Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/6e3388cfa77f62a17177be11121c8b47 to your computer and use it in GitHub Desktop.
Save anonymous/6e3388cfa77f62a17177be11121c8b47 to your computer and use it in GitHub Desktop.
Виды метрологических измерений

Виды метрологических измерений



1.4. Виды измерений по метрологии
Виды измерений
Раздел 1 Основы метрологии.

С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Для этой цели понадобилось создать целую систему различных измерений, необходимую для вычисления объема, веса, длины, времени и т. Данные подобных измерений помогают освоить количественную характеристику окружающего мира. Крайне важна роль подобных измерений при развитии цивилизации. Сегодня никакая отрасль народного хозяйства не могла бы правильно и продуктивно функционировать без применения своей системы измерений. Ведь именно с помощью этих измерений происходит формирование и управление различными технологическими процессами, а также контролирование качества выпускаемой продукции. Подобные измерения нужны для самых различных потребностей в процессе развития научно—технического прогресса: Несмотря на многообразие природных явлений и продуктов материального мира, для их измерения существует такая же многообразная система измерений, основанных на очень существенном моменте — сравнении полученной величины с другой, ей подобной, которая однажды была принята за единицу. При таком подходе физическая величина расценивается как некоторое число принятых для нее единиц, или, говоря иначе, таким образом получается ее значение. Как правило, под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Следует отметить и особое участие в создании этой дисциплины Д. Таким образом, можно сказать, что метрология изучает:. Важным понятием в науке метрологии является единство измерений, под которым подразумевают такие измерения при которых итоговые данные получаются в узаконенных единицах, в то время как погрешности данных измерений получены с заданной вероятностью. Необходимость существования единства измерений вызвана возможностью сопоставления результатов различных измерений, которые были проведены в различных районах, в различные временные отрезки, а также с применением разнообразных методов и средств измерения. Метрология включает в себя: И здесь речь идет о:. В связи с этим задачами метрологии становятся: Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. Надо сказать, что, их правильная формулировка и толкование имеют первостепенное значение, так как восприятие каждого человека индивидуально и многие, даже общепринятые термины, понятия и определения он трактует по—своему, используя свой жизненный опыт и следуя своим инстинктам, своему жизненному кредо. А для метрологии очень важно толковать термины однозначно для всех, поскольку такой подход дает возможность оптимально и целиком понимать какое—либо жизненное явление. Для этого был создан специальный стандарт на терминологию, утвержденный на государственном уровне. Поскольку Россия на сегодняшний момент воспринимает себя частью мировой экономической системы, постоянно идет работа над унификацией терминов и понятий, создается международный стандарт. Это, безусловно, помогает облегчить процесс взаимовыгодного сотрудничества с высокоразвитыми зарубежными странами и партнерами. Итак, в метро логии используются следующие величины и их определения:. К ним относятся измерительный прибор, мера, измерительная система, измерительный преобразователь, совокупность измерительных систем;. Например, если прибор аттестован как средство измерений, его шкала с оцифрованными отметками является мерой;. По показателю точности измерений средства измерения можно разделить на: Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений СИ , обладающих одинаковой точностью, в идентичных исходных условиях. Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и или в различных исходных условиях. Однократное измерение — это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое. Многократные измерения — это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность. Статические измерения — это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка. Абсолютные измерения — это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и или применения физической константы. Относительные измерения — это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель — базой сравнения единицей. Результат измерения будет зависеть от того, какая величина принимается за базу сравнения. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные. Прямые измерения — это измерения, выполняемые при помощи мер, т. Примером прямых измерений является измерение величины угла мера — транспортир. Косвенные измерения — это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной. Совокупные измерения — это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин. Совместные измерения — это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости. В основе Международной системы единиц лежат семь единиц, охватывающих следующие области науки: Таким образом, посредством принятия Международной системы единиц были упорядочены и приведены к одному виду единицы измерения физических величин во всех областях науки и техники, так как все остальные единицы выражаются через семь основных и две дополнительных единицы СИ. Например, количество электричества выражается через секунды и амперы. Метод измерений — это способ или комплекс способов, посредством которых производится измерение данной величины, т. Контактный метод измерения основан на непосредственном контакте какой—либо части измерительного прибора с измеряемым объектом. При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом. Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины. Принцип измерений — это некое физическое явление или их комплекс, на которых базируется измерение. Например, измерение температуры основано на явлении расширения жидкости при ее нагревании ртуть в термометре. Погрешность измерения — это разность между результатом измерения величины и настоящим действительным значением этой величины. Погрешность, как правило, возникает из—за недостаточной точности средств и методов измерения или из—за невозможности обеспечить идентичные условия при многократных наблюдениях. Точность измерений — это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины. Количественно точность измерений равна величине относительной погрешности в минус первой степени, взятой по модулю. Правильность измерения — это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности систематическая погрешность. Данная характеристика зависит, как правило, от точности средств измерений. Достоверность измерений — это характеристика, определяющая степень доверия к полученным результатам измерений. По данной характеристике измерения делятся на достоверные и недостоверные. Достоверность измерений зависит того, известна ли вероятность отклонения результатов измерения от настоящего значения измеряемой величины. Если же достоверность измерений не определена, то результаты таких измерений, как правило, не используются. Достоверность измерений ограничена сверху погрешностью измерений. Физическая величина является понятием как минимум двух наук: По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении индивидуальная для каждого объекта. Классическим примером иллюстрации этого определения служит тот факт, что, обладая собственной массой и температурой, все тела имеют индивидуальные числовые значения этих параметров. Соответственно размер физической величины считается ее количественным наполнением, содержанием, а в свою очередь значение физической величины представляет собой числовую оценку ее размеров. В связи с этим существует понятие однородной физической величины, когда она является носителем аналогичного свойства в качественном смысле Таким образом, получение информации о значениях физической величины как некоего числа принятых для нее единиц и есть главная задача измерений. И, соответственно, физическая величина, которой по определению присвоено условное значение, равное единице, есть единица физической величины. Вообще же все значения физических величин традиционно делят на: Первые представляет собой значения, идеальным образом отражающие в качественном и количественном отношении соответствующие свойства объекта, а вторые — значения, найденные экспериментальным путем и настолько приближенные к истине, что могут быть приняты вместо нее. Однако этим классификация физических величин не исчерпывается. Есть целый ряд классификаций, созданных по различным признакам Основными из них является деления на:. Причем первые активные в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые пассивные представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации;. Считается, что первые аддитивные величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые неаддитивные величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. А в их основу были положены две общеизвестные ныне единицы: Ряд исследователей считают, что, строго говоря, эта первая система не является системой единиц в современном понимании. Гауссом была разработана и опубликована новейшая методика построения системы единиц, представляющая собой в данном контексте некую совокупность основных и производных единиц. В основу своей методики ученый заложил три основные независимые друг от друга величины: А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Гаусс считал свою систему единиц абсолютной системой. С развитием цивилизации и научно—технического прогресса возникли еще ряд систем единиц физических величин, основанием для которых служит принцип системы Гаусса. Все эти системы построены как метрические, однако их отличием служат различные основные единицы. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:. Джорджи, который предложил в качестве единиц системы МКСА метр, килограмм, секунду и ампер. На сегодняшний день в мировой науке существует неисчислимое количество всевозможных систем единиц физических величин, а также немало так называемых внесистемных единиц. Это, конечно, приводит к определенным неудобствам при вычислениях, вынуждая прибегать к пересчету при переводе физических величин из одной системы единиц в другую. Сложилась ситуация, при которой возникла серьезная необходимость унификации единиц измерения. Требовалось создать такую систему единиц физических величин, которая подходила бы для большинства различных отраслей области измерений. Причем в роли главного акцента должен был звучать принцип когерентности, подразумевающий под собой, что единица коэффициента пропорциональности равна в уравнениях связи между физическими величинами. Международная система единиц, или сокращенно СИ, содержит семь основных, две дополнительных, а также несколько внесистемных, логарифмических единиц измерения, что можно видеть в таблице 1. Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин:. Кроме того, Международная система единиц содержит две достаточно важные дополнительные единицы, необходимые для измерения плоского и телесного углов. Так, единица плоского угла — это радиан, или сокращенно рад, представляющий собой угол между двух радиусов окружности, длина дуги между которыми равняется радиусу окружности. А стерадиан, или ср, принимаемый за единицу телесного угла, представляет собой, соответственно, телесный угол, расположение вершины которого фиксируется в центре сферы, а площадь, вырезаемая данным углом на поверхности сферы, равна площади квадрата, сторона которого равна длине радиуса сферы Другие дополнительные единицы СИ используются для формирования единиц угловой скорости, а также углового ускорения и т. Радиан и стерадиан используются для теоретических построений и расчетов, поскольку большая часть значимых для практики значений углов в радианах выражаются трансцендентными числами. К внесистемным единицам относятся следующие:. Кроме того, логарифмические единицы традиционно делят на абсолютные и относительные. Первые абсолютные логарифмические единицы — это десятичный логарифм соотношения физической величины и нормированного значения Относительная логарифмическая единица образуется как десятичный логарифм отношения любых двух однородных величин. Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной. Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы — это радиан и стерадиан. Качественное различие физических величин отражается в их размерности. Для производной величины размерность выражается посредством размерности основных величин и степенного одночлена:. Показатель степени размерности может принимать различные значения и разные знаки, может быть как целым, так и дробным, может принимать значение ноль. Если при определении размерности производной величины все показатели степени размерности равны нулю, то основание степени, соответственно, принимает значение единицы, таким образом, величина является безразмерной. Размерность производной величины может также определяться как отношение одноименных величин, тогда величина является относительной. Размерность относительной величины может также быть логарифмической. Количественная характеристика объекта измерения — это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения — это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше меньше по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами. У реперных шкал порядка есть существенный недостаток: В этом плане преимущество есть у шкалы интервалов Шкалой интервалов является, например, шкала измерения времени. Она поделена на большие интервалы — годы, большие интервалы поделены на меньшие — сутки. С помощью шкалы интервалов можно определить не только, какой из размеров больше, но и насколько один размер больше другого. Недостаток шкалы интервалов заключается в том, что с ее помощью нельзя определить, во сколько раз данный размер больше другого, потому что на шкале интервалов зафиксирован только масштаб, а начало отсчета не фиксировано и может устанавливаться произвольно. Самым оптимальным вариантом является шкала отношений. Шкалой отношений является, например, шкала температуры Кельвина. На данной шкале есть фиксированное начало отсчета — абсолютный ноль температура, при которой прекращается тепловое движение молекул. Основное преимущество шкалы отношений состоит в том, что с ее помощью можно определить, во сколько раз один размер больше или меньше другого. Размер объекта измерения может быть представлен в разных видах. Это зависит от того, на какие интервалы разбита шкала, с помощью которой измеряется данный размер. Например, время движения может быть представлено в следующих видах: Это значения измеряемой величины. Значение величины может быть вычислено с помощью основного уравнения измерения, которое имеет вид:. Эталоны единиц физических величин. Классифицируются эталоны по принципу подчиненности. По этому параметру эталоны бывают первичные и вторичные. Первичный эталон должен служить целям обеспечения воспроизведения, хранения единицы и передачи размеров с максимальной точностью, которую можно получить в данной сфере измерений. В свою очередь, первичные могут быть специальными первичными эталонами, которые предназначены для воспроизведения единицы в условиях, когда непосредственная передача размера единицы с необходимой достоверностью практически не может быть осуществлена например для малых и больших напряжений, СВЧ и ВЧ. Их утверждают в виде государственных эталонов. Поскольку налицо особая значимость государственных эталонов, на любой государственный эталон утверждается ГОСТом. Другой задачей этого утверждения становится придание данным эталонам силы закона. На Государственный комитет по стандартам возложена обязанность создавать, утверждать, хранить и применять государственные эталоны. Вторичный эталон воспроизводит единицу при особенных условиях, заменяя при этих условиях первичный эталон. Он создается и утверждается для целей обеспечения минимального износа государственного эталона. Вторичные эталоны могут делиться по признаку назначения. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства. Есть два способа воспроизведения единиц по признаку зависимости от технико—экономических требований:. Централизованно воспроизводятся все основные единицы и большая часть производных;. Трансляция размера может происходить разными методами поверки. Как правило, передача размера осуществляется известными методами измерений. С одной стороны, существует определенный недостаток передачи размера ступенчатым способом, который подразумевает, что порой происходит потеря точности. С другой стороны, есть здесь и свои положительные моменты, которые подразумевают, что данная многоступенчатость помогает оберегать эталоны и передавать размер единицы всем рабочим средствам измерения. Разряд образцового средства измерения определяется в ходе измерений метрологической аттестации одним из органов Государственного комитета по стандартам. При необходимости особо точные рабочие средства измерения в вышеуказанном порядке могут быть аттестованы на обусловленный период как образцовые средства измерения. И наоборот, образцовые средства измерения, не прошедшие очередную аттестацию по разным причинам, используются как рабочие средства измерения. В научной литературе средства технических измерений делят на три большие группы. Мера представляет собой такое средство измерений, которое предназначается для воспроизведения физической величины положенного размера. К мерам относятся плоскопараллельные меры длины плитка и угловые меры. Калибры представляют собой некие устройства, предназначение которых заключается в использовании для контролирования и поиска в нужных границах размеров, взаиморасположения поверхностей и формы деталей. Как правило, они подразделяются на: Измерительный прибор, представленный в виде устройства, вырабатывающего сигнал измерительной информации в форме, понятной для восприятия наблюдателей. Измерительная система, понимаемая как некая совокупность средств измерений и неких вспомогательных устройств, которые соединяются между собой каналами связи. Она предназначена для производства сигналов информации измерений в некой форме, которая подходит для автоматической обработки, а также для трансляции и применения в автоматических системах управления. Универсальные средства измерения, предназначение которых находится в использовании для определения действительных размеров. Любое универсальное измерительное средство характеризуется назначением, принципом действия, т. При контрольном измерении угловых и линейных показателей применяют прямые измерения, реже встречаются относительные, косвенные или совокупные измерения. В научной литературе среди прямых методов измерений выделяют, как правило, следующие:. Метод дает результат с достаточно высоким показателем точности при применении грубых средств измерения;. Причем нулевой метод обладает определенным преимуществом, поскольку мера может быть во много раз меньше измеряемой величины;. Вспомним о том, что существуют и нестандартизованные методы. В эту группу, как правило, включают следующие:. Средство измерения СИ — это техническое средство или совокупность средств, применяющееся для осуществления измерений и обладающее нормированными метрологическими характеристиками. При помощи средств измерения физическая величина может быть не только обнаружена, но и измерена. Меры величины — это средства измерения определенного фиксированного размера, многократно используемые для измерения. Некоторое количество мер, технически представляющее собой единое устройство, в рамках которого возможно по—разному комбинировать имеющиеся меры, называют магазином мер. Объект измерения сравнивается с мерой посредством компараторов технических приспособлений. Например, компаратором являются рычажные весы. К однозначным мерам принадлежат стандартные образцы СО. Различают два вида стандартных образцов:. Стандартный образец состава или материала — это образец с фиксированными значениями величин, количественно отражающих содержание в веществе или материале всех его составных частей. Стандартный образец свойств вещества или материала — это образец с фиксированными значениями величин, отражающих свойства вещества или материала физические, биологические и др. Каждый стандартный образец в обязательном порядке должен пройти метрологическую аттестацию в органах метрологической службы, прежде чем начнет использоваться. Измерительные преобразователи ИП — это средства измерения, выражающие измеряемую величину через другую величину или преобразующие ее в сигнал измерительной информации, который в дальнейшем можно обрабатывать, преобразовывать и хранить. Измерительные преобразователи могут преобразовывать измеряемую величину по—разному. Измерительные преобразователи могут занимать различные позиции в цепи измерения. Первичный измерительный преобразователь технически обособлен, от него поступают в измерительную цепь сигналы, содержащие измерительную информацию. Первичный измерительный преобразователь является датчиком. Конструктивно датчик может быть расположен довольно далеко от следующего промежуточного средства измерения, которое должно принимать его сигналы. Обязательными свойствами измерительного преобразователя являются нормированные метрологические свойства и вхождение в цепь измерения. Измерительный прибор — это средство измерения, посредством которого получается значение физической величины, принадлежащее фиксированному диапазону. В конструкции прибора обычно присутствует устройство, преобразующее измеряемую величину с ее индикациями в оптимально удобную для понимания форму. Для вывода измерительной информации в конструкции прибора используется, например, шкала со стрелкой или цифроуказатель, посредством которых и осуществляется регистрация значения измеряемой величины. В некоторых случаях измерительный прибор синхронизируют с компьютером, и тогда вывод измерительной информации производится на дисплей. Измерительные приборы прямого действия — это приборы, посредством которых можно получить значение измеряемой величины непосредственно на отсчетном устройстве. Измерительный прибор сравнения — это прибор, посредством которого значение измеряемой величины получается при помощи сравнения с известной величиной, соответствующей ее мере. Разница между ними в том, что с помощью показывающего измерительного прибора можно только считывать значения измеряемой величины, а конструкция регистрирующего измерительного прибора позволяет еще и фиксировать результаты измерения, например посредством диаграммы или нанесения на какой—либо носитель информации. Отсчетное устройство — конструктивно обособленная часть средства измерений, которая предназначена для отсчета показаний. Отсчетное устройство может быть представлено шкалой, указателем, дисплеем и др. Отсчетные устройства делятся на:. Шкальные отсчетные устройства включают в себя шкалу и указатель. Шкала — это система отметок и соответствующих им последовательных числовых значений измеряемой величины. Длина деления — это расстояние от одной осевой до следующей по воображаемой линии, которая проходит через центры самых маленьких отметок данной шкалы. Цена деления шкалы — это разность между значениями двух соседних значений на данной шкале. Диапазон показаний шкалы — это область значений шкалы, нижней границей которой является начальное значение данной шкалы, а верхней — конечное значение данной шкалы. Диапазон измерений — это область значений величин в пределах которой установлена нормированная предельно допустимая погрешность. Существенно неравномерная шкала — это шкала, у которой деления сужаются и для делений которой значение выходного сигнала является половиной суммы пределов диапазона измерений. Измерительная установка — это средство измерения, представляющее собой комплекс мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, используемые для измерения фиксированного количества физических величин и собранные в одном месте. В случае, если измерительная установка используется для испытаний изделий, она является испытательным стендом. Измерительная система — это средство измерения, представляющее собой объединение мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве. Рабочие средства измерения РСИ — это средства измерения, используемые для осуществления технических измерений. Рабочие средства измерения могут использоваться в разных условиях. К каждому отдельному виду рабочих средств измерения предъявляются определенные требования. Требования к лабораторным рабочим средствам измерения — это высокая степень точности и чувствительности, к производственным РСИ — высокая степень устойчивости к вибрациям, ударам, перепадам температуры, к полевым РСИ — устойчивость и исправная работа в различных температурных условиях, устойчивость к высокому уровню влажности. Эталоны — это средства измерения с высокой степенью точности, применяющиеся в метрологических исследованиях для передачи сведений о размере единицы. Более точные средства измерения передают сведения о размере единицы и так далее, таким образом образуется своеобразная цепочка, в каждом следующем звене которой точность этих сведений чуть меньше, чем в предыдущем. Сведения о размере единицы предаются во время проверки средств измерения. Проверка средств измерения осуществляется с целью утверждения их пригодности. Метрологические свойства средств измерения — это свойства, оказывающие непосредственное влияние на результаты проводимых этими средствами измерений и на погрешность этих измерений. Количественно—метрологические свойства характеризуются показателями метрологических свойств, которые являются их метрологическими характеристиками. Утвержденные НД метрологические характеристики являются нормируемыми метрологическими характеристиками Метрологические свойства средств измерения подразделяются на:. Свойства, устанавливающие сферу применения средств измерения, определяются следующими метрологическими характеристиками:. Диапазон измерений — это диапазон значений величины, в котором нормированы предельные значения погрешностей. Нижнюю и верхнюю правую и левую границу измерений называют нижним и верхним пределом измерений. Порог чувствительности — это минимальное значение измеряемой величины, способное стать причиной заметного искажения получаемого сигнала. Свойства, определяющие прецизионность и правильность полученных результатов измерения, определяются следующими метрологическими характеристиками:. Погрешность средств измерения — это разность между результатом измерения величины и настоящим действительным значением этой величины. Для рабочего средства измерения настоящим действительным значением измеряемой величины считается показание рабочего эталона более низкого разряда. Таким образом, базой сравнения является значение, показанное средством измерения, стоящим выше в поверочной схеме, чем проверяемое средство измерения. Нормирование метрологических характеристик — это регламентирование пределов отклонений значений реальных метрологических характеристик средств измерений от их номинальных значений. Главная цель нормирования метрологических характеристик — это обеспечение их взаимозаменяемости и единства измерений. Значения реальных метрологических характеристик устанавливаются в процессе производства средств измерения, в дальнейшем во время эксплуатации средств измерения эти значения должны проверятся. В случае, если одна или несколько нормированных метрологических характеристик выходит из регламентированных пределов, средство измерения должно быть либо немедленно отрегулировано, либо изъято из эксплуатации. Значения метрологических характеристик регламентируются соответствующими стандартами средств измерения. Причем метрологические характеристики нормируются раздельно для нормальных и рабочих условий применения средств измерения. Нормальные условия применения — это условия, в которых изменениями метрологических характеристик, обусловленными воздействием внешних факторов внешние магнитные поля, влажность, температура , можно пренебречь. Рабочие условия — это условия, в которых изменение влияющих величин имеет более широкий диапазон. Метрологическое обеспечение, или сокращенно МО, представляет собой такое установление и использование научных и организационных основ, а также ряда технических средств, норм и правил, нужных для соблюдения принципа единства и требуемой точности измерений. Объектом МО можно считать все стадии жизненного цикла ЖЦ изделия продукции или услуги, где жизненный цикл воспринимается как некая совокупность последовательных взаимосвязанных процессов создания и изменения состояния продукции от формулирования исходных требований к ней до окончания эксплуатации или потребления. Нередко на этапе разработки продукции для достижения высокого качества изделия производится выбор контролируемых параметров, норм точности, допусков, средств измерения, контроля и испытания. А в процессе разработки МО желательно использовать системный подход, при котором указанное обеспечение рассматривается как некая совокупности взаимосвязанных процессов, объединенных одной целью. Этой целью является достижение требуемого качества измерений. В научной литературе выделяют, как правило, целый ряд подобных процессов:. Организация и проведение всех мероприятий МО является прерогативой метрологических служб. В основе метрологического обеспечения лежат четыре пласта. Собственно, они и носят в научной литературе аналогичное название — основы. Итак, это научная, организационная, нормативная и техническая основы. Особое внимание хотелось бы обратить на организационные основы метрологического обеспечения. К организационным службам метрологического обеспечения относят Государственную метрологическую службу и Ведомственную метрологическую службу. Государственная метрологическая служба, или сокращенно ГМС несет ответственность за обеспечение метрологических измерений в России на межотраслевом уровне, а также проводит контрольные и надзорные мероприятия в области метрологии. В состав ГМС входят:. Основная деятельность органов ГМС направлена на обеспечение единства измерений в стране. Она включает создание государственных и вторичных эталонов, разработку систем передачи размеров единиц ФВ рабочим СИ, государственный надзор за состоянием, применением, производством, ремонтом СИ, метрологическую экспертизу документации и важнейших видов продукции, методическое руководство МС юридических лиц. Руководство ГМС осуществляет Госстандарт. В числе подобных сфер деятельности можно назвать:. Метрологическая служба государственного органа управления подразумевает в своем составе следующие компоненты:. Другим важнейшим разделом МО являются его научные и методические основы. Так, основным компонентом данных основ становятся Государственные научные метрологические центры ГНМЦ , которые создаются из состава находящихся в ведении Госстандарта предприятий и организаций или их структурных подразделений, выполняющих различные операции по вопросам создания, хранения, улучшения, применения и хранения госэталонов единиц величин, а, кроме того, разрабатывающих нормативные правила для целей обеспечения единства измерений, имея в своем составе высококвалифицированные кадры. Присвоение какому—либо предприятию статуса ГНМЦ, как правило, не влияет на форму его собственности и организационно—правовые формы, а означает лишь причисление их к группе объектов, обладающих особенными формами господдержки. Основными функциями ГНМЦ являются следующие:. Деятельность ГНМЦ регламентируется Постановлением Правительства Российской Федерации от Важным компонентом основы МО являются, как было сказано выше, методические инструкции и руководящие документы, под которыми подразумеваются нормативные документы методического содержания, разрабатываются организациями, подведомственными Госстандарту Российской Федерации. Так, в сфере научных и методических основ метрологического обеспечения Госстандарт России организует:. Организует подготовку, переподготовку и повышение квалификации специалистов. В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность. Согласно закону теории погрешностей, если необходимо повысить точность результата при исключенной систематической погрешности в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах. При этом согласно принципу зависимости от формы данные выражения погрешности измерения могут быть: Кроме того, по признаку зависимости от характера проявления, причин возникновения и возможностей устранения погрешности измерений могут быть составляющими При этом различают следующие составляющие погрешности: Систематическая составляющая остается постоянной или меняется при следующих измерениях того же самого параметра. Случайная составляющая изменяется при повторных изменениях того же самого параметра случайным образом. Обе составляющие погрешности измерения и случайная, и систематическая проявляются одновременно. Причем значение случайной погрешности не известно заранее, поскольку оно может возникать из—за целого ряда неуточненных факторов Данный вид погрешности нельзя исключить полностью, однако их влияние можно несколько уменьшить, обрабатывая результаты измерений. Систематическая погрешность, и в этом ее особенность, если сравнивать ее со случайной погрешностью, которая выявляется вне зависимости от своих источников, рассматривается по составляющим в связи с источниками возникновения. Составляющие погрешности могут также делиться на: Субъективные систематические погрешности связаны с индивидуальными особенностями оператора. Такая погрешность может возникать из—за ошибок в отсчете показаний или неопытности оператора. В основном же систематические погрешности возникают из—за методической и инструментальной составляющих. Методическая составляющая погрешности определяется несовершенством метода измерения, приемами использования СИ, некорректностью расчетных формул и округления результатов. Инструментальная составляющая появляется из—за собственной погрешности СИ, определяемой классом точности, влиянием СИ на итог и разрешающей способности СИ. Такие погрешности, как правило, обнаруживаются в процессе рассмотрения результатов измерений с помощью специальных критериев. Важным элементом данной классификации является профилактика погрешности, понимаемая как наиболее рациональный способ снижения погрешности, заключается в устранении влияния какого—либо фактора. По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности. По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности. По характеру появления погрешности делятся на систематические погрешности и случайные погрешности. По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные. По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные. Абсолютная погрешность — это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим действительным значением данной величины. Q 0 — значение той же самой величины, принятое за базу сравнения настоящее значение. Абсолютная погрешность меры — это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим действительным значением воспроизводимой мерой величины. Приведенная погрешность — это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению. Исключением являются средства измерений с существенно неравномерной шкалой измерения;. Абсолютная погрешность тогда выражается в единицах длины. Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения. Инструментальная погрешность — это погрешность, возникающая из—за допущенных в процессе изготовления функциональных частей средств измерения ошибок. Субъективная погрешность — это погрешность возникающая из—за низкой степени квалификации оператора средства измерений, а также из—за погрешности зрительных органов человека, т. Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности. Статическая погрешность — это погрешность, которая возникает в процессе измерения постоянной не изменяющейся во времени величины. Динамическая погрешность — это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной переменной во времени величины, и статической погрешностью погрешностью значения измеряемой величины в определенный момент времени. Основная погрешность — это погрешность, полученная в нормальных условиях эксплуатации средства измерений при нормальных значениях влияющих величин. Дополнительная погрешность — это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений. Нормальные условия — это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений. Рабочие условия — это условия, в которых изменение влияющих величин имеет более широкий диапазон значения влияющих не выходят за границы рабочей области значений. Рабочая область значений влияющей величины — это область значений, в которой проводится нормирование значений дополнительной погрешности. Аддитивная погрешность — это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю абсолютного. Мультипликативная погрешность — это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям. Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений. Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений. Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из—за воздействия влияющих величин на параметрические характеристики элементов прибора. Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Систематическая погрешность — это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами например, применением методов измерения, снижающих вероятность ее возникновения , если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения метрологическое свойство. Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки. Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат. Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы. Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку. Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком. Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения. Случайная погрешность — это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов. Промахи и грубые погрешности — это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из—за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий. Качество измерительного прибора — это уровень соответствия прибора своему прямому предназначению. Следовательно, качество измерительного прибора определяется тем, насколько при использовании измерительного прибора достигается цель измерения. Главная цель измерения — это получение достоверных и точных сведений об объекте измерений. Постоянная прибора — это некоторое число, умножаемое на отсчет с целью получения искомого значения измеряемой величины, т. Постоянная прибора в некоторых случаях устанавливается как цена деления шкалы, которая представляет собой значение измеряемой величины, соответствующее одному делению. Чувствительность прибора — это число, в числителе которого стоит величина линейного или углового перемещения указателя если речь идет о цифровом измерительном приборе, то в числителе будет изменение численного значения, а в знаменателе — изменение измеряемой величины, которое вызвало данное перемещение или изменение численного значения. Порог чувствительности измерительного прибора — число, являющееся минимальным значением измеряемой величины, которое может зафиксировать прибор. Точность измерительного прибора — это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины. Точность измерительного прибора определяется посредством установления нижнего и верхнего пределов максимально возможной погрешности. Практикуется подразделение приборов на классы точности, основанное на величине допустимой погрешности. Класс точности средств измерений — это обобщающая характеристика средств измерений, которая определяется границами основных и дополнительных допускаемых погрешностей и другими, определяющими точность характеристиками Классы точности определенного вида средств измерений утверждаются в нормативной документации. Причем для каждого отдельного класса точности утверждаются определенные требования к метрологическим характеристикам Объединение установленных метрологических характеристик определяет степень точности средства измерений, принадлежащего к данному классу точности. Класс точности средства измерений определяется в процессе его разработки. Так как в процессе эксплуатации метрологические характеристики как правило ухудшаются, можно по результатам проведенной калибровки поверки средства измерений понижать его класс точности. По способу выражения выделяют абсолютную и относительную погрешности. Q n — значение некой величины, полученное с помощью проверяемого средства измерения;. Относительная погрешность — это число, отражающее степень точности средства измерения. Относительная погрешность вычисляется по следующей формуле:. Основная погрешность средств измерения — это погрешность, которая определяется в том случае, если средства измерения применяются в нормальных условиях. Дополнительная погрешность средств измерения — это составная часть погрешности средства измерения, возникающая дополнительно, если какая—либо из влияющих величин выйдет за пределы своего нормального значения. Метрологическое обеспечение — это утвержение и использование научно—технических и организационных основ, технических приборов, норм и стандартов с целью обеспечения единства и установленной точности измерений. Метрологическое обеспечение в своем научном аспекте базируется на метрологии. Измерительная система — средство измерения, представляющее собой объединение мер, ИП, измерительных приборов и другое, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве. Метрологическое обеспечение измерительных систем подразумевает:. Измерительный канал измерительной системы — это часть измерительной системы, технически или функционально обособленная, предназначенная для выполнения определенной завершающейся функции например, для восприятия измеряемой величины или для получения числа или кода, являющегося результатом измерений этой величины. Простой измерительный канал — это канал, в котором используется прямой метод измерений, реализующийся посредством упорядоченных измерительных преобразований. В сложном измерительном канале выделяют первичную часть и вторичную часть. В первичной части сложный измерительный канал является объединением некоторого числа простых измерительных каналов. Сигналы с выхода простых измерительных каналов первичной части применяются для косвенных, совокупных или совместных измерений или для получения пропорционального результату измерений сигнала во вторичной части. Измерительный компонент измерительной системы — это средство измерений, обладающее отдельно нормированными метрологическими характеристиками. Примером измерительного компонента измерительной системы может послужить измерительный прибор. К измерительным компонентам измерительной системы принадлежат также аналоговые вычислительные устройства устройства, выполняющие измерительные преобразования. Аналоговые вычислительные устройства принадлежат к группе устройств с одним или несколькими вводами. Связующий компонент — это технический прибор или элемент окружающей среды, применяющиеся в целях обмена сигналами, содержащими сведения об измеряемой величине, между компонентами измерительной системы с минимально возможными искажениями. Примером связующего компонента может послужить телефонная линия, высоковольтная линия электропередачи, переходные устройства. Вычислительный компонент — это цифровое устройство часть цифрового устройства , предназначенное для выполнения вычислений, с установленным программным обеспечением. Вычислительный компонент применяется для вычи. Вычислительный компонент выполняет также логические операции и координирование работы измерительной системы. Комплексный компонент — это составная часть измерительной системы, представляющая собой технически или территориально объединенную совокупность компонентов Комплексный компонент завершает измерительные преобразования, а также вычислительные и логические операции, которые утверждены в принятом алгоритме обработки результатов измерений для других целей. Вспомогательный компонент — это технический прибор, предназначенный для обеспечения нормального функционирования измерительной системы, но не принимающий участия в процессе измерительных преобразований. Согласно соответствующим ГОСТам метрологические характеристики измерительной системы должны быть в обязательном порядке нормированы для каждого измерительного канала, входящего в измерительную систему, а также для комплексных и измерительных компонентов измерительной системы. Как правило, изготовитель измерительной системы определяет общие нормы на метрологические характеристики измерительных каналов измерительной системы. Нормированные метрологические характеристики измерительных каналов измерительной системы призваны:. В случае, если определение или контроль над метрологическими характеристиками измерительного канала измерительной системы не могут осуществляться экспериментальным путем для всего измерительного канала, нормирование метрологических характеристик проводится для составных частей измерительного канала. Причем, объединение этих частей должно представлять собой целый измерительный канал. Нормировать характеристики погрешности в качестве метрологических характеристик измерительного канала измерительной системы можно как при нормальных условиях использования измерительных компонентов, так и при рабочих условиях, для которых характерно такое сочетание влияющих факторов, при котором модуль численного значения характеристик погрешности измерительного канала имеет максимально возможное значение. Для большей эффективности для промежуточных сочетаний влияющих факторов также нормируются характеристики погрешностей измерительного канала. Данные характеристики погрешности измерительных каналов измерительной системы необходимо проверять посредством их расчета по метрологическим характеристикам компонентов измерительной системы, представляющих собой в целом измерительный канал. Причем рассчитанные значения характеристик погрешности измерительных каналов могут и не проверяться экспериментальным путем. Но тем не менее в обязательном порядке должен осуществляться контроль метрологических характеристик для всех составных частей компонентов измерительной системы, нормы которых являются исходными данными в расчете. Нормированные метрологические характеристики комплексных компонентов и измерительных компонентов должны:. Для вычислительных компонентов измерительной системы, в случае, если их программное обеспечение не учитывалось в процессе нормирования метрологических характеристик, нормируются погрешности вычислений, источником которых является функционирование программного обеспечения алгоритм вычислений, его программная реализация. Для вычислительных компонентов измерительной системы могут также нормироваться другие характеристики, при условии учета специфики вычислительного компонента, которая может воздействовать на характеристики составляющих частей погрешности измерительного канала характеристики составляющей погрешности , если составляющая погрешность возникает из—за использования данной программы обработки результатов измерений. Техническая документация по эксплуатации измерительной системы должна включать в себя описание алгоритма и программы, работающей в соответствии с описанным алгоритмом. Данное описание должно позволять рассчитывать характеристики погрешности результатов измерений с использованием характеристик погрешности составной части измерительного канала измерительной системы, расположенной перед вычислительным компонентом. При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах. В случае, если допустимая погрешность не предусмотрена в соответствующих нормативных документах, предельно допустимая погрешность измерения должна быть регламентирована в технической документации на изделие. Главным критерием выбора средств измерений является соответствие средств измерения требованиям достоверности измерений, получения настоящих действительных значений измеряемых величин с заданной точностью при минимальных временных и материальных затратах. Если необходимо выбрать измерительную систему, руководствуясь критерием точности, то ее погрешность должна вычисляться как сумма погрешностей всех элементов системы мер, измерительных приборов, измерительных преобразователей , в соответствии с установленным для каждой системы законом. Предварительный выбор средств измерений производится в соответствии с критерием точности, а при окончательном выборе средств измерений должны учитываться следующие требования:. При выборе средств измерений необходимо учитывать предпочтительность стандартизированных средств измерений. Точечная оценка является функцией от экспериментальных данных и, следовательно, сама должна быть случайной величиной, распределенной по закону, зависящему от закона распределения для значений исходной случайной величины Закон распределения значений точечной оценки будет зависеть также от оцениваемого параметра и от числа испытаний экспериментов. Несмещенная точечная оценка — это оценка параметра погрешности, математическое ожидание которой равно этому параметру. Эффективная точечная оценка — это точечная оценка. Состоятельная точечная оценка — это оценка, которая при увеличении числа испытаний стремится к значению параметра, подвергающегося оценке. Метод максимального правдоподобия основывается на идее, что сведения о действительном значении измеряемой величины и рассеивании результатов измерений, полученные путем многократных наблюдений, содержатся в ряде наблюдений. Метод максимального правдоподобия состоит в поиске оценок, при которых функция правдоподобия проходит через свой максимум. Оценки максимального правдоподобия — это оценки сред—неквадратического отклонения и оценки истинного значения. Если случайные погрешности распределены по нормальному закону распределения, то оценка максимального правдоподобия для истинного значения представляет собой среднее арифметическое результатов наблюдений, а оценка дисперсии является средним арифметическим квадратов отклонений значений от математического ожидания. Метод наименьших квадратов состоит в том, что из определенного класса оценок берут ту оценку, у которой минимальная дисперсия самую эффективную. Из всех линейных оценок действительного значения, где присутствуют некоторые постоянные, только среднее арифметическое сводит к наименьшему значению дисперсии. В связи с этим при условии распределения значений случайных погрешностей по нормальному закону распределения оценки, полученные с использованием метода наименьших квадратов, идентичны оценкам максимального правдоподобия. Оценка параметров с помощью интервалов проводится посредством нахождения доверительных интервалов, в пределах которых с заданными вероятностями располагаются действительные значения оцениваемых параметров. Доверительная граница случайного отклонения — это число, представляющее собой длину доверительного интервала, разделенную пополам. При достаточно большом количестве испытаний доверительный интервал существенно уменьшается. Если увеличивается число испытаний, то допустимо увеличить число доверительных интервалов. Грубые погрешности — это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Для того чтобы исключить грубые погрешности, рекомендуется до начала измерений приближенно определить значение измеряемой величины. В случае, если при проведении измерений выясняется, что результат отдельного наблюдения сильно отличается от других полученных результатов, нужно обязательно установить причины такого отличия. Результаты, полученные с резким отличием, можно отбросить и повторно измерить данную величину. Однако в некоторых случаях отбрасывание таких результатов может вызвать ощутимое искажение рассеивания ряда измерений. В связи с этим рекомендуется не отбрасывать необдуманно отличающиеся результаты, а дополнять их результатами повторных измерений. Если необходимо исключить грубые погрешности в процессе обработки полученных результатов, когда уже нельзя скорректировать условия проведения измерений и провести повторные измерения, то применяются статистические методы. Общий метод проверки статистических гипотез позволяет выяснить, присутствует ли в данном результате измерений грубая погрешность. Погрешность результата однократного измерения определяется при утверждении метода проведения измерений. В процессе обработки результатов измерений используются различные виды закона распределения нормальный закон распределения, равномерный закон распределения корреляционный закон распределения измеряемой величины в данном случае она рассматривается как случайная. Обработка результатов прямых равноточных измерений Прямые измерения — это измерения, посредством которых непосредственно получается значение измеряемой величины Равноточными или равнорассеянными называют прямые, взаимно независимые измерения определенной величины, причем результаты этих измерений могут быть рассмотрены как случайные и распределенные по одному закону распределения. Обычно при обработке результатов прямых равноточных измерений предполагается, что результаты и погрешности измерений распределены по нормальному закону распределения. Затем, если систематическая погрешность определена, ее значение вычитают из вычисленного значения математического ожидания. Потом вычисляется значение среднеквадратического отклонения значений измеряемой величины от математического ожидания. Вычислить математическое ожидание результатов измерений. В качестве математического ожидания обычно берется среднее арифметическое значений. Установить величину случайной погрешности отклонения от среднего арифметического результата однократного измерения. Вычислить дисперсию случайной погрешности. Вычислить среднеквадратическое отклонение результата измерения. Калибровка средств измерений — это комплекс действий и операций, определяющих и подтверждающих настоящие действительные значения метрологических характеристик и или пригодность средств измерений, не подвергающихся государственному метрологическому контролю. Пригодность средства измерений — это характеристика, определяющаяся соответствием метрологических характеристик средства измерения утвержденным в нормативных документах, либо заказчиком техническим требованиям Калибровочная лаборатория определяет пригодность средства измерений. Калибровка сменила поверку и метрологическую аттестацию средств измерений, которые проводились только органами государственной метрологической службы. Калибровка, в отличие от поверки и метрологической аттестации средств измерений, может осуществляться любой метрологической службой при условии, что у нее есть возможность обеспечить соответствующие условия для проведения калибровки. Калибровка осуществляется на добровольной основе и может быть проведена даже метрологической службой предприятия. Но тем не менее метрологическая служба предприятия обязана выполнять определенные требования. Основное требование к метрологической службе — обеспечение соответствия рабочего средства измерений государственному эталону, т. Данный метод базируется на осуществлении измерений одной и той же физической величины калибруемым поверяемым прибором и эталонным прибором одновременно. Погрешность калибруемого поверяемого прибора вычисляется как разность показаний калибруемого прибора и эталонного прибора т. Метод сличения с помощью компьютера осуществляется с использованием компаратора — специального прибора, посредством которого проводится сравнение показаний калибруемого поверяемого средства измерений и показаний эталонного средства измерений. Необходимость использования компаратора обусловливается невозможностью провести непосредственное сравнение показаний средств измерений, измеряющих одну и ту же физическую величину. Компаратором может быть средство измерения, одинаково воспринимающее сигналы эталонного средства измерения и калибруемого поверяемого прибора. Преимущество данного метода в последовательности во времени сравнения величин. Метод прямых измерений величины используется в случаях, когда есть возможность провести сравнение калибруемого средства измерения с эталонным в установленных пределах измерений. Метод прямых измерений базируется на том же принципе, что и метод непосредственного сличения. Различие между этими методами состоит в том, что при помощи метода прямых измерений осуществляется сравнение на всех числовых отметках каждого диапазона поддиапазона. Метод косвенных измерений используется в случаях, когда настоящие действительные значения измеряемых физических величин невозможно получить посредством прямых измерений или когда косвенные измерения выше по точности, чем прямые измерения. При использовании данного метода для получения искомого значения сначала ищут значения величин, связанных с искомой величиной известной функциональной зависимостью. А затем на основании этой зависимости находится расчетным путем искомое значение. Метод косвенных измерений, как правило, используется в установках автоматизированной калибровки поверки. Для того чтобы передача размеров единиц измерений рабочим приборам от эталонов единиц измерений осуществлялась без больших погрешностей, составляются и применяются поверочные схемы. Поверочные схемы — это нормативный документ, в котором утверждается соподчинение средств измерений, принимающих участие в процессе передачи размера единицы измерений физической величины от эталона к рабочим средствам измерений посредством определенных методов и с указанием погрешности. Поверочные схемы утверждают метрологическое подчинение государственного эталона, разрядных эталонов и средств измерений. Государственные поверочные схемы устанавливаются и действуют для всех средств измерений определенного вида, использующихся в пределах страны. Ведомственные поверочные схемы устанавливаются и действуют на средства измерений данной физической величины, подлежащие ведомственной поверке. Ведомственные поверочные схемы не должны вступать в противоречие с государственными поверочными схемами, если они установлены для средств измерений одних и тех же физических величин Ведомственные поверочные схемы могут быть установлены при отсутствии государственной поверочной схемы. В ведомственных поверочных схемах возможно непосредственно указывать определенные типы средств измерений. Локальные поверочные схемы используются метрологическими службами министерств и действуют также и для средств измерений предприятий, им подчиненных. Локальная поверочная схема может распространяться на средства измерений, использующиеся на определенном предприятии Локальные поверочные схемы в обязательном порядке должны отвечать требованиям соподчиненности, утвержденным государственной поверочной схемой. Составлением государственных поверочных схем занимаются научно—исследовательские институты Госстандарта Российской Федерации Научно—исследовательские институты Госстандарта являются обладателями государственных эталонов. Государственные поверочные схемы устанавливаются Госстандартом РФ, а локальные поверочные схемы — метрологическими службами либо руководителями предприятий. В поверочной схеме утверждается порядок передачи размера единиц измерений одной или нескольких физических величин от государственных эталонов рабочим средствам измерений. Поверочная схема должна содержать по меньшей мере две ступени передачи размера единиц измерений. Правовые основы метрологического обеспечения. Единство измерений — это характеристика измерительного процесса, означающая, что результаты измерений выражаются в установленных и принятых в законодательном порядке единицах измерений и оценка точности измерений имеет надлежащую доверительную вероятность. До принятия данного Закона нормы в области метрологии не были регламентированы законодательно На момент принятия в Законе присутствовало много новшеств начиная от утвержденной терминологии и заканчивая лицензированием метрологической деятельности в стране В Законе были четко разграничены обязанности государственного метрологического контроля и государственного метрологического надзора, установлены новые правила калибровки, введено понятие добровольной сертификации средств измерений. Результаты измерений должны быть выражены в установленных в стране единицах измерения;. Все определения, утвержденные в Законе, базируются на официальной терминологии Международной организации законодательной метрологии МОЗМ. Закон утверждает Государственную метрологическую службу и другие службы, занимающиеся обеспечением единства измерений, метрологические службы государственных органов управления и формы осуществления государственного метрологического контроля и надзора. В Законе содержатся статьи, регламентирующие калибровку поверку средств измерений и их сертификацию. В соответствии с Законом создан институт лицензирования метрологической деятельности с целью защиты законных прав потребителей. Правом выдачи лицензии обладают только органы Государственной метрологической службы. В соответствии с положениями Закона увеличивается область распространения государственного метрологического контроля. В нее добавились банковские операции, почтовые операции, налоговые операции, таможенные операции, обязательная сертификация продукции. В соответствии с Законом вводится основанная на добровольном принципе Система сертификации средств измерений, осуществляющая проверку средств измерений на соответствие метрологическим правилам и требованиям российской системы калибровки средств измерений. Государственная метрологическая служба Российской Федерации ГМС является объединением государственных метрологических органов и занимается координированием деятельности по обеспечению единства измерений. Существуют следующие метрологические службы:. Руководит всеми вышеуказанными службами Государственный комитет Российской Федерации по стандартизации и метрологии Госстандарт России. Государственная метрологическая служба включает также центры государственных эталонов, специализирующиеся на различных единицах измерения физических величин. Государственная служба времени и частоты и определения параметров вращения Земли ГСВЧ занимается обеспечением единства измерений времени, частоты и определения параметров вращения Земли на межрегиональном и межотраслевом уровнях. Измерительную информацию ГСВЧ используют службы навигации и управления самолетами, судами и спутниками, Единая энергетическая система и др. Государственная служба стандартных образцов состава и свойств веществ и материалов ГССО занимается созданием и обеспечением применения системы стандартных образцов состава и свойств веществ и материалов. В понятие материалов включаются:. ГССО занимается также разработкой приборов, предназначенных для сравнения характеристик стандартных образцов и характеристик веществ и материалов, производимых разными типами предприятий сельскохозяйственными, промышленными и др. Государственная служба стандартных справочных данных о физических константах и свойствах веществ и материалов ГСССД занимается разработкой точных и достоверных данных о физических константах, свойствах веществ и материалов минерального сырья, нефти, газа и пр. Измерительную информацию ГСССД используют различные организации, занимающиеся проектировкой технических изделий с повышенными требованиями к точности. ГСССД публикует справочные данные, согласованные с международными метрологическими организациями. Метрологические службы государственных органов управления Российской Федерации и метрологические службы юридических лиц могут быть созданы в министерствах, на предприятиях, в учреждениях, зарегистрированных как юридическое лицо, с целью проведения разного рода работ по обеспечению единства и надлежащей точности измерений, для обеспечения метрологического контроля и надзора. Государственная система обеспечения единства измерений создана с целью обеспечить единство измерений в пределах страны. Государственная система обеспечения единства измерений реализуется, координируется и управляется Госстандартом Российской Федерации. Госстандарт Российской Федерации является государственным органом исполнительной власти в сфере метрологии. Указанные задачи система обеспечения единства измерений выполняет посредством устранения негативных последствий недостоверных и неточных измерений во всех сферах жизнедеятельности человека и общества с использованием конституционны норм, нормативных документов и постановлений правительства Российской Федерации. Правовая подсистема — это совокупность связанных между собой актов утвержденных законодательно и подзаконных , имеющих одни и те же цели и утверждающих согласованные между собой требования к определенным, связанным между собой объектам системы обеспечения единства измерений. Необходимо отметить, что неточность и недостоверность измерений в непроизводственных сферах, таких как здравоохранение, могут повлечь за собой серьезные последствия и угрозу безопасности. Неточность и недостоверность измерений в сфере торговых и банковских операций, например, могут вызвать огромные финансовые потери как отдельных граждан, так и государства. Объектами Государственного метрологического контроля и надзора могут являться, например, следующие средства измерений:. В Законе Российской Федерации установлено три вида государственного метрологического контроля и три вида государственного метрологического надзора. Виды государственного метрологического надзора:. Альтернативная медицина Астрономия и Космос Биология Биохимия Ветеринария Военная история Геология и география Государство и право Деловая литература Домашние животные Домоводство Здоровье Зоология История Компьютеры и Интернет Кулинария Культурология Литературоведение Математика Медицина Науч. Предмет и задачи метрологии 2. Основные характеристики измерений 6. Понятие о физической величине. Значение систем физических единиц 7. Физические величины и измерения 8. Эталоны и образцовые средства измерений 9. Средства измерений и их характеристики Классификация средств измерения Метрологические характеристики средств измерений и их нормирование Метрологическое обеспечение, его основы Качество измерительных приборов Погрешности средств измерений Метрологическое обеспечение измерительных систем Выбор средств измерений Методы определения и учета погрешностей Обработка и представление результатов измерения Поверка и калибровка средств измерений Метрологическая служба в России Государственная система обеспечения единства измерений Предмет и задачи метрологии С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Таким образом, можно сказать, что метрология изучает: Выделяют несколько основных направлений метрологии: Следует различать также объекты метрологии: И здесь речь идет о: Термины Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. Итак, в метро логии используются следующие величины и их определения: Классификация измерений Классификация средств измерений может проводиться по следующим критериям. По характеристике точности измерения делятся на равноточные и неравноточные. По количеству измерений измерения делятся на однократные и многократные. По типу изменения величины измерения делятся на статические и динамические. Динамические измерения — это измерения изменяющейся, непостоянной физической величины. По предназначению измерения делятся на технические и метрологические. Технические измерения — это измерения, выполняемые техническими средствами измерений. Метрологические измерения — это измерения, выполняемые с использованием эталонов. По способу представления результата измерения делятся на абсолютные и относительные. В Международной системе единиц есть дополнительные единицы: Основные характеристики измерений Выделяют следующие основные характеристики измерений: Существует несколько критериев классификации методов измерений. По способам получения искомого значения измеряемой величины выделяют: По приемам измерения выделяют: По приемам сравнения величины с ее мерой выделяют: Метод сравнения с мерой основан на сравнении объекта измерения с его мерой. Основная характеристика измерений — это достоверность измерений. Значение систем физических единиц Физическая величина является понятием как минимум двух наук: Есть целый ряд классификаций, созданных по различным признакам Основными из них является деления на: Так, на современном этапе развития выделяют следующие основные системы единиц физических величин: Таблица 1 Международная система единиц или СИ Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин: К внесистемным единицам относятся следующие: Физические величины и измерения Объектом измерения для метрологии, как правило, являются физические величины. У физических величин есть качественные и количественные характеристики. Таким образом, размерность длины, массы и времени: Для производной величины размерность выражается посредством размерности основных величин и степенного одночлена: Значение величины может быть вычислено с помощью основного уравнения измерения, которое имеет вид: Есть два способа воспроизведения единиц по признаку зависимости от технико—экономических требований: Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. В научной литературе среди прямых методов измерений выделяют, как правило, следующие: В эту группу, как правило, включают следующие: Классификация средств измерения Средство измерения СИ — это техническое средство или совокупность средств, применяющееся для осуществления измерений и обладающее нормированными метрологическими характеристиками. Средства измерения классифицируются по следующим критериям: По способам конструктивной реализации средства измерения делятся на: Различают два вида стандартных образцов: Стандартные образцы могут применяться на разных уровнях и в разных сферах. В соответствии с методом определения значения измеряемой величины выделяют: Измерительные приборы могут осуществлять индикацию измеряемой величины по—разному. Отсчетные устройства делятся на: Деление шкалы — это расстояние от одной отметки шкалы до соседней отметки. Пределы измерений — это минимальное и максимальное значение диапазона измерений. Выделяют следующие виды шкал измерительных приборов: Односторонняя шкала — это шкала, у которой ноль располагается в начале. Двусторонняя шкала — это шкала, у которой ноль располагается не в начале шкалы. Симметричная шкала — это шкала, у которой ноль располагается в центре. По метрологическому предназначению средства измерения делятся на: Метрологические характеристики средств измерений и их нормирование Метрологические свойства средств измерения — это свойства, оказывающие непосредственное влияние на результаты проводимых этими средствами измерений и на погрешность этих измерений. Утвержденные НД метрологические характеристики являются нормируемыми метрологическими характеристиками Метрологические свойства средств измерения подразделяются на: Свойства, устанавливающие сферу применения средств измерения, определяются следующими метрологическими характеристиками: Свойства, определяющие прецизионность и правильность полученных результатов измерения, определяются следующими метрологическими характеристиками: Точность результатов, полученных некими средствами измерения, определяется их погрешностью. Q 0 , где AQ n — погрешность проверяемого средства измерения; Q n — значение некой величины, полученное с помощью проверяемого средства измерения; Q 0 — значение той же самой величины, принятое за базу сравнения настоящее значение. Метрологическое обеспечение, его основы Метрологическое обеспечение, или сокращенно МО, представляет собой такое установление и использование научных и организационных основ, а также ряда технических средств, норм и правил, нужных для соблюдения принципа единства и требуемой точности измерений. В научной литературе выделяют, как правило, целый ряд подобных процессов: В состав ГМС входят: В числе подобных сфер деятельности можно назвать: Метрологическая служба государственного органа управления подразумевает в своем составе следующие компоненты: Основными функциями ГНМЦ являются следующие: Так, в сфере научных и методических основ метрологического обеспечения Госстандарт России организует: Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. Виды погрешностей Выделяют следующие виды погрешностей: Погрешности измерений классифицируются по следующим признакам. Абсолютная погрешность вычисляется по следующей формуле: Q 0 , где AQ n — абсолютная погрешность; Q n — значение некой величины, полученное в процессе измерения; Q 0 — значение той же самой величины, принятое за базу сравнения настоящее значение. Относительная погрешность — это число, отражающее степень точности измерения. Относительная погрешность вычисляется по следующей формуле: Q — абсолютная погрешность; Q 0 — настоящее действительное значение измеряемой величины. Относительная погрешность выражается в процентах. Нормирующее значение определяется следующим образом: Методическая погрешность — это погрешность, возникающая по следующим причинам: В процессе измерения могут также появиться грубые погрешности и промахи. Способы исключения систематических погрешностей делятся на четыре вида: Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. Качество измерительных приборов Качество измерительного прибора — это уровень соответствия прибора своему прямому предназначению. Для того чтобы определить качество прибора, необходимо рассмотреть следующие его характеристики: Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям: Абсолютная погрешность вычисляется по формуле: Q n — абсолютная погрешность проверяемого средства измерения; Q n — значение некой величины, полученное с помощью проверяемого средства измерения; Q 0 — значение той же самой величины, принятое за базу сравнения настоящее значение. По характеру проявления погрешности подразделяют на случайные и систематические. По отношению к условиям применения погрешности подразделяются на основные и дополнительные. Метрологическое обеспечение измерительных систем Метрологическое обеспечение — это утвержение и использование научно—технических и организационных основ, технических приборов, норм и стандартов с целью обеспечения единства и установленной точности измерений. Можно выделить следующие цели метрологического обеспечения: Метрологическое обеспечение технических устройств — это совокупность научно—технических средств, организационных мероприятий и мероприятий, проводимых соответствующими учреждениями с целью достижения единства и требуемой точности измерений, а также установленных характеристик технических приборов. Измерительные системы используются для: Метрологическое обеспечение измерительных систем подразумевает: Измерительные компоненты измерительных систем бывают следующих видов. Вычислительный компонент применяется для вычи сления результатов измерений прямых, косвенных, совместных, совокупных , которые представляют собой число или соответствующий код, вычисления производятся по итогам первичных преобразований в измерительной системе. Нормированные метрологические характеристики измерительных каналов измерительной системы призваны: Причем, объединение этих частей должно представлять собой целый измерительный канал Нормировать характеристики погрешности в качестве метрологических характеристик измерительного канала измерительной системы можно как при нормальных условиях использования измерительных компонентов, так и при рабочих условиях, для которых характерно такое сочетание влияющих факторов, при котором модуль численного значения характеристик погрешности измерительного канала имеет максимально возможное значение. Нормированные метрологические характеристики комплексных компонентов и измерительных компонентов должны: Для связующих компонентов измерительной системы нормируются два вида характеристик: Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.


Сонник приснились кошки в доме
Цикл рассказов тургенева
Лада 21124 технические характеристики 16 клапанная
Amd radeon r9 270 series характеристики
Visa мастер карт
Понятие соучастияв преступлении курсовая
Правила пользования общественным транспортом для пассажиров
Рассказ необитаемый остров
На юбилей стихи на дочке
Больно накачивать губы
Производственная инструкция слесаря по ремонту котельного оборудования
Схемы красивых выкроек
Со скольки месяцев начинают вводить прикорм
Журнал событий приложений windows 8 как открыть
Водами какого моря омывается грузия
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment