Created
December 11, 2012 05:21
-
-
Save splinterofchaos/4256092 to your computer and use it in GitHub Desktop.
fun with tuples.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <tuple> | |
#include <iostream> | |
template< size_t ...i > struct IndexList {}; | |
template< size_t ... > struct EnumBuilder; | |
// Increment cur until cur == end. | |
template< size_t end, size_t cur, size_t ...i > | |
struct EnumBuilder< end, cur, i... > | |
// Recurse, adding cur to i... | |
: EnumBuilder< end, cur+1, i..., cur > | |
{ | |
}; | |
// cur == end; the list has been built. | |
template< size_t end, size_t ...i > | |
struct EnumBuilder< end, end, i... > { | |
using type = IndexList< i... >; | |
}; | |
template< size_t b, size_t e > | |
struct Enumerate { | |
using type = typename EnumBuilder< e, b >::type; | |
}; | |
template< class > struct IListFrom; | |
template< class ...X > | |
struct IListFrom< std::tuple<X...> > { | |
static constexpr size_t N = sizeof ...(X); | |
using type = typename Enumerate< 0, N >::type; | |
}; | |
// std::tuple_element<i,T> does not perfect forward. | |
template< size_t i, class T > | |
using Elem = decltype( std::get<i>(std::declval<T>()) ); | |
template< size_t i > struct Get { | |
template< class T > | |
constexpr auto operator () ( T&& t ) | |
-> Elem< i, T > | |
{ | |
return std::get<i>( std::forward<T>(t) ); | |
} | |
}; | |
template< size_t i, class T, | |
class _T = typename std::decay<T>::type, | |
size_t N = std::tuple_size<_T>::value - 1, // Highest index | |
size_t j = N - i > | |
constexpr auto rget( T&& t ) | |
-> Elem< j, T > | |
{ | |
return std::get<j>( std::forward<T>(t) ); | |
} | |
template< size_t i > struct RGet { | |
template< class T > | |
constexpr auto operator () ( T&& t ) | |
-> decltype( rget<i>( std::forward<T>(t) ) ) | |
{ | |
return rget<i>( std::forward<T>(t) ); | |
} | |
}; | |
template< size_t i, class T, | |
class _T = typename std::decay<T>::type, | |
size_t N = std::tuple_size<_T>::value, | |
size_t j = i % N > | |
constexpr auto mod_get( T&& t ) | |
-> Elem< j, T > | |
{ | |
return std::get<j>( std::forward<T>(t) ); | |
} | |
template< size_t ...i, class F, class T > | |
constexpr auto applyIndexList( IndexList<i...>, F f, const T& t ) | |
-> typename std::result_of< F( Elem<i,T>... ) >::type | |
{ | |
return f( std::get<i>(t)... ); | |
} | |
// Safe to overload this way. | |
template< template<size_t> class Fi, size_t ...i, class F, class T > | |
constexpr auto applyIndexList( IndexList<i...>, F f, const T& t ) | |
-> typename std::result_of< F( | |
typename std::result_of< Fi<i>(const T&) >::type... | |
) >::type | |
{ | |
return f( Fi<i>()(t)... ); | |
} | |
template< template<size_t> class Fi, class F, class T, class IL = typename IListFrom<T>::type > | |
constexpr auto applyTuple( F f, const T& t ) | |
-> decltype( applyIndexList<Fi>( IL(), f, t ) ) | |
{ | |
return applyIndexList<Fi>( IL(), f, t ); | |
} | |
template< class F, class T, | |
class IL = typename IListFrom<T>::type > | |
constexpr auto applyTuple( F f, const T& t ) | |
-> decltype( applyIndexList( IL(), f, t ) ) | |
{ | |
return applyIndexList( IL(), f, t ); | |
} | |
// Because std::make_tuple can't be passed | |
// to higher order functions. | |
constexpr struct MakeTuple { | |
template< class ...X > | |
constexpr std::tuple<X...> operator () ( X ...x ) { | |
return std::tuple<X...>( std::move(x)... ); | |
} | |
} tuple{}; | |
// Returns the initial elements. (All but the last.) | |
// init( {1,2,3} ) = {1,2} | |
template< class T, | |
size_t N = std::tuple_size<T>::value, | |
class IL = typename Enumerate< 0, N-1 >::type > | |
constexpr auto init( const T& t ) | |
-> decltype( applyIndexList(IL(),tuple,t) ) | |
{ | |
return applyIndexList( IL(), tuple, t ); | |
} | |
// Returns a new tuple with every value from t except the first. | |
// tail( {1,2,3} ) = {2,3} | |
template< class T, | |
size_t N = std::tuple_size<T>::value, | |
class IL = typename Enumerate< 1, N >::type > | |
constexpr auto tail( const T& t ) | |
-> decltype( applyIndexList(IL(),tuple,t) ) | |
{ | |
return applyIndexList( IL(), tuple, t ); | |
} | |
// Reconstruct t in reverse. | |
template< class T > | |
constexpr auto reverse( const T& t ) | |
-> decltype( applyTuple<RGet>(tuple,t) ) | |
{ | |
return applyTuple< RGet >( tuple, t ); | |
} | |
template< size_t i, size_t ...j, class F, class T > | |
void forEachIndex( IndexList<i,j...>, const F& f, const T& t ) { | |
f( std::get<i>(t) ); | |
forEachIndex( IndexList<j...>(), f, t ); | |
} | |
template< class F, class T > | |
void forEachIndex( IndexList<>, const F& f, const T& t ) { | |
} | |
template< class F, class T > | |
void forEach( const F& f, const T& t ) { | |
constexpr size_t N = std::tuple_size<T>::value; | |
using IL = typename Enumerate<0,N>::type; | |
forEachIndex( IL(), f, t ); | |
} | |
constexpr struct PrintItem { | |
template< class X > | |
void operator () ( const X& x ) const { | |
std::cout << x << ' '; | |
} | |
} printItem{}; | |
constexpr struct PushBack { | |
template< class ...X, class Y > | |
constexpr auto operator () ( std::tuple<X...> t, Y y ) | |
-> std::tuple< X..., Y > | |
{ | |
return std::tuple_cat( std::move(t), tuple(std::move(y)) ); | |
} | |
} pushBack{}; | |
constexpr struct PushFront { | |
template< class ...X, class Y > | |
constexpr auto operator () ( std::tuple<X...> t, Y y ) | |
-> std::tuple< Y, X... > | |
{ | |
return std::tuple_cat( tuple(std::move(y)), std::move(t) ); | |
} | |
} pushFront{}; | |
constexpr auto head = Get<0>(); | |
constexpr auto last = RGet<0>(); | |
// Chain Left. | |
constexpr struct ChainL { | |
template< class F, class X > | |
constexpr X operator () ( const F&, X x ) { | |
return x; | |
} | |
template< class F, class X, class Y, class ...Z > | |
constexpr auto operator () ( const F& b, const X& x, const Y& y, const Z& ...z) | |
-> decltype( (*this)(b, b(x,y), z... ) ) | |
{ | |
return (*this)(b, b(x,y), z... ); | |
} | |
} chainl{}; | |
// Fold Left. | |
constexpr struct FoldL { | |
// Given f and {x,y,z}, returns f( f(x,y), z ). | |
template< class F, class T > | |
constexpr auto operator () ( const F& f, const T& t ) | |
-> decltype( applyTuple(chainl,pushFront(t,f)) ) | |
{ | |
return applyTuple( chainl, pushFront(t,f) ); | |
} | |
} foldl{}; | |
// Fold Right. | |
constexpr struct FoldR { | |
// Given f and {x,y,z}, returns f( f(z,y), x ). | |
template< class F, class T > | |
constexpr auto operator () ( const F& f, const T& t ) | |
-> decltype( foldl(f,reverse(t)) ) | |
{ | |
return foldl( f, reverse(t) ); | |
} | |
} foldr{}; | |
auto ten = foldl( std::plus<int>(), std::make_tuple(1,2,3,4) ); | |
template< class ...X > | |
constexpr auto third_arg( X&& ...x ) | |
-> Elem< 2, std::tuple<X...> > | |
{ | |
return std::get<2>( std::forward_as_tuple(std::forward<X>(x)...) ); | |
} | |
template< class F, class ...X > | |
struct TFunction { | |
F f; | |
std::tuple<X...> applied; // applied arguments. | |
template< class ...Y > | |
constexpr TFunction( F f, Y&& ...y ) | |
: f( std::move(f) ), applied( std::forward<Y>(y)... ) | |
{ | |
} | |
template< class ...Y, class T = std::tuple<X...,Y...> > | |
constexpr T add( Y&& ...y ) { | |
return std::tuple_cat ( | |
applied, | |
std::forward_as_tuple( std::forward<Y>(y)... ) | |
); | |
} | |
template< class ...Y > | |
constexpr auto operator () ( Y&& ...y ) | |
-> typename std::result_of< F( X..., Y... ) >::type | |
{ | |
return applyTuple( f, add(std::forward<Y>(y)...) ); | |
} | |
}; | |
template< class F, class ...X, class R = TFunction<F,X...> > | |
R tfun( F f, X ...x ) { | |
return R( std::move(f), std::move(x)... ); | |
} | |
#include <cmath> | |
// Quadratic root. | |
constexpr struct QRoot { | |
using result = std::pair<float,float>; | |
result operator () ( float a, float b, float c ) { | |
float root = std::sqrt( b*b - 4*a*c ); | |
float den = 2 * a; | |
return std::make_pair( (-b+root)/den, (-b-root)/den ); | |
} | |
} qroot{}; | |
std::ostream& operator << ( std::ostream& os, const QRoot::result r ) { | |
return os << std::get<0>(r) << " or " << std::get<1>(r); | |
} | |
int main() { | |
auto ab = std::make_tuple( 1, 3 ); | |
auto qroot_ab = [&] ( float c ) { | |
return applyTuple( qroot, pushBack(ab,c) ); | |
}; | |
std::cout << "qroot(1,3,-4) = " << qroot_ab(-4) << std::endl; | |
std::cout << "qroot(1,3,-5) = " << qroot_ab(-5) << std::endl; | |
auto bc = std::make_tuple( 3, -4 ); | |
auto qroot_bc = [&] ( float a ) { | |
return applyTuple( qroot, pushFront(bc,a) ); | |
}; | |
std::cout << "qroot(1,3,-4) = " << qroot_bc(1) << std::endl; | |
std::cout << "qroot(1,3,-5) = " << qroot_bc(2) << std::endl; | |
std::cout << "ten = " << ten << std::endl; | |
std::cout << "third_arg(1,2,3,4) = " << third_arg(1,2,3,4) << std::endl; | |
std::cout << "2 + 4 = " | |
<< applyTuple( std::plus<int>(), std::make_tuple(2,4) ) | |
<< std::endl; | |
constexpr auto t = std::make_tuple( 1, 'a', "str" ); | |
std::cout << "t = "; | |
forEach( printItem, t ); | |
std::cout << std::endl; | |
std::cout << "head = " << head(t) << std::endl; | |
std::cout << "last = " << last(t) << std::endl; | |
std::cout << "reverse = "; | |
forEach( printItem, reverse(t) ); | |
std::cout << std::endl; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment