Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/63257d60ff4cf92f42e9fcd714e26508 to your computer and use it in GitHub Desktop.
Save anonymous/63257d60ff4cf92f42e9fcd714e26508 to your computer and use it in GitHub Desktop.
Изобрази в виде схем состоящих из точек

Изобрази в виде схем состоящих из точек


Изобрази в виде схем состоящих из точек



"ИЗОБРАЗИТЕ В ТЕТРАДИ В ВИДЕ СХЕМЫ СОСТОЯЩЕЙ ИЗ ТОЧЕК И ОТРЕЗКОВ ИХ СОЕДИНЯЩИХ СИТУАЦИЮ КОТОРАЯ ОПИСАНА В ФОРМУЛИРОВКЕ ЗАДАЧИ .СКОЛЬКО КАРАНДАШЕЙ В 2-Х
Как читать электрические схемы
Для описания строения различных систем, состоящих из связанных между собой элементов, часто используют графические схемы, изображая элементы точками (кружками, - презентация


























Электротехника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления электрической энергии. Электроника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления информации. Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники и электроники. Электрическая цепь - это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока. Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы. Источники энергии , то есть устройства, вырабатывающие электрический ток генераторы, термоэлементы, фотоэлементы, химические элементы. Приемники, или нагрузка, то есть устройства, потребляющие электрический ток электродвигатели, электролампы, электрические механизмы и т. Проводники, а также различная коммутационная аппаратура выключатели, реле, контакторы и т. Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I. Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i. Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток. Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии. Электрическую цепь называют линейной, если ни один параметр цепи не зависит от величины или направления тока, или напряжения. Электрическая цепь является нелинейной, если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения. Электрическая схема - это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. Для облегчения анализа электрическую цепь заменяют схемой замещения. Схема замещения - это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов. Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость. В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление. Сопротивление в схеме замещения изображается следующим образом:. Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Полагают, что индуктивностью обладают только индуктивные катушки. Индуктивностью других элементов электрической цепи пренебрегают. Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают. Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС - это источник, характеризующийся электродвижущей силой и внутренним сопротивлением. Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю. Ri - внутреннее сопротивление источника ЭДС. Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе. Возможен другой путь идеализации источника: Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью. Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС. Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока. Различают разветвленные и неразветвленные схемы. Сопротивления соединительных проводов принимают равными нулю. Разветвленная схема - это сложная комбинация соединений пассивных и активных элементов. Место соединения двух и более ветвей электрической цепи называется узлом. Узел, в котором сходятся две ветви, называется устранимым. Узел является неустранимым, если в нем соединены три и большее число ветвей. Узел в схеме обозначается точкой. Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением. Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром. В зависимости от нагрузки различают следующие режимы работы: При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений. Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки. Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным. Согласованный режим - это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления. Падением напряжения на сопротивлении называется произведение тока, протекающего через сопротивление, на величину этого сопротивления. Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях первый закон Кирхгофа и баланса напряжений на замкнутых участках цепи второй закон Кирхгофа. В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:. Токам, направленным к узлу, присвоим знак "плюс", а токам, направленным от узла - знак "минус". Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре. Возьмем схему на рис. Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком "плюс", если направления их совпадают с направлением обхода контура, и со знаком "минус", если не совпадают. При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви. Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви рис. Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке. ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением тока и со знаком "минус", если не совпадает. Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются. Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают. Падения напряжений на сопротивлениях определяются по формулам. В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи. Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов. В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях. Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов. Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости. Пусть электрическая схема содержит три параллельно включенных сопротивления. Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента. Возьмем схему, состоящую из двух параллельно включенных сопротивлений рис. Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях. Напряжение на входе схемы. Токи в параллельных ветвях. Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей. Встречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя. Если же заменить треугольник сопротивлений R1-R2-R3, включенных между узлами , трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы , эквивалентное сопротивление полученной схемы легко определяется. В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:. Эквивалентное соединение полученной схемы определяется по формуле. Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник. Рассмотрим схему на рис. Преобразование звезды сопротивлений в эквивалентный треугольник. Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося противолежащего луча. Сопротивления сторон треугольника определяются по формулам:. Расчет электрических цепей постоянного тока с одним источником методом свертывания. В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному входному сопротивлению, включенному к зажимам источника. Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению. Определяют ток в упрощенной схеме, затем возвращаются к исходной схеме и определяют в ней токи. Пусть известны величины сопротивлений R1, R2, R3, R4, R5, R6, ЭДС Е. Необходимо определить токи в ветвях схемы. После проведенных преобразований схема принимает вид, показанный на рис. Расчет электрических цепей постоянного тока с одним источником методом подобия или методом пропорциональных величин. Возьмем электрическую схему на рис. По заданному току и сопротивлению R6 определим напряжение. Найденное значение ЭДС отличается от заданной величины ЭДС Е. Умножим на него полученные при расчете значения токов и напряжений, находим действительные значения токов цепи. Известны величины сопротивлений и ЭДС, необходимо определить токи. В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа. Укажем произвольно направления токов. Если в схеме имеется n узлов, количество независимых уравнений, которые можно составить по первому закону Кирхгофа, равно n - 1. Для схемы на рис. Недостающее количество уравнений составляют по второму закону Кирхгофа. Уравнения по второму закону составляют для независимых контуров. Независимым является контур, в который входит хотя бы одна новая ветвь, не вошедшая в другие контуры. Выберем три независимых контура и укажем направления обхода контуров. Запишем три уравнения по второму закону Кирхгофа. Решив совместно системы уравнений 4. Ток в ветви может иметь отрицательное значение. Это означает, что действительное направление тока противоположно выбранному нами. Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно. Выбираются независимые контуры, и задаются произвольные направления контурных токов. В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:. Суммарное сопротивление данного контура называется собственным сопротивлением контура. Собственные сопротивления контуров схемы. Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров. В общем виде уравнения 4. Собственные сопротивления всегда имеют знак "плюс". Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению. Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви. В схеме на Рис. Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам. Контурные токи желательно направлять одинаково по часовой стрелке или против. Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным. Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше. Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов. Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле. Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2. Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком "плюс", если от узла - со знаком "минус". По аналогии запишем для узла Если число узлов схемы - n, количество уравнений по методу узловых потенциалов - n - 1. Если в какой-либо ветви содержится идеальный источник ЭДС, необходимо один из двух узлов, между которыми включена эта ветвь, выбрать в качестве базисного, тогда потенциал другого узла окажется известным и равным величине ЭДС. Количество составляемых узловых уравнений становится на одно меньше. Потенциал точки 2 примем равным нулю? Составим узловое уравнение для узла 1. В знаменателе формулы - сумма проводимостей параллельно включенных ветвей. В числителе - алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1. После вычисления величины потенциала? Этот метод используется тогда, когда надо определить ток только в одной ветви сложной схемы. Чтобы разобраться с методом эквивалентного генератора, ознакомимся сначала с понятием "двухполюсник". Часть электрической цепи с двумя выделенными зажимами называется двухполюсником. Двухполюсники, содержащие источники энергии, называются активными. Двухполюсники, не содержащие источников, называются пассивными. На эквивалентной схеме пассивный двухполюсник может быть заменен одним элементом - внутренним или входным сопротивлением пассивного двухполюсника Rвх. Входное сопротивление пассивного двухполюсника можно измерить. Если известна схема пассивного двухполюсника, входное сопротивление его можно определить, свернув схему относительно заданных зажимов. Необходимо определить ток I1 в ветви с сопротивлением R1 в этой цепи. Выделим эту ветвь, а оставшуюся часть схемы заменим активным двухполюсником рис. Согласно теореме об активном двухполюснике, любой активный двухполюсник можно заменить эквивалентным генератором источником напряжения с ЭДС, равным напряжению холостого хода на зажимах этого двухполюсника и внутренним сопротивлением, равным входному сопротивлению того же двухполюсника, из схемы которого исключены все источники рис. Искомый ток I1 определится по формуле:. Параметры эквивалентного генератора напряжение холостого хода и входное сопротивление можно определить экспериментально или расчетным путем. Ниже показан способ вычисления этих параметров расчетным путем в схеме на рис. В этой схеме ветвь с сопротивлением R1 разорвана, это сопротивление удалено из схемы. На разомкнутых зажимах появляется напряжение холостого хода. Для определения этого напряжения составим уравнение для первого контура по второму закону Кирхгофа. Так как первая ветвь разорвана, ЭДС Е1 не создает ток. Падение напряжения на сопротивлении Rвн1 отсутствует. Из схемы на рис. Для определения параметров эквивалентного генератора экспериментальным путем необходимо выполнить опыты холостого хода и короткого замыкания. При проведении опыта холостого хода от активного двухполюсника отключают сопротивление R1, ток I1 в котором необходимо определить. Переменным называется электрический ток, величина и направление которого изменяются во времени. Это объясняется тем, что напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния. Но физические процессы, происходящие в цепях переменного тока, сложнее, чем в цепях постоянного тока из-за наличия переменных магнитных и электрических полей. Значение переменного тока в рассматриваемый момент времени называют мгновенным значением и обозначают строчной буквой i. Мгновенный ток называется периодическим, если значения его повторяются через одинаковые промежутки времени. Наименьший промежуток времени, через который значения переменного тока повторяются, называется периодом. Период T измеряется в секундах. Периодические токи, изменяющиеся по синусоидальному закону, называются синусоидальными. Мгновенное значение синусоидального тока определяется по формуле. Фаза измеряется в радианах или градусах. Величину, обратную периоду, называют частотой. Частота f измеряется в герцах. В Западном полушарии и в Японии используется переменный ток частотой 60 Гц, в Восточном полушарии - частотой 50 Гц. Величину называют круговой, или угловой, частотой. Если у синусоидальных токов начальные фазы при одинаковых частотах одинаковы, говорят, что эти токи совпадают по фазе. Если неодинаковы по фазе, говорят, что токи сдвинуты по фазе. Сдвиг фаз двух синусоидальных токов измеряется разностью начальных фаз. С помощью осциллографа можно измерить амплитудное значение синусоидального тока или напряжения. Амперметры и вольтметры электромагнитной системы измеряют действующие значения переменного тока и напряжения. Действующим значением переменного тока называется среднеквадратичное значение тока за период. Действующее значение тока для синусоиды. Законы Ома и Кирхгофа справедливы для мгновенных значений токов и напряжений. Закон Ома для мгновенных значений:. При расчете электрических цепей часто приходится складывать или вычитать величины токов или напряжений, являющиеся синусоидальными функциями времени. Графические построения или тригонометрические преобразования в этом случае могут оказаться слишком громоздкими. Известно, что проекция отрезка, вращающегося вокруг оси с постоянной угловой скоростью, на любую линию, проведенную в плоскости вращения, изменяется по синусоидальному закону. Проекция отрезка на вертикальную ось в начальный момент времени. Пусть даны два синусоидальных тока: Представим синусоидальные токи i 1 и i 2 в виде двух радиус - векторов, длина которых равна в соответствующем масштабе I 1m и I 2m. Сложим геометрически отрезки I 1m и I 2m. Получим отрезок, длина которого равна амплитудному значению результирующего тока I 3m. Проекции отрезков на вертикальную ось изменяются по синусоидальному закону. Будучи остановленными для рассмотрения, данные отрезки образуют векторную диаграмму рис. Векторная диаграмма - это совокупность векторов, изображающих синусоидальные напряжения, токи и ЭДС одинаковой частоты. Необходимо отметить, что напряжение, ток и ЭДС - это скалярные, а не векторные величины. Мы представляем их на векторной диаграмме в виде не пространственных, а временных радиус - векторов, вращающихся с одинаковой угловой скоростью. Изображать на векторной диаграмме два вектора, вращающихся с различной угловой скоростью, бессмысленно. При расчетах цепей синусоидального тока используют символический метод расчета или метод комплексных амплитуд. В этом методе сложение двух синусоидальных токов заменяют сложением двух комплексных чисел, соответствующих этим токам. Из курса математики известно, что комплексное число может быть записано в показательной или алгебраической форме:. С помощью формулы Эйлера можно перейти от показательной формы записи к алгебраической. От алгебраической формы записи переходят к показательной форме с помощью формул:. Комплексное число может быть представлено в виде радиус - вектора в комплексной плоскости. Умножим комплексное число на множитель. Выражение называется комплексной функцией времени. Применительно к напряжению, получим - комплексную функцию времени для напряжения. Определим, чему равна мнимая часть комплексной функции времени для напряжения. Мгновенное синусоидальное напряжение ток, ЭДС является мнимой частью соответствующей комплексной функции времени. В электротехнике над символами, изображающими комплексные напряжения, токи, ЭДС, принято ставить точку. Проекция вектора на мнимую ось изменяется по синусоидальному закону. Сложение синусоидальных токов заменим сложением комплексных амплитуд, соответствующих этим токам. Амплитуда результирующего тока , начальная фаза -. Если напряжение подключить к сопротивлению R, то через него протекает ток. Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению. Сопротивление участка цепи постоянному току называется омическим, а сопротивление того же участка переменному току - активным сопротивлением. Поверхностный эффект заключается в том, что ток вытесняется из центральных частей к периферии сечения проводника. Сначала рассмотрим идеальную индуктивную катушку, активное сопротивление которой равно нулю. Пусть по идеальной катушке с индуктивностью L протекает синусоидальный ток. Этот ток создает в индуктивной катушке переменное магнитное поле, изменение которого вызывает в катушке ЭДС самоиндукции. Эта ЭДС уравновешивается напряжением, подключенным к катушке: Таким образом, ток в индуктивности отстает по фазе от напряжения на 90 o из-за явления самоиндукции. Полное сопротивление индуктивной катушки или модуль комплексного сопротивления. Из анализа диаграммы видно, что вектор напряжения на индуктивности опережает вектор тока на 90 o. Если мы поделим стороны треугольника напряжений на величину тока I m , то перейдем к подобному треугольнику сопротивлений рис. Из треугольника сопротивлений получим несколько формул: Если к конденсатору емкостью C подключить синусоидальное напряжение, то в цепи протекает синусоидальный ток. Из анализа выражений 5. Вектор тока опережает вектор напряжения на 90 o. Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока. В схеме протекает синусоидальный ток. Определим напряжение на входе схемы. В соответствии со вторым законом Кирхгофа,. Поделим левую и правую части уравнения 6. Получим уравнение для комплексов действующих значений токов и напряжений. Ток в резонансном режиме достигает максимума, так как полное сопротивление z цепи имеет минимальное значение. Из формулы следует, что режима резонанса можно добиться следующими способами:. В резонансном режиме входное напряжение равно падению напряжения в активном сопротивлении. На индуктивности и емкости схемы могут возникнуть напряжения, во много раз превышающие напряжение на входе цепи. Это объясняется тем, что каждое напряжение равно произведению тока I 0 а он наибольший , на соответствующее индуктивное или емкостное сопротивление а они могут быть большими. Параллельно соединенные индуктивность, емкость и активное сопротивление в цепи синусоидального тока. К схеме на рис. Схема состоит из параллельно включенных индуктивности, емкости и активного сопротивления. Определим ток на входе схемы. В соответствии с первым законом Кирхгофа: Построим векторные диаграммы, соответствующие комплексному уравнению 5. В схеме на рис. Резонанс токов возникает тогда, когда индуктивная и емкостная проводимости одинаковы. При этом индуктивный и емкостный токи, направленные в противоположные стороны, полностью компенсируют друг друга. Ток в неразветвленной части схемы совпадает по фазе с напряжением. Из условия возникновения резонанса тока получим формулу для резонансной частоты тока. В режиме резонанса тока полная проводимость цепи - минимальна, а полное сопротивление - максимально. Ток в неразветвленной части схемы в резонансном режиме имеет минимальное значение. Такая схема называется фильтр - пробкой. Резонансный режим в цепи, состоящей из параллельно включенных реальной индуктивной катушки и конденсатора. Из этого уравнения получим формулу для резонанса частоты. Вектор тока I 2 опережает вектор напряжения на 90 o. Разложим вектор тока I 1 на две взаимно перпендикулярные составляющих, одна из них, совпадающая с вектором напряжения, называется активной составляющей тока I а1 , другая - реактивной составляющей тока I р1. В режиме резонанса тока реактивная составляющая тока I р1 и емкостный ток I 2 , направленные в противоположные стороны, полностью компенсируют друг друга, активная составляющая тока I а1 совпадает по фазе с напряжением рис. Ток I в неразветвленной части схемы совпадает по фазе с напряжением. Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток. Пусть мгновенные напряжение и ток определяются по формулам:. Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P. Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию. Возьмем реактивный элемент индуктивность или емкость. Активная мощность в этом элементе , так как напряжение и ток в индуктивности или емкости различаются по фазе на 90 o. В реактивных элементах отсутствуют необратимые потери электрической энергии, не происходит нагрева элементов. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q. Максимальное или амплитудное значение мощности p 2 называется реактивной мощностью. Реактивная мощность, измеряемая в вольтамперах реактивных, расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания. Полная мощность характеризует предельные возможности источника энергии. В электрической цепи можно использовать часть полной мощности. Принимают специальные меры к увеличению коэффициента мощности. Возьмем треугольник сопротивлений и умножим его стороны на квадрат тока в цепи. Получим подобный треугольник мощностей рис. При анализе электрических цепей символическим методом используют выражение комплексной мощности, равное произведению комплексного напряжения на сопряженный комплекс тока. Для цепи, имеющей индуктивный характер R-L цепи. Вещественной частью полной комплексной мощности является активная мощность. Мнимой частью комплексной мощности - реактивная мощность. Для цепи, имеющей емкостной характер R-С цепи ,. Ток опережает по фазе напряжение. Активная мощность всегда положительна. Реактивная мощность в цепи, имеющей индуктивный характер, - положительна, а в цепи с емкостным характером - отрицательна. Умножим левую и правую части уравнения на сопряженный комплекс тока. Два комплексных числа равны, если равны по отдельности их вещественные и мнимые части, следовательно уравнение 6. Согласованный режим работы электрической цепи. Согласование нагрузки с источником. Активная мощность может выделяться только в активных сопротивлениях цепи переменного тока. Активная мощность, выделяемая в нагрузке,. Коэффициент полезного действия для данной схемы:. Последнее имеет место при , то есть при. Это означает, что реактивные сопротивления источника и нагрузки должны быть одинаковы по модулю и иметь разнородный характер. При индуктивном характере реактивного сопротивления источника реактивное сопротивление нагрузки должно быть емкостным и наоборот. Режим передачи наибольшей мощности от источника к нагрузке называется согласованным режимом, а подбор сопротивлений согласно равенствам 6. Половина мощности теряется внутри источника. Поэтому согласованный режим не используется в силовых энергетических цепях. Этот режим используют в информационных цепях, где мощности могут быть малыми, и решающими являются не соображения экономичности передачи сигнала, а максимальная мощность сигнала в нагрузке. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой. Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными. Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на o. В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на o. Запишем мгновенные значения и комплексы действующих значений ЭДС. Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю. На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита А, В, С , а концы - последними буквами X, Y, Z. Направления ЭДС указывают от конца фазы обмотки генератора к ее началу. Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником. Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями. Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах - линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами. Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений. Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке. Как видно из рис. Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с. Линейный ток равен геометрической разности соответствующих фазных токов. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений. Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда". Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник. Нейтральный провод имеет конечное сопротивление Z N. В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали. Это напряжение определяется по формуле 6. Фазные токи определяются по формулам в соответствии с законом Ома для активной ветви:. Ток в нейтральном проводе отсутствует. В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен. Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов. В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:. Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора. Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, то есть с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми. Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками. Активная мощность трехфазной цепи равна сумме активных мощностей фаз. Знаете ли Вы, что релятивизм СТО и ОТО не является истинной наукой? В отличие от этого СТО и ОТО построены на аксиоматических постулатах, то есть принципиально недоказуемых догматах, в которые обязаны верить последователи этих учений. То есть релятивизм есть форма религии, культа, раздуваемого политической машиной мифического авторитета Эйнштейна и верных его последователей, возводимых в ранг святых от релятивистской физики. Подробнее читайте в FAQ по эфирной физике. НОВОСТИ ФОРУМА Рыцари теории эфира. Об этом Корнилов написал на своей страничке в соцсети. Если помните, я сообщил о видео, которое британский журналист записал в центре Одессы, используя Гугл-очки. В толпе украинских нацистов тогда появилась группа англоязычных иностранцев, один из которых заявил журналисту, что эта группа прямо участвует в этих событиях так открыто и заявил. Причем говорил на бойком английском, сообщил, что он гражданин Израиля и США. По словам Корнилова, тогда его сообщение было воспринято с недоверием. Сначала мне заявили, что я все выдумал и никакого видео с израильтянами не было. Когда я в итоге предъявил это видео, где парень однозначно называет себя гражданином Израиля, мне стали кричать: Теперь же Владимир Корнилов решил вернуться к данной теме, в связи с чем публикует у себя в фейсбуке фотографии загадочных израильтян, принимавших участие в одесской бойне. Один из них — некий Гонен Сибони. На первом из опубликованных Корниловым фото он в Одессе 2 мая го. А на трех других — он в г. Палестинская или таки ЦАХАЛ? Или почему сей боец вдруг резко забыл английский, когда понял, что его записывают? Сибони сам сказал журналисту, что принимает участие в событиях! В конце концов, это ведь украинская СБУ потом заявляла, что при сожжении русских в Одессе использовали некое странное химическое вещество. Резонно в этой связи задать вопрос израильтянами, что за вещества в их колбах и бутылочках, верно ведь? И как вы думаете, кто-то допросил сего активиста? Сам он в сети ВКонтакте написал уже 7 мая г.: И на этом он затих. И молчит по сей день. Исходя из этого можно утверждать, что это комета образовалась первоначально из крупных тел собиравших пыль, газ, снег. Основной причиной вращения водоворотов являются местные ветра. И чем выше скорость ветров тем выше скорость вращения водоворотов и как следствие, выше центробежная сила водоворотов, благодаря чему повышается уровень вод морей и океанов. А чем ниже центробежная сила водоворотов, тем ниже уровень вод морей и океанов. Скорость течений, по периметру морей и океанов не везде одинакова и зависит от глубины побережья. В мелководной части моря скорость течений увеличивается, а в глубоководной части моря уменьшается.. На прямолинейных побережьях, где течения не обладают угловой скоростью, уровень вод не повышается. Воды Финского залива вращаются против часовой стрелки, образуя водоворот в виде элипса. Премного благодарен Вам за Ваш общественно-просветительский труд вообще, а, в частности, за репост ста Отправлено Вопрос, ставимый как бы учеными о времени возникновения жизни на Земле, а в особенности "абиогенезе" - возникновении жизни из минерального материала, навеянный библейской мифологией и алогичностью слабоумных людей, мнящих себя учеными, некорректен априори топик - http: И тут не есть противопоставление: Обе они исходят из того, что существование Вселенной началось в какой-то конечный, конкретный момент. Об этом говорит ныне "официальная", а на самом деле криминальная наука, "разводящая" простофиль, об этом проповедует и абсолютно бессовестная церковь любая из них. На самом деле, согласно реальной логике, Вселенная как и универсум в логике есть особый объект, включающий в себя все остальные, а значит, не имеющий границ во времени и пространстве. Знали это еще античные люди как в Египте и Греции, так и в Китае и Индии. Раз так, то и существование жизни во Вселенной - вечно. Оно не вечно в конкретном месте, например, на Земле или пробирке. Гены биоинформация в виде ДНК, РНК и пр. Их разносчиками являются кометы. Это, кстати, уже фактографически определил наш коллега Е. К примеру, в мезозое царствовали динозавры рептилии. Это только потому, что именно для этих тварей тогда были подходящие условия. Что сейчас рептилий нет? От крокодилов и варанов острова Комодо до черепах, ящериц и змей. Просто они сегодня занимают скромную нишу в связи с тем, что ныне более комфортные условия для иных форм жизни. То же самое для млекопитающих и цветковых. Что, их не было в мезозое? Только тогда для них был не климат. Кстати, только слабоумные могут считать, что Земля возникла 4,6 млрд лет назад, основываясь на "изотопном возрасте" горных пород. Для людей, имеющих логику, ясно, что 4,6 млрд лет - это время, прошедшее от формирования данного твердого минерала из других минералов, по каким-то причинам бывших в то время в расплаве. Но никак не возникновение, рождение из ничего или мифического протопланетного облака. Я уже излагал свою точку зрения на сей вопрос в работе "Происхождение Солнца и планет" http: Там и волны и черные дыры, полный фарш.


Повторение пройденного материала Повторение пройденного материала


Тебе нужна помощь по школьным предметам? Большинство вопросов получают ответ в течение 10 минут ; Войди и попробуй добавить свой вопрос. Или помоги другим с ответом! Изобразите в тетради в виде схемы,состояшей из точек и отрезков,их соединяюших,ситуацию,которая описана в формулировке задачи. Сколько карандашей в 2-х упаковках,если в каждой упаковке находится по 3 коробки,а в каждой коробке лежит по 6 карандашей? Запиши решение задачи в виде одного выражения. Попроси больше объяснений Следить Отметить нарушение от Oблако Войти чтобы добавить комментарий. Узнавай больше на Знаниях! У тебя проблема с домашними заданиями? Мы не только ответим, но и объясним. Качество гарантируется нашими экспертами. Что ты хочешь узнать? Математика 5 баллов 29 минут назад. Встретив по дороге Петю, Сережа Математика 5 баллов 1 час назад. Задача номер 3 пж помогите. Начертить прямоугольник, площадь которого равна 24 см, а периметр равен 22 см. Во сколько раз увеличится площадь квадрата, если каждую сторону его увеличить в 5 раз? Математика 5 баллов 2 часа назад. Математика 5 баллов 4 часа назад. Помогите решить наиболее Рациональным способом. Бесплатная помощь с домашними заданиями. О нас Карьера Контакт. Общие вопросы Правила Как получить баллы? Скачай iOS-приложение Скачай iOS-приложение. Скачай для Android Скачай для Android.


Курсы по ламинированию волос
Заработать можно только геморрой
Игра лес карта
Лилия гарден фото и описание
Ооо мо рост инструкция по сборке
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment