Skip to content

Instantly share code, notes, and snippets.

@lucastheis
Last active December 11, 2015 05:48
import sys
from matplotlib.pyplot import *
from numpy import *
from numpy.random import *
def autocorr(X, N, d=1):
"""
Estimates autocorrelation from a sample of a possibly multivariate
stationary Markov chain.
"""
X = X - mean(X, 1).reshape(-1, 1)
v = mean(sum(square(X), 0))
# autocovariance
A = [v]
for t in range(1, N + 1, d):
A.append(mean(sum(X[:, :-t] * X[:, t:], 0)))
# normalize by variance
return hstack(A) / v
def main(argv):
ion()
# hyperparameters
dim = 4
num_samples = 10000
sigmas = arange(0.2, 3.0, 0.05)
for sigma in sigmas:
### JOINT ACCEPT/REJECT
X = randn(dim, num_samples)
for i in range(1, num_samples):
# propose step
X[:, i] = X[:, i - 1] + sigma * X[:, i]
# accept/reject step
if rand() > exp(0.5 * (sum(square(X[:, i - 1]), 0) - sum(square(X[:, i]), 0))):
X[:, i] = X[:, i - 1]
### INDEPENDENT ACCEPT/REJECT
Y = randn(dim, num_samples)
for i in range(1, num_samples):
# propose steps
Y[:, i] = Y[:, i - 1] + sigma * Y[:, i]
# accept/reject steps
for j in range(dim):
if rand() > exp(0.5 * (square(Y[j, i - 1]) - square(Y[j, i]))):
Y[j, i] = Y[j, i - 1]
plot(autocorr(X, 100), 'r')
plot(autocorr(Y, 100), 'b')
draw()
xlabel('Time')
ylabel('Correlation')
title('Autocorrelation')
legend(['Jointly', 'Independently'], loc='upper right')
raw_input()
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment