Skip to content

Instantly share code, notes, and snippets.

@lxneng
Created May 31, 2010 04:23
Show Gist options
  • Save lxneng/419528 to your computer and use it in GitHub Desktop.
Save lxneng/419528 to your computer and use it in GitHub Desktop.
python dict get的四种方法比较
5月30上海python聚会,沈大侠分享了一下python dict get的四种方法:
# method 1
# 采用异常捕捉来处理KeyError
# 查询1次
try:
v = data[k]
except KeyError:
v = 12
# method 2
# 取值前先进行条件判断
# 查询2次
if data.has_key(k):
v = data[k]
else:
v = 12
# method 3
# 和method2类似,只是利用in取代函数调用
# 查询2次
if k in data:
v = data[k]
else:
v = 12
# method 4
# 函数调用
# 查询1次
v = data.get(k)
if v == None:
v = 12
提到几点:
函数调用是比较慢的,不如data[key]和key in data快。
所以method2完全可以被method3替代。
method4在多数情况下也没有method2好。
异常处理因为需要建立Error的对象,是最慢的。
所以method1不很适用命中率低的状况。
method1和method4都只查询一次,
method2和method3都要查询两次,
在某些查询是性能瓶颈的时候,不如method1和2快。
为了对上面的估计作实际验证,我写了测试程序,如下:
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import time, json
def test(data, k, count):
times = []
start = time.time()
for i in range(count):
#method 1
try:
v = data[k]
except KeyError:
v = 12
end = time.time()
print "method 1 spend time: %f s." % (end - start)
times.append(end - start)
start = time.time()
for i in range(count):
#method 2
if data.has_key(k):
v = data[k]
else:
v = 12
end = time.time()
print "method 2 spend time: %f s." % (end - start)
times.append(end - start)
start = time.time()
for i in range(count):
#method 3
if k in data:
v = data[k]
else:
v = 12
end = time.time()
print "method 3 spend time: %f s." % (end - start)
times.append(end - start)
start = time.time()
for i in range(count):
#method 4
v = data.get(k)
if v == None:
v = 12
end = time.time()
print "method 4 spend time: %f s." % (end - start)
times.append(end - start)
return times
def main():
print "test hit"
data = {'a': 12}
k = 'a'
times1 = test(data, k, 1000000)
print
print "test not hit"
data = {'a': 12}
k = 'ab'
times2 = test(data, k, 1000000)
print
print "test data IO"
data = {'a': 12}
k = 'a'
fd = FileDict(data)
times3 = test(fd, k, 5000)
print
import numpy as np
import matplotlib.pyplot as plt
ind = np.arange(4)
p1 = plt.bar(ind, times1, width=0.2, color='r')
p2 = plt.bar(ind+0.2, times2, width=0.2, color='g')
p3 = plt.bar(ind+0.4, times3, width=0.2, color='b')
plt.xticks(ind, ('method 1', 'method 2', 'method 3', 'method 4') )
plt.legend( (p1[0], p2[0], p3[0]), ('hit', 'not hit', 'IO') )
plt.show()
class FileDict:
def __init__(self, data):
open('temp.txt','w').write(json.dumps(data))
def get(self, key):
return json.load(open('temp.txt'))[key]
__getitem__ = get
def has_key(self, key):
return json.load(open('temp.txt')).has_key(key)
__contains__ = has_key
if __name__=="__main__":
main()
结果如图(ubuntu9.10 + python2.6):
method3性能比method2好,method1在not hit的情况下时间消耗最多,
在get消耗大的情况下method1和method4消耗的时间要比method2和method3少一半。
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment