Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/7911f58aa184b9fffd770459656d6adb to your computer and use it in GitHub Desktop.
Save anonymous/7911f58aa184b9fffd770459656d6adb to your computer and use it in GitHub Desktop.
Состав мышечной ткани животных

Состав мышечной ткани животных


= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Файл: >>>>>> Скачать ТУТ!
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


Быстрая помощь студентам
Состав и свойства мышечной ткани мяса
Мышечная ткань: строение и функции. Особенности строения мышечной ткани


























Растительные и животные организмы различаются не только внешне, но и, конечно, внутренне. Однако самая главная отличительная черта образа жизни - это то, что животные способны активно передвигаться в пространстве. Обеспечивается это благодаря наличию в них особых тканей - мышечных. Их мы и рассмотрим подробнее дальше. В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции. Совокупное сочетание всех перечисленных видов обеспечивает нормальное строение и функционирование живых существ. Особую роль в активной жизнедеятельности человека и животных играет специализированная структура. Ее название - мышечная ткань. Строение и функции ее весьма своеобразны и интересны. Вообще данная ткань неоднородна и имеет свою классификацию. Следует рассмотреть ее подробнее. Существуют такие разновидности мышечных тканей, как:. Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры. Во-первых, она удлиненной формы иногда достигает 14 см , то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ. Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином. Именно они обеспечивают главное свойство этой структуры - сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин - темные. Особенности мышечной ткани любого типа в том, что их клетки миоциты образуют целые скопления - пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, - меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру - определенный тип мышечной ткани. Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие - в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации - восстановления целостности ткани. Как и любые другие структуры, данные разновидности тканей имеют свои особенности не только в строении, но и в выполняемых функциях. Основные свойства мышечных тканей, благодаря которым они могут это делать:. Благодаря большому количеству нервных волокон, кровеносных сосудов и капилляров, питающих мышцы, они могут быстро воспринимать сигнальные импульсы. Данное свойство называется возбудимостью. Также особенности строения мышечной ткани позволяют ей быстро реагировать на любые раздражения, посылая ответный импульс в кору головного и спинной мозга. Так проявляется свойство проводимости. Это очень важно, так как способность вовремя отреагировать на угрожающие воздействия химического, механического, физического характера - важное условие нормальной безопасной жизнедеятельности любого организма. Мышечная ткань, строение и функции, которые она выполняет - все это в целом сводится к главному свойству, сократимости. Оно подразумевает произвольное контролируемое или непроизвольное без осознанного управления уменьшение или увеличение длины миоцита. Происходит это благодаря работе белковых миофибрилл актиновых и миозиновых нитей. Они могут растягиваться и истончаться почти до невидимости, а затем снова быстро восстанавливать свою структуру. В этом состоят особенности мышечной ткани любого типа. Так построена работа сердца человека и животных, их сосудов, глазных мышц, вращающих яблоко. Именно данное свойство обеспечивает способность к активному движению, перемещению в пространстве. Что бы сумел сделать человек, если бы его мышцы не могли сокращаться? Поднять и опустить руку, подпрыгнуть, присесть, танцевать и бегать, выполнять различные физические упражнения - все это помогают делать только мышцы. А именно миофибриллы актиновой и миозиновой природы, образующие миоциты ткани. Последнее свойство, о котором необходимо упомянуть, это лабильность. Она подразумевает способность ткани быстро восстанавливаться после возбуждения, приходить в абсолютную работоспособность. Лучше миоцитов это могут делать только аксоны - нервные клетки. Строение мышечных тканей, обладание перечисленными свойствами, отличительные особенности - главные причины выполнения ими ряда важнейших функций в организмах животных и человека. Одна из разновидностей мышечных. Устроена отлично от других. Миоциты небольшие, слегка вытянутые, напоминают утолщенные в центре волокна. Средний размер клетки составляет около 0,5 мм в длину и 10 мкм в диаметре. Протопласт отличается отсутствием сарколеммы. Ядро одно, а вот митохондрий много. Локализация генетического материала, отделенного от цитоплазмы кариолеммой, - в центре клетки. Плазматическая мембрана устроена достаточно просто, сложных белков и липидов не наблюдается. Рядом с митохондриями и по всей цитоплазме разбросаны миофибрилльные кольца, содержащие актин и миозин в небольших количествах, однако достаточных для сокращения ткани. Эндоплазматическая сеть и комплекс Гольджи несколько упрощены и редуцированы по сравнению с другими клетками. Гладкая мышечная ткань образована пучками миоцитов веретенообразных клеток описанного строения, иннервируется эфферентными и афферентными волокнами. Подчиняется управлению вегетативной нервной системы, то есть сокращается, возбуждается без осознанного контроля организма. В некоторых органах гладкая мускулатура сформирована благодаря индивидуальным одиночным клеткам с особенной иннервацией. Хотя такое явление достаточно редко. В целом можно выделить два основных типа клеток гладкой мускулатуры:. Первая группа клеток малодифференцированна, содержит множество митохондрий, хорошо выраженный аппарат Гольджи. В цитоплазме явно прослеживаются пучки сократительных миофибрилл и микрофиламентов. Вторая группа миоцитов специализируется на синтезе полисахаридов и сложных комбинативных высокомолекулярных веществах, из которых в дальнейшем строятся коллаген и эластин. Ими же вырабатывается значительная часть межклеточного вещества. Гладкая мышечная ткань, строение и функции, которые она выполняет, позволяют ей концентрироваться в разных органах в неодинаковом количестве. Так как иннервация не подчиняется контролю со стороны направленной деятельности человека его сознания , то и места локализации будут соответствующие. Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:. Желчный пузырь, места впадения желудка в кишку, мочевой пузырь, лимфатические и артериальные сосуды, вены и многие другиеорганы - все они способны нормально функционировать только благодаря свойствам гладкой мускулатуры. Управление, еще раз оговоримся, строго автономное. Рассмотренные выше типы мышечной ткани не подчиняются управлению со стороны сознания человека и не отвечают за его движение. Это прерогатива следующего вида волокон - поперечно-полосатых. Сначала разберемся, за что им было дано такое название. При рассмотрении в микроскоп можно увидеть, что данные структуры имеют четко выраженную исчерченность поперек определенными тяжами - нитями белка актина и миозина, образующими миофибриллы. Это и послужило причиной для такого названия ткани. Поперечно-мышечная ткань имеет миоциты, содержащие множество ядер и представляющие собой результат слияния нескольких клеточных структур. Такое явление обозначается терминами "симпласт" или "синцитий". Внешний вид волокон представлен длинными, вытянутыми цилиндрическими клетками, плотно соединенными между собой общим межклеточным веществом. Кстати, существует определенная ткань, которая образует эту среду для сочленения всех миоцитов. Ею обладает и гладкая мышечная. Соединительная ткань - основа межклеточного вещества, которая может быть как плотной, так и рыхлой. Она же формирует целый ряд сухожилий, при помощи которых поперечно-полосатая скелетная мускулатура крепится к костям. В теле животных и человека поперечнополосатая мускулатура имеет красный цвет. Это объясняется присутствием в волокнах миоглобина - специализированного белка. Каждый миоцит покрыт снаружи практически невидимой прозрачной оболочкой - сарколеммой. В молодом возрасте животных и человека скелетные мышцы содержат больше плотной соединительной ткани между миоцитами. С течением времени и старением она заменяется на рыхлую и жировую, поэтому мышцы становятся дряблыми и слабыми. Именно она составляет мясо животных, птиц, рыб, которое человек употребляет в пищу. Питательная ценность очень высокая из-за большого содержания различных белковых соединений. Разновидностью поперечно-полосатой мускулатуры, помимо скелетной, является сердечная. Особенности ее строения выражаются в присутствии двух типов клеток: Обычные имеют такое же строение, как и скелетные. Отвечают за автономное сокращение сердца и его сосудов. А вот кардиомиоциты - особые элементы. В них незначительное количество миофибрилл, а значит, актина и миозина. Это говорит о низкой способности к сокращению. Но их задача не в этом. Главная роль - выполнение функции проведения возбудимости по сердцу, осуществление ритмической автоматии. Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего объединения в общую структуру этих веточек. Еще одно отличие от поперечно-полосатой скелетной мускулатуры - в том, что сердечные клетки содержат ядра в своей центральной части. Миофибриллярные участки локализованы по периферии. Вся скелетная мускулатура организма - это поперечно-полосатая мышечная ткань. Таблица, отражающая места локализации данной ткани в организме, приведена ниже. Роль, которую исполняет поперечно-полосатая мускулатура, переоценить сложно. Ведь именно она отвечает за самое важное отличительное свойство растений и животных - способность к активному передвижению. Человек может совершать массу самых сложных и простых манипуляций, и все они будут зависеть от работы скелетных мышц. Многие люди занимаются тщательными тренировками своей мускулатуры, добиваются в этом большого успеха благодаря свойствам мышечных тканей. Рассмотрим, какие еще функции выполняет поперечно-полосатая мускулатура в теле человека и животных. Таким образом, можно сделать следующий вывод: Свойства и строение разных типов мускулатуры обеспечивают жизненно необходимые функции. В основе строения любой мышцы лежит миоцит - волокно, образованное из белковых нитей актина и миозина. Жизнь Экономика Наука Авто Отдых Хай-тек Здоровье. Почему нельзя обнимать котов? Почему вам необходим регулярный секс. Как шимпанзе ухаживает за ребенком-инвалидом в природе. ТОП самых извращенных тенденций красоты. О чем сожалеют на смертном одре: Почему надо заниматься сексом как можно чаще? Что происходит, когда собака облизывает лицо человека? Казусы с макияжем у знаменитостей. Очаровательная фотосессия мамы пятерняшек. Для чего женщины испытывают оргазм? Забавные факты о сексе, которые вам стоит узнать. А вы знали, что у голубоглазых людей один общий предок? Главная Образование Наука Мышечная ткань: Особенности строения мышечной ткани. Подписаться Поделиться Рассказать Рекомендовать. Животные ткани В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции. Образует покровы органов, наружные стенки сосудов, выстилает слизистые оболочки, формирует серозные оболочки. Образует все органы одноименной системы, обладает важнейшими особенностями - возбудимостью и проводимостью. Существует в разных проявлениях, в том числе в жидкой форме - крови. Формирует сухожилия, связки, жировые прослойки, заполняет кости. Мышечная ткань, строение и функции которой позволяют животным и человеку осуществлять самые разнообразные движения, а многим внутренним структурам - сокращаться и расширяться сосудам и так далее. Подписаться Поделиться Рассказать Рекоммендовать. И большинство из них не требуют особых усилий. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Обращайте внимание на свое тело. Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр


ХИМИЧЕСКИЙ СОСТАВ


Отдельное мышечное волокно можно рассматривать как гигантскую многоядерную клетку. Ее оболочка - сарколемма - представляет собой двойную мембрану. Диаметр развитого мышечного волокна составляет от 10 до мкм, а длина его обычно соответствует длине мышцы. Миофибриллы окружены жидкой фазой - саркоплазмой, в которой находятся ядра, митохондрии, рибосомы, лизосомы и другие клеточные органоиды. Миофибриллы характеризуются поперечно-полосатой исчерченностью, создаваемой в результате чередования темных анизотропных и светлых изотропных участков, которые соответственно называются А-дисками и I-дисками. Длина саркомера 2, мкм. Каждая миофибрилла состоит из нескольких сот саркомеров. Мышечные волокна слагаются в первичные мышечные пучки. В пучках волокна разделены тончайшими прослойками соединительной ткани, связанными с волокнами — эндомизием. Первичные мышечные пучки объединяются в пучки вторичные и т. Пучки высшего порядка, покрытые соединительнотканной оболочкой — перимизием — и в совокупности составляет мускул. Эндомизий и перимизий образуют каркас или строму мышц. Их прочностные свойства влияют на жесткость мышечной ткани. В перимизии и эпимизии мышц некоторых видов откормленных животных находятся жировые клетки, образующие так называемую мраморность мускула. Химический состав мышечной ткани представлен в табл. Поэтому в первую очередь именно они определяют ее пищевую ценность и важнейшие свойства. Часть белковых веществ образует структурный скелет во-. Некоторые из них, например, белки сарколеммы, вообще нерастворимы, иные требуют для перехода в раствор большой солевой концентрации и высокого рН, которые не характерны для клеточной субстанции белки фибрилл и структурного скелета ядер. Другая часть белковых веществ основная масса белков саркоплазмы находится в состоянии золей. Состав мышечной ткани сельскохозяйственных животных. В технологическом отношении практическое значение имеют питательная ценность белковых веществ и некоторые их свойства, от которых зависит их состояние и поведение под воздействием воды, электролитов, изменения рН среды, нагрева, окислителей и восстановителей и т. В связи с тем, что человеческий организм не способен синтезировать некоторые аминокислоты, они должны поступать извне в составе незаменимого белкового минимума. В него входит определенное количество несинтезируемых, а, следовательно, незаменимых аминокислот. К ним относится валин, триптофан, лейцин, лизин, изолейцин, аргинин, гистидин, треонин, метионин, цистин, фенилаланин, тирозин. Из их числа аргинин и гистидин синтезируются частично, в количестве, достаточном для покрытия потребностей взрослого организма, но недостаточном для растущего. Тирозин может быть заменен фенилаланином, а цистин — метионином. Поэтому они являются условно незаменимыми аминокислотами. Белковые вещества, в состав которых не входит хотя бы одна из числа жизненно необходимых аминокислот или содержат их в крайне незначительном количестве, не могут обеспечить нормальную деятельность организма. Их относят к неполноценным. Нарушение наиболее благоприятного количественного соотношения незаменимых аминокислот в составе белка уменьшает возможность использования всей белковой смеси на потребности синтеза и этим самым снижает биологическую ценность белка. Поэтому, составляя суждение о питательности белковых продуктов, в том числе мяса и мясных продуктов необходимо исходить прежде всего из того, в какой степени количественное соотношение содержащихся в них аминокислот приближается к оптимальному. Аминокислотный состав белковых веществ может меняться в зависимости от вида. Пола, возраста и даже физиологического состояния животных перед убоем. Так, в мускулатуре самцов несколько больше аргинина и цистина, в глобулинах самок больше гистидина. В мясе теленка содержится больше гистидина и лизина и меньше аргинина, чем в мясе взрослого быка. По этим причинам аминокислотная характеристика белков мышечной ткани может быть выражена лишь примерными усредненными цифрами. Соотношение содержания в мышечной ткани незаменимых аминокислот сравнительно близко к оптимальному. Поэтому мышечную ткань продуктивных животных следует рассматривать как основной источник белковых ресурсов питания и как наиболее ценную составную часть мяса. Что касается неполноценных белков — коллагена и эластина, в составе которых нет триптофана и очень мало метионина, то их биологическая ценность и роль в питании определяется тем, что в некоторых соотношениях с другими белками мышечной ткани они могут компенсировать недостающее количество незаменимых аминокислот из числа тех, которые они содержат в достаточном количестве. Однако их количество в пище должно быть ограниченным, иначе резко нарушается благоприятный баланс аминокислот. Усвояемость белковых веществ в реальных условиях питания зависит от многих факторов, в том числе от физико-химического состояния белка, его способности перевариваться, то есть расщепляться пищеварительными ферментами, состава смеси веществ, образующих пищу в частности содержания в ней жира , присутствия в пище веществ, влияющих на усвоение, например вкусовых и ароматических, способа обработки пищи. Большинство белков мышечной ткани легко расщепляется пепсином и химотрипсином. Однако усвоение организмом образующихся продуктов расщепления, в том числе и незаменимых аминокислот, их биологическая доступность организму неодинакова и зависит от природы белковых веществ. Таким образом, в конечном счёте, питательная ценность белковых веществ определяется степенью или коэффициентом их использования в анаболизме, то есть в процессах их ассимиляции организмом. По некоторым данным различные виды мяса характеризуются следующим коэффициентом использования в анаболизме: Для покрытия потребностей организма необходимо вдвое меньше животного белка, чем растительного. Краткая характеристика мышечных белков. Миоген представляет собой комплекс миогенов А, В, и С, отличающихся кристаллической формой. В издании под миогеном подразумевается вся миогеновая фракция. Температура денатурации свободного от солей миогена 0 С, изоэлектрическая точка в интервале рН 6,,5. С течением времени часть миогена переходит в нерастворимое состояние. Растворимы в воде, нерастворимы в кислой среде, так как имеют изоэлектрическую точку около рН 3,,5; температура их денатурации 0 С. Растворим в солевых растворах даже очень низкой концентрации, температура денатурации при рН 6,5 около 50 0 С, при рН 7,0 около 80 0 С, изоэлектрическая точка около рН 5,0. Он состоит из белковой части — глобина и простетической группы — гема. Белковая часть миоглобина отлична от белковой части гемоглобина; гем миоглобина идентичен гему гемоглобина, но на одну молекулу миоглобина приходится одна группа гема. В миоглобине не обнаружено цистина. Миоглобин хорошо растворяется в воде. Температура денатурации миоглобина около 60 0 С. Денатурация миоглобина сопровождается отщеплением простетической группы. Миоглобин способен присоединять окись азота, сероводород и кислород за счет дополнительных связей. В последнем случае образуется оксимиоглобин, который переходит с течением времени в метмиоглобин буро-коричневого цвета. При этом железо отдает один электрон. При действии восстановителей метмиоглобин снова образует миоглобин. Эти химические превращения сходны с превращениями гемоглобина. Миоглобин окрашен в темно-красный цвет и обуславливает естественную окраску мышечной ткани, интенсивность которой зависит от содержания миоглобина. Миопротеиды — группа мало изученных сложных белков, имеющих высокую температуру денатурации около 0 С. Содержатся в мышечном волокне в незначительном количестве. К группе протеидов относятся также некоторые ферменты мышечного волокна. Миозин ультрацентрифугированием разделен на 4 фракции. В издании под миозином подразумевается вся миозиновая фракция. Миозин — полноценный, хорошо переваривающийся белок. Совершенно чистый миозин растворим в воде. Небольшие количества солей щелочных металлов — 0,,25 моль осаждают миозин из его растворов; в солевых растворах повышенной концентрации до 0,6 моль он растворяется. Миозин способен взаимодействовать с актином, образуя актомиозин, и с аденозинтрифосфорной кислотой АТФ , когда он выступает в качестве фермента. При этом образуется аденозиндифосфорная АДФ и ортофосфорная кислоты и выделяется энергия, расходуемая на акт мышечного сокращения. Температура денатурации миозина около 0 С у птицы около 51 0 С ; изоэлектрическая точка при рН 5,4. Актин полноценный белок, переваривается пищеварительными ферментами. Растворим в двухмолярных растворах нейтральных солей при длительном воздействии, осаждается солями кальция. Температура денатурации актина около 50 0 С. Под воздействием ионов растворимых солей щелочных и щелочноземельных металлов в определенных концентрациях актин переходит в фибриллярную форму в результате линейной агрегации молекул. По удалении этих солей он снова превращается в глобулярный актин. Фибриллярный актин образуется также при замораживании мышц, вследствие повышения концентрации содержащихся в них солей. Актомиозин - комплексный белок. При известных условиях миозин SH-группами способен взаимодействовать с оксигруппами фибриллярного актина, образуя актомиозин, который входит в структуру мышечной фибриллы. Такой актомиозин содержит около двух частей миозина и одной части актина. Растворителями извлекается актомиозин, содержащий около 0,25 части актина. В присутствии аденозинтрифосфорной кислоты и в зависимости от её концентрации актомиозин частично или полностью диссоциирует на актин и миозин. Это явление тесно связано с сокращением и посмертным окоченением мышц. В составе мышечной ткани актомиозин в зависимости от условий может находиться в ассоциированной или частью в диссоциированной форме, содержащей неопределенное количество актина. Актомиозин растворим в солевых растворах достаточно высокой концентрации. При этом, чем больше в нем актина, тем выше нужна концентрация соли. При разбавлении актомиозин осаждается. Температура денатурации актомиозина 0 С. Он представляет собой фибриллярный белок, по свойствам и аминокислотному составу близок к миозину, но не содержит триптофана. В присутствии нейтральных солей образует вязкие растворы, в которых диспергируется солями на частицы различных размеров. Изоэлектрическая точка при рН 4,6. Нуклеопротеиды — сложные белки, образованные щелочными белками — гистонами и нуклеиновой кислотой. Составляют небольшую часть белков мышечного волокна. Большинство белковых веществ мышечного волокна обладает свойствами ферментов. В состав мышечного волокна входят представители всех групп ферментов: Поэтому в мышечном волокне возможны любые самые разнообразные ферментативные превращения. Однако после прекращения жизни животного в связи с отсутствием поступления кислорода в клетки на первый план выступает разрушительная деятельность ферментов, преимущественно гидролаз и фосфорилаз, которая приводит к существенным изменениям белковой, липидной и углеводной фракций и многих экстрактивных веществ. В зависимости от вида и упитанности животных мышечная ткань содержит различное количество липидов. Часть этих липидов, главным образом глицеридов, находится в тончайших прослойках соединительной ткани и легко извлекается органическими растворителями. Другие липиды входят в состав волокна, в том числе как липидные компоненты белковых веществ, и неполностью извлекаются растворителями. Часть липидов мышечного волокна и холестерина наряду с белками органически входят в его структуру; другая часть представляет собой промежуточные продукты обмена веществ. Полиненасыщенные жирные кислоты, фосфолипиды и холестерин - необходимые компоненты пищи. По данным Института питания АМН, суточная потребность в полиненасыщенных кислотах в среднем составляет г, в фосфолипидах — 5 г, в холестерина — 0,,6 г. Большинство этих веществ извлекается экстрагируется при обработке мяса водой. Их поэтому обычно называют экстрактивными веществами. Многие из них претерпевают глубокие химические изменения с момента прекращения жизненных процессов в тканях, образуя другие вещества. Поэтому состав этой фракции мышечной ткани качественно и количественно непостоянен, в связи с чем изменяются и некоторые важные свойства мяса. Прочие органические вещества мышечной ткани соответственно особенностям их состава и значению можно разделить на три группы: В свою очередь азотистые небелковые вещества разделяются на азотистые основания, аминокислоты и прочие азотистые вещества. Азотистые основания представлены основаниями группы карнозина карнозин, ансерин , основаниями группы креатина креатин, креатинин, метилгуанидин , основаниями группы холина холин, карнитин, бетаин и пуриновыми и пиримидиновыми основаниями аденин, гуанин, гипоксантин. Их состав непостоянен и меняется с течением времени после прекращения жизни животного. Из прочих азотистых небелковых веществ наиболее важными являются креатинфосфорная КРФ , аденозинтрифосфорная АТФ , аденозиндифосфорная АДФ , аденозинмонофосфорная, или адениловая АМФ , инозиновая кислоты, глютатион, глютамин, мочевина, аммонийные соли. Несмотря на сравнительно небольшое относительное содержание азотистых экстрактивных веществ, их роль в питании значительна, так как они включают вкусовые, ароматические и биологически активные вещества. Сырое мясо обладает слабым кисловатым вкусом и запахом. Специфический аромат и вкус, присущие каждому виду мяса, появляются лишь после тепловой обработки, таким образом, в сыром мясе содержатся компоненты, которые, видоизменяясь при нагреве, образуют ароматические и вкусовые вещества. Можно полагать, что специфичность запаха вареного мяса связана с составом липидной фракции мышечной ткани, так как запах различных видов обезжиренного мяса мало отличается. Вопрос о том, какие именно вещества придают мясу его специфические аромат и вкус после тепловой обработки, еще до конца не решен. Однако экспериментально доказана связь вкуса мяса с содержанием в нем свободной глютаминовой кислоты и свободных пуринов, в частности гипоксантина. Количество этих веществ в мышечной ткани различно и зависит от глубины развития посмертных изменений в тканях, в частности от степени распада амида глютаминовой кислоты — глютамина и аденозинтрифосфорной кислоты. Запахом бульона обладает также кетомасляная кислота. В числе экстрактивных веществ находятся раздражители секреции желудочных желез. Павловым, без них мясо остается в желудке долгое время, практически не перевариваясь. Мясной экстракт или навар он относит к лучшим возбудителям желудочного сока. Эти свойства мясного экстракта обусловлены содержащимися в мышцах некоторыми азотистыми основаниями метилгуанидином, карнозином, карнитином. В число важнейших безазотистых органических компонентов мышечной ткани входят гликоген и продукты его фосфоролиза гексозофосфорные эфиры, молочная кислота и амилолиза декстрины, мальтоза, глюкоза. Их количество зависит от физиологического состояния животных перед убоем и от глубины развития автолитических процессов после убоя, в ходе которых гликоген расщепляется до низкомолекулярных соединений. Часть гликогена мышечного волокна связана с белками миозином, миогеном , другая находится в свободном состоянии. В мышцах плохо откормленных, истощенных и больных животных его в раза меньше, чем в мышцах откормленных животных, находящихся в нормальном физиологическом состоянии. В разных мышцах содержание гликогена различно: Соответственно количеству гликогена изменяется и содержание в мышцах продуктов его распада, в том числе и молочной кислоты. В составе мышечной ткани имеются почти все водорастворимые витамины: В 1 тиамин , В 2 рибофлавин , В 6 пиридоксин , РР никотинамид , В 3 пантотеновая кислота , В 12 , биотин витамин Н , фолиевая кислота. Для различных видов животных и разного их состояния количество витаминов не одинаково. В составе мышечной ткани найдены металлы: Эти металлы частью связаны с белковыми коллоидами мышечного волокна, заряженными в большинстве отрицательно, частью с неорганическими анионами пиро - и ортофосфорной, серной, соляной, угольной кислот, с которыми образуют электролиты. В белках мышц больше катионов, чем анионов, в мышечной жидкости, наоборот. Некоторые из электролитов соли угольной, фосфорной кислот играют роль буферных систем мышечного волокна. Железо входит в состав миоглобина. Количество минеральных фосфорных соединений изменяется в связи с распадом орга-. Основу соединительной ткани составляют коллагеновые и эластиновые волокна. Коллагеновые волокна - преимущественно лентовидной формы, но известно до пяти морфологических вариантов; эластиновые волокна - нитевидной формы. Коллагеновые и эластиновые волокна вместе с перепонками образуют губчатую структуру соединительной ткани, в ячейках которой содержится тканевая жидкость. Клеточные элементы в соединительной ткани немногочисленны, хотя и разнообразны рис. Высокая прочность коллагеновых и упругость эластиновых волокон обуславливают прочностные свойства соединительной ткани в целом, которые значительно превосходят такие же свойства мышечной ткани. Химический состав соединительной ткани различен и зависит главным образом от соотношения в ней количества коллагеновых и эластиновых волокон. В некоторых видах соединительной ткани рыхлая соединительная ткань, сухожилия преобладает коллаген и в таких тканях несколько больше воды. Другие виды соединительной ткани содержат больше эластина и беднее водой. В соединительной ткани любого вида большую часть сухого остатка составляют коллаген и эластин, но количественное соотношение их различно. Свойства, пищевая ценность и промышленное значение соединительной ткани определяется свойствами коллагена и эластина и их количественным соотношением. В зависимости от анатомического происхождения соединительной ткани различают коллаген волокнистый сухожилия и кожа , гиалиновый кость , хондриновый хрящи. Аминокислотный состав коллагенов разного происхождения несколько отличается, но во всех случаях в коллагене очень мало метионина и отсутствует триптофан. Нативный коллаген нерастворим в воде, но набухает в ней. Он медленно переваривается пепсином и почти не переваривается трипсином и панкреатическим соком, но расщепляется коллагеназой на цепочки параллельно оси волок-. При нагреве коллагена до 0 С и тщательной механической деструкции переваривающее действие пепсина усиливается. Таким образом, коллаген, хотя и сравнительно медленно, все же может усваиваться организмом. Однако поскольку он относится к неполноценным белкам, употребление в пищу продуктов с большим содержанием коллагена обуславливает отрицательный баланс азота: В умеренных количествах коллаген сберегает в пище полноценные белки. При нагреве коллагена выше 65 0 С полностью разрываются водородные и солевые связи, удерживающие полипептидные цепочки в структуре коллагена, без заметного нарушения связей внутри цепей. Этот процесс, протекающий с участием воды, известен под названием пептизации коллагена. Продукт пептизации, состоящий из нескольких, связанных друг с другом полипептидных цепочек, называется глютином. Практически одновременно с образованием глютина происходит гидролитический распад части полипептидных цепочек на более мелкие звенья. В совокупности образующие полидисперсный продукт гидролиза глютина — смесь желатоз глютоз. Эластин не содержит триптофана и в нем очень мало метионина и гистидина. Он почти не переваривается пепсином, медленно трипсином и сравнительно легко эластазой. Он очень устойчив к действию химических реагентов, не изменяется в растворах кислот и щелочей, выдерживает длительный нагрев при 0 С. Следовательно, эластин практически не имеет какой-либо пищевой ценности. Пищевая и промышленная ценность соединительной ткани. Благодаря способности коллагена переходить в глютин разновидности соединительной ткани, богатые им, могут быть использованы для производства некоторых видов пищевой и технической продукции, в том числе желатина и клея. Ткани, которые содержат много эластина, пригодны для производства кормовой продукции. Технология мяса и мясных продуктов часть 1 Учебное пособие Мясо - жизни нашей основа! Относительная масса мышц в теле животных и мясных тушах. Вода Сухой остаток, в том числе:


Понятие административного правонарушения кратко
Где поменять российский паспорт в москве
Нет связи с банком эмитентом алиэкспресс
Сколько стоит газель
Мыло братьев крестовниковых состав
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment