферми в г. Поскольку разные виды излучения неодинаково воздействуют на организм, то действие излучения оценивают в бэрах биологический эквивалент рентгена , представляющих собой произведение поглощенной дозы излучения в радах на коэффициент качества излучения КК: Еще одна единица — рентген, по сути, соответствует раду. Ограничение опасных воздействий АС на окружающую среду Атомные станции и другие промышленные предприятия региона оказывают разнообразные воздействия на совокупность природных экосистем, составляющих экосферный регион АС. Вредные факторы и мониторинг окружающей среды Важным элементов охраны окружающей среды является мониторинг экосистем, контроль состояния "здоровья" биоценозов. Заключение Развитие знаний и представлений об окружающем мире шло и идет от открытия одного класса многообразий структурных объектов к другому, более сложному для восприятия на данном историческом этапе. Физика элементарных частиц"


Пути разошлись значение фразеологизма
Плохие стихи про артема
Найдите медиану треугольника проведенную к большей стороне
Приказ о мониторинге качества образования
Правила поведения членов семьи
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment