Last active
January 20, 2018 21:19
-
-
Save mages/4454493 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Copyright Markus Gesmann, January 2013 | |
## See: http://lamages.blogspot.co.uk/2013/01/reserving-based-on-log-incremental.html | |
## Also: www.actuaries.org.uk/system/files/documents/pdf/crm2-D5.pdf | |
## | |
## Incremental claims triangle | |
tri <- t(matrix( | |
c(11073, 6427, 1839, 766, | |
14799, 9357, 2344, NA, | |
15636, 10523, NA, NA, | |
16913, NA, NA, NA), | |
nc=4, dimnames=list(origin=0:3, dev=0:3))) | |
m <- dim(tri)[1]; n <- dim(tri)[2] | |
dat <- data.frame( | |
origin=rep(0:(m-1), n), | |
dev=rep(0:(n-1), each=m), | |
value=as.vector(tri)) | |
## Add dimensions as factors | |
dat <- with(dat, data.frame(origin, dev, cal=origin+dev, | |
value, logvalue=log(value), | |
originf=factor(origin), | |
devf=as.factor(dev), | |
calf=as.factor(origin+dev))) | |
rownames(dat) <- with(dat, paste(origin, dev, sep="-")) | |
dat <- dat[order(dat$origin),] | |
dat | |
Fit <- lm(logvalue ~ originf + devf + 0, data=dat) | |
summary(Fit) | |
# Resdiual plots | |
op <- par(mfrow=c(2,2)) | |
attach(model.frame(Fit)) | |
plot.default(rstandard(Fit) ~ originf, | |
main="Residuals vs. origin years") | |
abline(h=0, lty=2) | |
plot.default(rstandard(Fit) ~ devf, | |
main="Residuals vs. dev. years") | |
abline(h=0, lty=2) | |
with(na.omit(dat), | |
plot.default(rstandard(Fit) ~ calf, | |
main="Residuals vs. payments years")) | |
abline(h=0, lty=2) | |
plot.default(rstandard(Fit) ~ logvalue, | |
main="Residuals vs. fitted") | |
abline(h=0, lty=2) | |
detach(model.frame(Fit)) | |
par(op) | |
# Model design matrix | |
dm <- model.matrix(formula(Fit), dat=model.frame(Fit)) | |
dm | |
## Future design matrix | |
fdm <- model.matrix( ~ originf + devf + 0, data=dat[is.na(dat$value),]) | |
fdm | |
varcovar <- fdm %*% vcov(Fit) %*% t(fdm) | |
## fdm %*% solve(t(dm)%*%dm) %*% t(fdm) *sigma^2, or shorter | |
round(varcovar, 4) | |
sigma <- summary(Fit)$sigma | |
sigma | |
Var <- varcovar + sigma^2 | |
VarY <- Var[row(Var)==col(Var)] | |
Y <- fdm %*% coef(Fit) | |
# predict(Fit, newdata=dat[is.na(dat$value), c("originf", "devf")]) | |
P <- exp(Y + VarY/2) | |
VarP <- exp(2*Y + VarY)*(exp(VarY)-1) | |
seP <- sqrt(VarP) | |
i <- fdm %*% c((1:m)-1, rep(0, (n-1))) | |
j <- fdm %*% c(rep(0, (m-1)), (1:n)-1) | |
Results <- data.frame(i,j, Y, VarY, P, VarP, seP) | |
Results ## Page D5.13 | |
newData <- dat[is.na(dat$logvalue), c("originf", "devf")] | |
Pred <- predict(Fit, newdata=newData, se.fit=TRUE) | |
Y <- Pred$fit | |
VarY <- Pred$se.fit^2 + Pred$residual.scale^2 | |
fdm <- model.matrix(~ originf + devf + 0, data=newData) | |
lower.tri <- xtabs(P ~ i+j, dat=Results) | |
Full.Incr.Triangle <- tri | |
Full.Incr.Triangle[row(tri) > (nrow(tri) + 1 - col(tri))] <- | |
lower.tri[row(lower.tri) > (nrow(lower.tri) - col(lower.tri))] | |
Full.Cum.Triangle <- apply(Full.Incr.Triangle, 1, cumsum) | |
Full.Cum.Triangle | |
CoVar <- sweep(sweep((exp(varcovar)-1) , 1, P, "*"), 2, P, "*") | |
CoVar[col(CoVar)==row(CoVar)] <- 0 | |
round(CoVar,0) | |
OverallVar <- sum(CoVar) + sum(VarP) | |
Total.SE <- sqrt(OverallVar) | |
Total.SE | |
Overall.Reserve <- sum(lower.tri) | |
Overall.Reserve | |
Total.SE / Overall.Reserve | |
## Compare to Mack-Chain-Ladder | |
library(ChainLadder) | |
M <- MackChainLadder(incr2cum(tri), est.sigma="Mack") | |
M | |
## Second example | |
dat <- data.frame( | |
origin=rep(0:6, each=7), | |
dev=rep(0:6, 7), | |
value= c(3511, 3215, 2266, 1712, 1059, 587, 340, | |
4001, 3702, 2278, 1180, 956, 629, NA, | |
4355, 3932, 1946, 1522, 1238, NA, NA, | |
4295, 3455, 2023, 1320, NA, NA, NA, | |
4150, 3747, 2320, NA, NA, NA, NA, | |
5102, 4548, NA, NA, NA, NA, NA, | |
6283, NA, NA, NA, NA, NA, NA)) | |
dat <- with(dat, | |
data.frame(origin, dev, cal=origin+dev, | |
value, logvalue=log(value), | |
a6 = ifelse(origin == 6, 1, 0), | |
a5 = ifelse(origin == 5, 1, 0), | |
d = ifelse(dev < 1, 1, 0), | |
s = ifelse(dev < 1, 0, dat$dev))) | |
summary(Fit <- lm(logvalue ~ a5 + a6 + d + s, data=na.omit(dat))) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment