Skip to content

Instantly share code, notes, and snippets.

@AngryLoki
Last active January 30, 2024 16:47
  • Star 31 You must be signed in to star a gist
  • Fork 5 You must be signed in to fork a gist
Star You must be signed in to star a gist
Save AngryLoki/4364512 to your computer and use it in GitHub Desktop.
IES to Cycles addon for new nodetree system! It only works for trunk builds of blender 2.66 and later versions!!! Thread on blenderartists.org: http://blenderartists.org/forum/showthread.php?276063 Old outdated version (no rig) for official 2.66 release (old nodetrees): https://gist.github.com/Lockal/5313485
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
bl_info = {
"name": "IES to Cycles",
"author": "Lockal S.",
"version": (0, 8),
"blender": (2, 6, 7),
"location": "File > Import > IES Lamp Data (.ies)",
"description": "Import IES lamp data to cycles",
"warning": "",
"wiki_url": "",
"tracker_url": "",
"category": "Import-Export"
}
import bpy
import bmesh
import mathutils
import os
from math import pi
from operator import add, truediv
def clamp(x, min, max):
if x < min:
return min
elif x > max:
return max
return x
# Temperature to RGB
# OSL version:
# http://blenderartists.org/forum/showthread.php?270332&p=2268693#post2268693
def t2rgb(t):
if t <= 6500:
a = [0, -2902.1955373783176, -8257.7997278925690]
b = [0, 1669.5803561666639, 2575.2827530017594]
c = [1, 1.3302673723350029, 1.8993753891711275]
else:
a = [1745.0425298314172, 1216.6168361476490, -8257.7997278925690]
b = [-2666.3474220535695, -2173.1012343082230, 2575.2827530017594]
c = [0.55995389139931482, 0.70381203140554553, 1.8993753891711275]
color = map(add, map(truediv, a, map(add, [t] * 3, b)), c)
return [max(0, min(x, 1)) for x in color] + [1]
def simple_interp(k, x, y):
for i in range(len(x)):
if k == x[i]:
return y[i]
elif k < x[i]:
return y[i] + (k - x[i]) * (y[i - 1] - y[i]) / (x[i - 1] - x[i])
def gen_rig_object(name, data):
mesh = bpy.data.meshes.new('lamp rig ' + name)
bm = bmesh.new()
scale = 1.0
first = bm.verts.new((0, 0, data[0][0] * scale))
last = bm.verts.new((0, 0, -data[0][-1] * scale))
v_angles = [pi * (i+1)/(len(data[0])-1) for i in range(len(data[0])-2)]
h_angles = [2 * pi * i/(len(data)) for i in range(len(data))]
for h_angle, angle_data in zip(h_angles, data):
verts = []
for v_angle, value in zip(v_angles, angle_data[1:-1]):
vec = mathutils.Vector((0.0, 0.0, 1.0))
vec.rotate(mathutils.Euler((v_angle, 0.0, h_angle - pi / 2), 'XYZ'))
verts.append(bm.verts.new((vec * value * scale)))
for i in range(len(verts)-1):
bm.edges.new((verts[i], verts[i+1]))
bm.edges.new((first, verts[0]))
bm.edges.new((last, verts[-1]))
bm.to_mesh(mesh)
mesh.update()
ob = bpy.data.objects.new('lamp rig ' + name, mesh)
ob.location = bpy.context.scene.cursor_location
bpy.context.scene.objects.link(ob)
return ob.name
def reinterpolate_line(x_data, y_data, new_width):
new_x_data = [i/(new_width-1) for i in range(new_width)]
new_y_data = [simple_interp(k, x_data, y_data) for k in new_x_data]
return new_y_data
# default number of vertices for vertical and horizontal directions in rig
rig_v = {'TYPE90': 10, 'TYPE180': 20}
rig_h = {'TYPE90': 16, 'TYPE180': 16}
def gen_vcurves_rig(name, x_data, y_data, cone_type):
new_data = [reinterpolate_line(x_data, y_data, rig_v[cone_type])] * rig_h[cone_type]
return gen_rig_object(name, new_data)
def reinterpolate_2d(data, size, h_type):
if h_type == 'TYPE90' or h_type == 'TYPE180':
data += list(reversed(data))[1:]
if h_type == 'TYPE90':
data += list(reversed(data))[1:]
if len(data) == 1:
data = [data[0]] * 2
for length in size:
x_data = [i / (len(data[0]) - 1) for i in range(len(data[0]))]
for i in range(len(data)):
data[i] = reinterpolate_line(x_data, data[i], length)
data = list(zip(*data))
return data
def gen_2d_rig(name, data, cone_type, h_type):
# reinterpolate a deep copy of data
new_size = [rig_v[cone_type], rig_h[cone_type]]
new_data = reinterpolate_2d(data[:], new_size, h_type)
return gen_rig_object(name, new_data)
def read_lamp_data(log, filename, generate_rig, multiplier, image_format, color_temperature):
# log({'INFO'}, 'Start IES import')
rig_name = ''
version_table = {
'IESNA:LM-63-1986': 1986,
'IESNA:LM-63-1991': 1991,
'IESNA91': 1991,
'IESNA:LM-63-1995': 1995,
'IESNA:LM-63-2002': 2002,
}
name = os.path.splitext(os.path.split(filename)[1])[0]
file = open(filename, 'rt', encoding='cp1252')
content = file.read()
file.close()
s, content = content.split('\n', 1)
if s in version_table:
version = version_table[s]
else:
log({'INFO'}, "IES file does not specify any version")
version = None
keywords = dict()
while content and not content.startswith('TILT='):
s, content = content.split('\n', 1)
if s.startswith('['):
endbracket = s.find(']')
if endbracket != -1:
keywords[s[1:endbracket]] = s[endbracket + 1:].strip()
s, content = content.split('\n', 1)
if not s.startswith('TILT'):
log({'ERROR'}, "TILT keyword not found, check your IES file")
return {'CANCELLED'}
# fight against ill-formed files
file_data = content.replace(',', ' ').split()
lamps_num = int(file_data[0])
if lamps_num != 1:
log({'INFO'}, "Only 1 lamp is supported, %d in IES file" % lamps_num)
lumens_per_lamp = float(file_data[1])
candela_mult = float(file_data[2])
v_angles_num = int(file_data[3])
h_angles_num = int(file_data[4])
if not v_angles_num or not h_angles_num:
log({'ERROR'}, "TILT keyword not found, check your IES file")
return {'CANCELLED'}
photometric_type = int(file_data[5])
units_type = int(file_data[6])
if units_type not in [1, 2]:
log({'INFO'}, "Units type should be either 1 (feet) or 2 (meters)")
width, length, height = map(float, file_data[7:10])
ballast_factor = float(file_data[10])
future_use = float(file_data[11])
if future_use != 1.0:
log({'INFO'}, "Invalid future use field")
input_watts = float(file_data[12])
v_angs = [float(s) for s in file_data[13:13 + v_angles_num]]
h_angs = [float(s) for s in file_data[13 + v_angles_num:
13 + v_angles_num + h_angles_num]]
if v_angs[0] == 0 and v_angs[-1] == 90:
lamp_cone_type = 'TYPE90'
elif v_angs[0] == 0 and v_angs[-1] == 180:
lamp_cone_type = 'TYPE180'
else:
log({'INFO'}, "Lamps with vertical angles (%d-%d) are not supported" %
(v_angs[0], v_angs[-1]))
lamp_cone_type = 'TYPE180'
if len(h_angs) == 1 or abs(h_angs[0] - h_angs[-1]) == 360:
lamp_h_type = 'TYPE360'
elif abs(h_angs[0] - h_angs[-1]) == 180:
lamp_h_type = 'TYPE180'
elif abs(h_angs[0] - h_angs[-1]) == 90:
lamp_h_type = 'TYPE90'
else:
log({'INFO'}, "Lamps with horizontal angles (%d-%d) are not supported" %
(h_angs[0], h_angs[-1]))
lamp_h_type = 'TYPE360'
# print(h_angs, lamp_h_type)
# read candela values
offset = 13 + len(v_angs) + len(h_angs)
candela_num = len(v_angs) * len(h_angs)
candela_values = [float(s) for s in file_data[offset:offset + candela_num]]
# reshape 1d array to 2d array
candela_2d = list(zip(*[iter(candela_values)] * len(v_angs)))
if image_format == 'VCURVES':
# scale vertical angles to [0, 1] range
x_rig_data = [x / v_angs[-1] for x in v_angs]
x_data = [0.5 + 0.5 * x for x in x_rig_data]
# approximate multidimentional lamp data to single dimention
y_data = [sum(x) / len(x) for x in zip(*candela_2d)]
y_data_max = max(y_data)
intensity = max(500, min(y_data_max * multiplier * candela_mult, 5000))
lamp_rig_y_data = [y / y_data_max for y in y_data]
lamp_y_data = [0.5 + 0.5 * y for y in lamp_rig_y_data]
lamp_data = list(zip(x_data, lamp_y_data))
if generate_rig:
rig_name = gen_vcurves_rig(name, x_rig_data, lamp_rig_y_data, lamp_cone_type)
return add_img(name=name,
intensity=intensity,
lamp_cone_type=lamp_cone_type,
lamp_h_type=lamp_h_type,
image_format=image_format,
color_temperature=color_temperature,
lamp_data=lamp_data,
rig_name=rig_name)
# check if angular offsets are the same
v_d = [v_angs[i] - v_angs[i - 1] for i in range(1, len(v_angs))]
h_d = [h_angs[i] - h_angs[i - 1] for i in range(1, len(h_angs))]
v_same = all(abs(v_d[i] - v_d[i - 1]) < 0.001 for i in range(1, len(v_d)))
h_same = all(abs(h_d[i] - h_d[i - 1]) < 0.001 for i in range(1, len(h_d)))
if not v_same:
vmin, vmax = v_angs[0], v_angs[-1]
divisions = int((vmax - vmin) / max(1, min(v_d)))
step = (vmax - vmin) / divisions
# Approximating non-uniform vertical angles with step = step
new_v_angs = [vmin + i * step for i in range(divisions + 1)]
new_candela_2d = [[simple_interp(ang, v_angs, line)
for ang in new_v_angs] for line in candela_2d]
# print(candela_2d)
# print(new_candela_2d)
v_angs = new_v_angs
candela_2d = new_candela_2d
if not h_same:
log({'INFO'}, "Different offsets for horizontal angles!")
# normalize candela values
maxval = max([max(row) for row in candela_2d])
candela_2d = [[val / maxval for val in row] for row in candela_2d]
# generate rig object
if generate_rig:
rig_name = gen_2d_rig(name, candela_2d, lamp_cone_type, lamp_h_type)
# add extra left and right rows to bypass cycles repeat of uv coordinates
candela_2d = [[line[0]] + list(line) + [line[-1]] for line in candela_2d]
if len(candela_2d) > 1:
candela_2d = [candela_2d[0]] + candela_2d + [candela_2d[-1]]
# flatten 2d array to 1d
candela_values = [y for x in candela_2d for y in x]
intensity = max(500, min(maxval * multiplier * candela_mult, 5000))
if image_format == 'PNG':
float_buffer = False
filepath = '//' + name + '.png'
else:
float_buffer = True
filepath = '//' + name + '.exr'
img = bpy.data.images.new(name, len(candela_2d[0]), len(candela_2d),
float_buffer=float_buffer)
for i, val in enumerate(candela_values):
img.pixels[4 * i] = img.pixels[4 * i + 1] = img.pixels[4 * i + 2] = val
bpy.ops.import_lamp.gen_exr('INVOKE_DEFAULT',
image_name=img.name,
intensity=intensity,
lamp_cone_type=lamp_cone_type,
lamp_h_type=lamp_h_type,
image_format=image_format,
color_temperature=color_temperature,
filepath=filepath,
rig_name=rig_name)
return {'FINISHED'}
def scale_coords(nt, sock_in, sock_out, size):
add = nt.nodes.new('ShaderNodeMath')
add.operation = 'ADD'
nt.links.new(add.inputs[0], sock_in)
add.inputs[1].default_value = 1.0 / (size - 2)
mul = nt.nodes.new('ShaderNodeMath')
mul.operation = 'MULTIPLY'
nt.links.new(mul.inputs[0], add.outputs[0])
mul.inputs[1].default_value = (size - 2.0) / size
nt.links.new(sock_out, mul.outputs[0])
def add_h_angles(nt, x, y, out, lamp_h_type):
na = nt.nodes.new('ShaderNodeMath')
na.operation = 'MULTIPLY'
nt.links.new(na.inputs[0], x)
nt.links.new(na.inputs[1], x)
nb = nt.nodes.new('ShaderNodeMath')
nb.operation = 'MULTIPLY'
nt.links.new(nb.inputs[0], y)
nt.links.new(nb.inputs[1], y)
nc = nt.nodes.new('ShaderNodeMath')
nc.operation = 'ADD'
nt.links.new(nc.inputs[0], na.outputs[0])
nt.links.new(nc.inputs[1], nb.outputs[0])
nd = nt.nodes.new('ShaderNodeMath')
nd.operation = 'POWER'
nt.links.new(nd.inputs[0], nc.outputs[0])
nd.inputs[1].default_value = 0.5
nf = nt.nodes.new('ShaderNodeMath')
nf.operation = 'ADD'
nt.links.new(nf.inputs[0], x)
nt.links.new(nf.inputs[1], nd.outputs[0])
ng = nt.nodes.new('ShaderNodeMath')
ng.operation = 'DIVIDE'
nt.links.new(ng.inputs[0], y)
nt.links.new(ng.inputs[1], nf.outputs[0])
nh = nt.nodes.new('ShaderNodeMath')
nh.operation = 'ARCTANGENT'
nt.links.new(nh.inputs[0], ng.outputs[0])
nj = nt.nodes.new('ShaderNodeMath')
nj.operation = 'DIVIDE'
nt.links.new(nj.inputs[0], nh.outputs[0])
# add abs() cascade for lamps with horizontal angles from 0 to 180
if lamp_h_type == 'TYPE90' or lamp_h_type == 'TYPE180':
repeat_times = 4 if lamp_h_type == 'TYPE90' else 2
nj.inputs[1].default_value = pi / repeat_times
nk = nt.nodes.new('ShaderNodeMath')
nk.operation = 'MULTIPLY'
nt.links.new(nj.outputs[0], nk.inputs[0])
nk.inputs[1].default_value = -1.0
nl = nt.nodes.new('ShaderNodeMath')
nl.operation = 'MAXIMUM'
nt.links.new(nj.outputs[0], nl.inputs[0])
nt.links.new(nk.outputs[0], nl.inputs[1])
nt.links.new(nl.outputs[0], out)
else:
nj.inputs[1].default_value = pi
nt.links.new(nj.outputs[0], out)
def add_uv_mapping_node(nt, input, output, img_size):
nt_map = nt.nodes.new('ShaderNodeMapping')
for i in range(2):
nt_map.translation[i] = 1 / (img_size[i] - 2)
nt_map.scale[i] = (img_size[i] - 2) / img_size[i]
nt.links.new(nt_map.inputs[0], input)
nt.links.new(nt_map.outputs[0], output)
def add_img(name, intensity, lamp_cone_type, lamp_h_type, image_format,
color_temperature, filepath=None, lamp_data=None, rig_name=None):
if image_format != 'VCURVES':
img = bpy.data.images[name]
img.filepath_raw = filepath
img.file_format = image_format
img.save()
nt = bpy.data.node_groups.new("Lamp " + name, 'ShaderNodeTree')
nt.inputs.new('NodeSocketVector', "Vector")
nt.inputs.new('NodeSocketFloat', "Strength")
nt.inputs.new('NodeSocketFloat', "Size")
nt.outputs.new('NodeSocketFloat', "Intensity")
nt_input = nt.nodes.new('NodeGroupInput')
nt_output = nt.nodes.new('NodeGroupOutput')
n0 = nt.nodes.new('ShaderNodeSeparateRGB')
ne = nt.nodes.new('ShaderNodeMath')
ne.operation = 'ARCCOSINE'
nt.links.new(ne.inputs[0], n0.outputs[2])
ni = nt.nodes.new('ShaderNodeMath')
ni.operation = 'DIVIDE'
nt.links.new(ni.inputs[0], ne.outputs[0])
if lamp_cone_type == 'TYPE180':
ni.inputs[1].default_value = pi
else: # TYPE90:
ni.inputs[1].default_value = pi / 2
if image_format == 'VCURVES':
nt_data = nt.nodes.new('ShaderNodeVectorCurve')
nt.links.new(nt_data.inputs[1], ni.outputs[0])
for x, y in lamp_data[:-1]:
pt = nt_data.mapping.curves[0].points.new(x, y)
pt.handle_type = 'VECTOR'
if lamp_cone_type == 'TYPE180':
nt_data.mapping.curves[0].points[-1].location[1] = lamp_data[-1][1]
nt_data.mapping.curves[0].points[-1].handle_type = 'VECTOR'
else:
pt = nt_data.mapping.curves[0].points.new(0.9999, lamp_data[-1][1])
pt.handle_type = 'VECTOR'
nt_data.mapping.curves[0].points[-1].location[1] = 0.5 # no light
nt_data.mapping.curves[0].points[-1].handle_type = 'VECTOR'
nt_data_sep = nt.nodes.new('ShaderNodeSeparateRGB')
nt.links.new(nt_data_sep.inputs[0], nt_data.outputs[0])
nt_data_out = nt_data_sep.outputs[0]
else: # image-based
nt_combine = nt.nodes.new('ShaderNodeCombineRGB')
# use (x+a)*b cascade for Nx1 images
if img.size[1] == 1:
scale_coords(nt, ni.outputs[0], nt_combine.inputs[0], img.size[0])
else:
nt.links.new(ni.outputs[0], nt_combine.inputs[0])
if img.size[1] > 1:
add_h_angles(nt, n0.outputs[0], n0.outputs[1], nt_combine.inputs[1], lamp_h_type)
nt_data = nt.nodes.new('ShaderNodeTexImage')
nt_data.image = img
nt_data.color_space = 'NONE'
if img.size[1] > 1:
add_uv_mapping_node(nt, nt_combine.outputs[0], nt_data.inputs[0], img.size)
else:
nt.links.new(nt_combine.outputs[0], nt_data.inputs[0])
nt_data_out = nt_data.outputs[0]
nt.links.new(n0.inputs[0], nt_input.outputs[0])
nt_intensity = nt.nodes.new('ShaderNodeMath')
nt_intensity.operation = 'MULTIPLY'
nt.links.new(nt_input.outputs[1], nt_intensity.inputs[0])
nt.links.new(nt_input.outputs[2], nt_intensity.inputs[1])
nmult = nt.nodes.new('ShaderNodeMath')
nmult.operation = 'MULTIPLY'
nt.links.new(nt_intensity.outputs[0], nmult.inputs[0])
nt.links.new(nt_output.inputs[0], nmult.outputs[0])
if lamp_cone_type == 'TYPE180' or image_format == 'VCURVES':
nt.links.new(nmult.inputs[1], nt_data_out)
else: # TYPE90
nlt = nt.nodes.new('ShaderNodeMath')
nlt.operation = 'LESS_THAN'
nt.links.new(nlt.inputs[0], ni.outputs[0])
nlt.inputs[1].default_value = 1.0
nif = nt.nodes.new('ShaderNodeMath')
nif.operation = 'MULTIPLY'
nt.links.new(nif.inputs[0], nt_data_out)
nt.links.new(nif.inputs[1], nlt.outputs[0])
nt.links.new(nmult.inputs[1], nif.outputs[0])
lampdata = bpy.data.lamps.new('Lamp ' + name, 'POINT')
lampdata.shadow_soft_size = 0.01
lampdata.use_nodes = True
lnt = lampdata.node_tree
lnt_grp = lnt.nodes.new('ShaderNodeGroup')
lnt_grp.node_tree = nt
for node in lnt.nodes:
if node.bl_idname == 'ShaderNodeEmission':
emission_node = node
break
emission_node.inputs[0].default_value = t2rgb(color_temperature)
lnt.links.new(emission_node.inputs[1], lnt_grp.outputs[0])
lnt_grp.inputs[1].default_value = intensity
lnt_grp.inputs[2].default_value = 1.0
lnt_map = lnt.nodes.new('ShaderNodeMapping')
lnt_map.rotation[0] = pi
lnt.links.new(lnt_grp.inputs[0], lnt_map.outputs[0])
if rig_name:
lampdata["rigged_ies"] = True
rig_object = bpy.data.objects[rig_name]
# add RGBA color drivers
fcurves = lnt.driver_add(emission_node.inputs[0].path_from_id("default_value"))
for i, fcurve in enumerate(fcurves):
var = fcurve.driver.variables.new()
var.targets[0].id = rig_object
var.targets[0].data_path = '["ies_settings"]["color"][%d]' % i
fcurve.driver.type = 'SUM'
rig_object.ies_settings.color = t2rgb(color_temperature)[0:3]
# add factor -> intensity driver
strength_fc = lnt.driver_add(lnt_grp.inputs[1].path_from_id("default_value"))
strength_fc.driver.type = 'SUM'
strength_var = strength_fc.driver.variables.new()
strength_var.targets[0].id = rig_object
strength_var.targets[0].data_path = '["ies_settings"]["strength_mult"]'
# add size -> intensity driver
strength_fc = lnt.driver_add(lnt_grp.inputs[2].path_from_id("default_value"))
strength_fc.driver.type = 'SUM'
strength_var = strength_fc.driver.variables.new()
strength_var.type = 'TRANSFORMS'
strength_var.targets[0].id = rig_object
strength_var.targets[0].transform_type = 'SCALE_Z'
# set and recalculate intensity
rig_object.ies_settings.strength_mult = intensity
# add rotation drivers
fcurves = lnt.driver_add(lnt_map.path_from_id('rotation'))
fc_types = ['ROT_X', 'ROT_Y', 'ROT_Z']
fc_coeffs = [[0.0, 1.0], [0.0, 1.0], [pi, -1.0]]
for fcurve, trans_type, coeffs in zip(fcurves, fc_types, fc_coeffs):
v = fcurve.driver.variables.new()
v.type = 'TRANSFORMS'
v.targets[0].id = rig_object
v.targets[0].transform_type = trans_type
fcurve.driver.type = 'SUM'
fcurve.modifiers[0].coefficients = coeffs
# recalculate driver data by changing rig angle
rig_object.rotation_euler.x = pi
lnt_geo = lnt.nodes.new('ShaderNodeNewGeometry')
lnt.links.new(lnt_map.inputs[0], lnt_geo.outputs[1])
lamp = bpy.data.objects.new("Lamp " + name, lampdata)
bpy.context.scene.objects.link(lamp)
for ob in bpy.data.objects:
ob.select = False
lamp.select = True
if rig_name:
rig_object = bpy.data.objects[rig_name]
lamp.parent = rig_object
lamp.lock_location[:] = [True] * 3
lamp.lock_rotation[:] = [True] * 3
lamp.lock_scale[:] = [True] * 3
# lamp.hide_select = True
rig_object.select = True
bpy.context.scene.objects.active = rig_object
else:
lamp.location = bpy.context.scene.cursor_location
bpy.context.scene.objects.active = lamp
return {'FINISHED'}
from bpy_extras.io_utils import ImportHelper, ExportHelper
from bpy.props import StringProperty, FloatProperty, EnumProperty, IntProperty, BoolProperty
from bpy.types import Operator
format_prop_items = (
('VCURVES', "Vector Curves", "Save lamp data in Vector Curves node"),
('OPEN_EXR', "EXR", "Save images to EXR format (up to 5 textures)"),
('PNG', "PNG", "Save images to PNG format")
)
format_prop_default = 'VCURVES'
# format_prop_default = 'PNG'
temperature_prop_items = (
('T1700', "1700K: Match flame", "Match flame"),
('T1850', "1850K: Candle light", "Candle light or sunlight at sunrise or sunset"),
('T2700', "2700K: Very Warm White", "Similar light to \"normal\" incandescent bulbs, giving a warm \"cosy\" feel"),
('T3000', "3000K: Warm White", "The colour of most halogen lamps. Appears slightly \"whiter\" than ordinary incandescent lamps"),
('T3200', "3200K: Studio Lamp", "Studio Lamps/Photofloods"),
('T3500', "3500K: White", "The standard colour for many fluorescent and compact fluorescent tubes"),
('T4000', "4000K: Cool White", "Gives a more clinical or \"high tech\" feel"),
('T4100', "4100K: Moonlight", "Moonlight, xenon arc lamp"),
('T5000', "5000K: Horizon daylight", "Horizon daylight, tubular fluorescent lamps or Cool White/Daylight compact fluorescent lamps (CFL)"),
('T5600', "5600K: Nominal Sunlight", "Nominal Sunlight, mid day during mid summer"),
('T6000', "6000K: Daylight", "Fluorescent or compact fluorescent lamps simulating natural daylight"),
('T6500', "6500K: Cool Daylight", "Extremely \"white\" light used in specialist daylight lamps"),
('T7000', "7000K: LCD/CRT screen", "LCD or CRT screen"),
('T8000', "8000K: LCD/CRT screen", "LCD or CRT screen"),
('T9000', "9000K: LCD/CRT screen", "LCD or CRT screen"),
('T20000', "20000K: Open Sky", "Clear blue poleward sky")
)
temperature_prop_default = 'T6500'
class ImportIES(Operator, ImportHelper):
"""Import IES lamp data and generate a node group for cycles"""
bl_idname = "import_lamp.ies"
bl_label = "Import IES to Cycles"
filter_glob = StringProperty(default="*.ies", options={'HIDDEN'})
generate_rig = BoolProperty(
name="Generate Rig",
description="Generate rig for lamp",
default=True,
)
lamp_strength = FloatProperty(
name="Strength",
description="Multiplier for lamp strength",
default=1.0,
)
image_format = EnumProperty(
name="Convert to",
items=format_prop_items,
default=format_prop_default,
)
color_temperature = EnumProperty(
name="Color Temperature",
description="Color temperature of lamp",
items=temperature_prop_items,
default=temperature_prop_default,
)
def execute(self, context):
return read_lamp_data(self.report, self.filepath, self.generate_rig,
self.lamp_strength, self.image_format,
int(self.color_temperature[1:]))
class ExportLampEXR(Operator, ExportHelper):
"""Export IES lamp data in EXR format"""
bl_idname = "import_lamp.gen_exr"
bl_label = "Export lamp to image"
image_name = StringProperty(options={'HIDDEN'})
intensity = FloatProperty(options={'HIDDEN'})
lamp_cone_type = EnumProperty(
items=(('TYPE90', "0-90", ""),
('TYPE180', "0-180", "")),
options={'HIDDEN'}
)
lamp_h_type = EnumProperty(
items=(('TYPE90', "0-90", ""),
('TYPE180', "0-180", ""),
('TYPE360', "0-360", "")),
options={'HIDDEN'}
)
image_format = EnumProperty(items=format_prop_items, options={'HIDDEN'})
color_temperature = IntProperty(options={'HIDDEN'})
rig_name = StringProperty(options={'HIDDEN'})
use_filter_image = True
def execute(self, context):
return add_img(name=self.image_name,
intensity=self.intensity,
lamp_cone_type=self.lamp_cone_type,
lamp_h_type=self.lamp_h_type,
image_format=self.image_format,
color_temperature=self.color_temperature,
filepath=self.filepath,
rig_name=self.rig_name)
def invoke(self, context, event):
if self.image_format == 'PNG':
self.filename_ext = ".png"
else:
self.filename_ext = ".exr"
return ExportHelper.invoke(self, context, event)
def menu_func(self, context):
self.layout.operator(ImportIES.bl_idname, text="IES Lamp Data (.ies)")
# Rig panel and data
class IesRigSettings(bpy.types.PropertyGroup):
strength_mult = bpy.props.FloatProperty(name="Strength Multiplier",
default=1, min=0, max=1e4)
color = bpy.props.FloatVectorProperty(name="Color", subtype="COLOR")
class IesRigPanel(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_label = "Lamp Properties"
@classmethod
def poll(self, context):
try:
return context.active_object.children[0].data['rigged_ies']
except:
return False
def draw(self, context):
ob = context.active_object
self.layout.prop(ob.ies_settings, "strength_mult")
self.layout.prop(ob.ies_settings, "color")
registered_classes = [IesRigSettings, IesRigPanel, ImportIES, ExportLampEXR]
def register():
for cls in registered_classes:
bpy.utils.register_class(cls)
bpy.types.Object.ies_settings = bpy.props.PointerProperty(type=IesRigSettings)
bpy.types.INFO_MT_file_import.append(menu_func)
def unregister():
for cls in registered_classes:
bpy.utils.unregister_class(cls)
bpy.types.INFO_MT_file_import.remove(menu_func)
if __name__ == "__main__":
register()
# test call
# bpy.ops.import_lamp.ies('INVOKE_DEFAULT')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment