Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/89cfe1fdf531bad5aa9ee510c063ae94 to your computer and use it in GitHub Desktop.
Save anonymous/89cfe1fdf531bad5aa9ee510c063ae94 to your computer and use it in GitHub Desktop.
Глюкоза входитв состав белков

Глюкоза входитв состав белков



Ссылка на файл: >>>>>> http://file-portal.ru/Глюкоза входитв состав белков/


Углеводы и их свойства. Глюкоза
Тест по биологии на тему "Химический состав клетки" (9 класс)
Почему при отсутствии в рационе белка, даже при достаточной калорийности пищи, наблюдается остановка роста, изменение состава крови и др. Ответ поясните.
























Уже первые химические анализы белков показали, что, независимо от источника получения, белковые вещества содержат, кроме С, О и Н, обязательно N и обычно некоторое количество S. Ввиду того, что белки оказались такими органическими соединениями, в состав которых обязательно входит в определенном количестве азот, для установления количества белков в различных биологических объектах стали применять определение в них азота напр. Подобными анализами было установлено содержание белков в различных животных и растительных тканях. Белки - высокомолекулярные азотосодержащие органические вещества молекулы которых построены из остатков аминокислот. Простые белки построены из аминокислот и при гидролизе распадаются соответственно только на аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождаются небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают: Вал, лей, иле, фен, три, мет, тре, лиз. Все остальные аминокислоты считаются заменимыми, однако необходимо отметить, что заменимость тирозина и цистеина достаточно условна , поскольку для их синтеза используются незаменимые фенилаланин и метионин. Поэтому при недостатке этих аминокислот автоматически увеличивается потребность в заменимых фенилаланине и метионине. Для изучения аминокислотного состава белков пользуются сочетанием или одним из них кислотного НСl , щелочного Ва ОН 2 и реже ферментативного гидролиза. Установлено, что при гидролизе чистого белка, не содержащею примесей, освобождается 20 различных а-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты более существуют в природе в свободном состоянии или в виде коротких пептидов или комплексов с другими органическими веществами. Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2-и СООН-групп и характеризуются соответственно всеми св-вами кислот и оснований. Белки обладают явно выраженными гидрофильными свойствами. Их растворы обладают очень низким осмотическим давлением, высокой вязкостью и незначительной способностью к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связан рад характерных свойств, в частности явление светорассеяния, лежащее в основе количественного определениябелковмет одом нефелометрии. Этот эффект используется, кроме того, в современных методах, микроскопии биологических объектов. Молекулы белка не способны проходить через, полупроницаемые искусственные мембраны целлофан, пергамент, коллодий , а также биомембраны растительных и животных тканей, хотя при органическихпоражени ях,на пример почек, капсула почечного клубочка Шумлянского -Боумена становится проницаемой для альбуминов сыворотки крови, и они появляются в моче. Денатурация белка под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативныесвойства. Так им образом, под денатурацией следует понимать нарушение общего плана - уникальной структурынативноймол екулы белка, приводящее к потере характерных для нее свойств рас-творимости,злек трофо ретическойподвижност и, биологической активности и т. Большинство белков денатурируют при нагревании их раствором выше о С. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности каталитической. Последовательность расположения аминокислотных остатков в полипептидной цепи белковой молекулы получила название первичной структуры белка. Многократно повторяющаяся пептидная связь -СО-NH является типичной ковалентной связью, которая определяет первичную структуру белка. Первичная структура белка, помимо большого числа пептидных связей, обычно содержит также небольшое число дисульфидных -S-S- связей. Однако оказалось, что в растворах белка спирализованная полипептидная цепочка может принимать ту или иную конфигурацию. Эта конфигурация полипептидной спирали в пространстве определяет ее третичную структуру. Другими словами, третичная структура показывает, как полипептидная цепь, свернутая целиком или частично в спираль, расположена или упакована в пространстве в глобуле. Известная стабильность третичной структуры белка обеспечивается за счет водородных связей, межмолекулярных ван-дер-ваальсовых сил, электростатического взаимодействия заряженных групп и т д. Молекулы некоторых белков например, гемоглобина состоят из нескольких симметрично построенных частиц одинаковых полипептидных цепей , обладающих одинаковой первичной, вторичной и третичной структурой. Совокупность таких одинаковых частиц субъединиц , представляющая единое молекулярное образование в структурном и функциональном отношении, получила название четвертичной структуры белка. Успехи визучениивторичной и третичной структуры белковой молекулы были достигнуты в результате применения физико-химических и особенно физических методов исследования, в частности рентгеноструктурного анализа, с использованием аппаратуры с высокой разрешающей силой и электронныхсчетно-ре шающи хустройств. На основании этих данных были построено пространственные модели ряда белков, например миоглобина. Сывороточный альбумин состоит из 1-й полипептидной цепи содержащий около аминокислот, имеет 17 дисульфидных мостиков. Молекула представляет собой эллипсоид размером 3 на 15 нм. Это типичный простой белок. Основная функция — 1 участие в осмотической регуляции. Заключается в переносе свободных жирных кислот, перенос билирубина, перидоксаля, глютатиона, Са, Zn. Кроме того альбумины переносят часть стероидов, участвуют они в транспорте многих лекарственных веществ, например сульфаниламидных препаратов, пинициллина, аспирина и др. Они выполняют роль ингибиторов ферментов свертывания крови, разрушают протеиназы, поступающие в кровь при повреждении клеток. Медьсодержащий гликопротеин плазмы, обладающий оксидазной активностью. При недостатке возникает болезнь Коновалова-Вильсона. Характеризуется накоплением меди в печени и головном мозге, в результате развивается поражение печени и достаточно выраженные неврологические симптомы. Это белки связывающие гемоглобин, которые появляются в крови в результате сосудистого гемолиза. Такое связывание предотвращает потерю из организма железа с одной стороны, а с другой защищает почки от повреждения гемоглобином. Далее этот комплекс гаптоглобин связавший гемоглобин поглощается клетками ретикулоэндотелиальн ой системы. Низкий уровень этих белков наблюдается у больных с гемолитической анемией. Так же состоят из различных белков. Трансферин обеспечивает связывание и перенос железа. Гемопексин связывает свободный гем, предотвращая выделения с мочой и потеря железа. Комплекс гем-гемопексин улавливается печенью, где железо высвобождается для последующего использования. Каждая молекула гемопексина связывает одну молекулу гема. Его определение используется в качестве показателя остроты патологических процессов наиболее часто при ревматизме. Это белки плазмы, входящие в группу иммуноглобулинов. Они относятся к белкам, выполняющим защитную функцию. Иммуноглобулины вырабатываются в ответ на попадание во внутреннюю среду организма чужеродных веществ - антигены. Антитела способны связывать антигены и тем самым устранять чужеродные вещества. Все иммуноглобулины - белки с четвертичной структурой. Все иммуноглобулины содержат тяжелые Н-цепи и легкие L-цепи. Характерная структурная особенность фибриллярных белков - вытянутая, нитевидная форма молекул. Эти молекулы образуют многомолекулярные нитевидные комплексы - фибриллы. Молекула коллагена тропоколлагена построена из трех пептидных цепей, каждая пептидная цепь содержит около аминокислотных остатков. Необычен аминокислотный состав коллагена: Коллаген - единственный белок, в котором содержится гидроксипролин. Эта аминокислота получается путем гидроксилирования части остатков пролина уже после образования пептидных цепей. Гидроксилируется также некоторая часть остатков лизина с превращением в гидроксилизин. Пептидные цепи коллагена представляют собой последовательность триплетов глу - Х - Y, где Х и Y может быть любой аминокислотой; часто положение X занимает пролин, а положение У — гидроксипролин. Ниже представлен фрагмент пептидной цепи коллагена Hyp - гидроксипролин:. Такие же водородные связи имеются. Все три цепи молекулы коллагена ориентированы параллельно, т. Коллаген -сложный белок, гликопротеин: Коллагеновые волокна вместе с другими полимерными веществами межклеточного матрикса составляют основу соединительной ткани, обеспечивающую ее опорную функцию Фибриллярные белки нерастворимы в воде. Они не перевариваются в пищеварительном тракте большинства животных и человека, и поэтому не могут служить пищей. Хромопротеины сост из простого белка и связ с ним окраш небелкового компонента, откуда и произошло их название от греч. Среди хромопротеинов различают гемопротеины, содержащие в качестве простетической группы железо , магний-. Хромопротеины наделены рядом уникальных биологических функций они участвуют в таких фундаментальных процессах жизнедеятельности, так фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и углерода, окислительно-восстан овите льные реакции, свето- и цветовосприятие и др. Хромопротеины являются непременными и активными участниками аккумулирования солнечной энергии в зеленых Гемопротеины. К ним относятся гемоглобин и его производные, миоглобин, хлорофиллсодержащие белки и ферменты вся цитохромная система, каталаза и пероксидаза Все они содерж в качестве небелкового компонента структурно сходные железо или магний -порфирины, но различные по составу и структуре белки обеспечивая тем самым разнообразие их биологических функций. Рассмотрим более подробно химическое строение гемоглобина, наиболее важного для жизнедеятельности человека и животных соединения. Это неферментный белок имеющий интересную структуру. В его состав входит 4 полипептид. Есть несколько видов гемоглобина: Миоглобин похожий по структуре белок - мышечный белок, который в отличие от гемоглобина состоит из 1 полипептид. Имеет значимость в доставке кислорода внутри клетки до митохондрий. Это очень устойчивая структура, практически это самая длинная замкнутая сопряженная система, которая образует порфириновое ядро, состоящее из 4 пиррольных колец соединенных метинильными мостиками. Кроме того здесь имеются боковые цепи. Железо связано с пиррольными ядрами, и за счет координационных связей оно связано еще и с азотом имидозольных ядер гистидина полипептидных цепей. Обеспечивается связывание кислорода и образование оксигемоглобина. Соединение в котором железо 3 валентно - метгемоглобин, образуется при действии сильных окислителей лаки, анилиновые краски. Метгемоглобин - производное гемоглобина не способен транспортировать кислород. Восстановление гемоглобина происходит за счет фермента -метгебоглобинредукт азы. У детей этот фермент крайне неактивен. В боковой цепи содержится 4 метильные группы , 2 винильных и 2 остатка пропионовой кислоты. Болезни гемоглобинов их насчитывают более называют гемоглобинозами. Различают, также железодефицитные анемии. Классическим примером наследственной гемоглобинопатии является ссрповидно-клеточная анемия. При этой патологии эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. Отличается по ряду свойств от нормального гемоглобина, в частности, после отдачи кислорода в тканях он превращается в плохо растворимую форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, названных тактоидами. Это генетически обусловленное нарушение синтеза одной из нормальных цепей гемоглобина. Большое количество фосфопротеииов содержится в ЦНС. Фосфопротеины занимают особое положение в биохимии фосфорсодержащих соединений не только в результате своеобразия структурной организации, но и вследствие широкого диапазона функций в метаболизме. Фосфопротеины в клетках синтезируются в результате посттрансляционной модификации, подвергаясь фосфорилированию при участии протеинкиназ. Фосфопротеины содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. С другой стороны, они являются ценными источниками энергетического и пластического материала в процессе эмбриогенеза и дальнейшего постнатального роста и развития организма. Простетические группы гликопротеинов представлены углеводами и их производными, весьма прочно связанными с белковой частью молекулы Для определения химической природы углеводного компонента нативные гликопротеины го межклеточного вещества, сыворотки крови и других биологических жидкостей подвергают гидролизу. После этого в гидролизате обнаруживают наряду со свободными аминокислотами гексозамины глюкозамин, галактозамин , глюкозу, маннозу, галактозу, ксилозу, арабинозу, глюкуроновую, уксусную и серную кислоты, нейраминовую и сиаловые кислоты и др. В состав простетических групп некоторых гликопротеинов входят гликозаминогликаны прежнее название комплекса - мукополисахариды; синонимы: К гликозаминогликанам относятся гиалуроновая и хондроитинсерная кислоты. Гиалуроновая кислота входит в состав внеклеточного основного вещества соединительной ткани, содержится в клеточных оболочках, а также в значительных количествах в синовиальной жидкости и стекловидном теле. Между собой эти структурные единицы дисахаридов соединены обычными в -связями; последние разрываются при действии фермента гиалуронидазы. Хондроитинсерная кислота также является полимерной молекулой внеклеточного основного вещества и имеет аналогичную с гиалуроновой кислотой структуру, с тем единственным отличием, что вместо N-ацетил-D-глюкозами на в ее состав входит N-ацетил-D-галактоза мин, к гидроксильной группе 4-го углеродного атома которого присоединена сульфатная группа. К биологически активным гликопротеинам относятся интефероны синтезируемые в животных клетках в ответ на возбуждение экзогенным стимулятором; они наделены антивирусными и противоопухолевыми свойствами и оказывают клеточно- и иммунорегуляторное действием. Из других гликопротеинов выполняющих ряд важнейших биологических функции следует отметить все белки плазмы крови за исключением альбуминов , трансферрин, Церулоплазмин, гонадотропный и фолликулостимулирующ ие гормоны, некоторые ферменты, а также гликопротеины в составе слюны муцин , хрящевой и костной тканей и яичного белка овомукоид. Изучение ферментов показало, что они обладают св-ми белков. Какие св-ва характерны для ферментов? Абсолютным доказательством белковой природы ферментов - это синтез их из отдельных аминокислот. Сегодня синтезированы из отдельных аминокислот несколько ферментов. Первыми ферментами синтезированные рибонуклеазы ферменты расщепляющие РНК и пепсин основной фермент желудочного сока. Причем синтезированный рибонуклеаза и пепсин ничем не отличались по свойствам по каталитической активности от выделенных из естественных тканей. Несколько слов о протеинах. Они могут состоять из одной полипептидной цепи рибонуклеаза содержащая ам. Например альдолаза - фермент гликолиза, РНК-полимераза и др. К первой группе относятся обычно класс гидролиз, практически все гадролитические ферменты состоят только из аминокислот то есть являются простыми белками. Кроме того, некоторые лиазы, а вот все остальные классы ферментов в основном явл. Есть каталитически активный фермент вместе с кофактором получил название холофермент. Это каталитически активный фермент состоящий из белковой и небелковой части кофактора. Белковая часть холофермента получила название апофермент. Характерной особенностью холофермента или сложных ферментов протеидов является, то, что ни белковая часть апофермента, ни кофактор в отдельности не обладают заметной каталитической активностью. Коферменты — это органические вещества, как правило, аминокислотной природы, непосредственно участвующие в катализе в составе фермента. Простые, относятся обычно к классу гидролаз, практически все гидролитические ферменты состоят только из. Есть каталитически активный фермент вместе с. Это каталитически активный фермент, состоящий из белковой и небелковой части кофактора. Какую же роль выполняют тот и другой? Оказывается апофермент резко повышает каталитическую активность кофактора, а кофактор в свою очередь стабилизирует белковую часть, делает ее более устойчивой и менее уязвимой к денатурирующим агентам. Поэтому встает вопрос, что и какие вещества явл. Роль кофакторов, как выяснилось, играют большинство витаминов или соединений построенных с их участием, но не только витамины выступают в роли кофакторов. Кроме того, это некоторые полипептиды, группы нуклеотидов и их производные и, наконец, ионы некоторых металлов. Последние годы в соответствии с химической природой кофакторов появилась классификация: Основой этих кофакторов является гемовое железо 4 Кофакторы-нуклеотиды а содержащие витамины содержащие витамин В2 флавинмононуклеотид фляос - желтый флавинадениндинукле отид НАД, НАДФ РР или В5 HSKoA пантотеновая кислота ВЗ Кобамидные коферменты В 12 содержат кобальт б нуклеотиды не витамины АТФ,. АТФ участвует в переносе адениловой и фосфорной кислоты, участвует в реакциях аденилирования и фосфолирирования ФАФС участвует в переносе сульфогрупп УДФК участвует в переносе глюкуроновой кислоты ЦТФ участвует в активации холина и фосфотидной кислоты. Процессы идущие при биосинтезе фосфолипидов. Практически наступила пора задать главный вопрос энзимологии. Почему собственно в присутствии ферментов скорость реакции возрастает? Сегодня абсолютного ответа наукой не найдено. Принято выделять сегодня две стороны проблемы. Каждая молекула любого вещ-ва облад. Этой энергии как правило недостаточно для того, чтобы -нней энергии до опред. Минимальный уровень внутренней энергии необходимый для перехода молекулы вещества в реакционно-способное состояние явл. По количеству энергии кот. С увеличением энергии активации вероятность перехода молекул субстрата в реакционно-способное состояние резко снижается. Как можно уменьшить энергию активации? Величину энергии активации можно уменьшить двумя приемами. Увеличение среднего уровня внутренней энергии путем повышения температуры. Попытка снизить энергетический барьер реакции. Снижение его возможно только путем снижения изменение структуры субстрата Ферменты ускоряют ход химической реакции, снижая энергетический барьер реакции. Однако тем самым уменьшают энергию активации. За счет проведения реакции, но обходному пути с образованием ES комплексов. Следует подчеркнуть, что ферменты снижают энергию активации значительно больше, чем катализаторы небиологической природы. Например, реакция гидролиза сахарозы до глюкозы и фруктозы. В присутствии кислоты снижается до 25, а в присутствии сахоразы до 9. Эти реакции могут идти самопроизвольно. Ферменты катализируют только экзоораническне реакции. Реакции эндоорганические требуют использование энергии макроэргическихсоеди ненни й СРУКТУРНО-КИНЕТИЧЕС КАЯ СТОРОНА ПРОБЛЕМЫ МЕХАНИЗМА. Дело в том, что реакции, протекающие в организме человека многоступенчатые, то есть метаболические пути в ходе которых идет, предположим, идет расщепление глюкозы, включают в себя множество реакций. Тогда становится ясно, что ослабление прочности перестраиваемой связи будет способствовать протеканию реакции. Эта цепь логических рассуждений должна привести вас к мысли о том, что ферменты, взаимодействующие с субстратом так перестраивают структуру этого субстрата, что определенные связи в субстрате становятся менее прочными, а значит более уязвимыми к действию реагентов. А как ослабить прочность связи? Каким образом достигается ферментами ослабление прочности связи? Это ослабление может достигаться двумя путями. С этих позиций можно выделить несколько эффектов которые в той или иной мере объясняет ускорение хода реакция ферментами. Уже сам факт связывания фермента с субстратом в активном центре приводит к изменению электронной структуры субстрата и поэтому уже сам факт связывания есть начало катализа. Связанная молекула субстрата оказывается в активном центре в сфере действия каталитических групп функциональные группы: В активном центре ферментов присутствуют функциональные группировки радикалов аминокислот, которые обладают кислотными и основными свойствами. От их действия к одной части молекулы субстрата будут присоединяться протоны а от другой ее части протоны будут отщепляться иначе говоря будет работать механизм кислотно-основного катализа Особенно часто это имеет место у ферментов в активном центре которых находятся такие группировки как имидозолъное ядро гистидина. Функциональные центры - участки поверхности молекулы фермента ответственное за взаимодействие с др белками, причем белками или обладающими каталитической активностью ферментами или белками, не обладающими каталитической активностью. Подобного рода взаимодействия встречаются при формировании надмолекулярных мультиферментных комплексах. Те комплексы о которых мы говорили пируватдегдрогеназн ые, альфакетоглюторатгид роген азные синтетазы высших жирных кислот включают несколько ферментов. Дело в том, что включение нескольких ферментов в этом комплексе достаточно в заметной степени сказывается на каталитической активности других ферментов этого комплекса. Дело в том, что пространственная структура свободного фермента и фермента включенного в комплекс меняется, а значит, меняется и каталитическая активность. Субстраты в превращении которых участвуют ферменты по сравнению с самим ферментом очень часто очень мелкие молекулы, понятно, что в образовании энз-субс. Этот участок пов-ти фермента ответственный за связывание и превращение субстрата и получил название активного центра. В структуру актив, центра входят: Эти остатки могут далеко располагаться в полипептидной цепи, могут сближаться при формировании третичной структуры. Хемотрипсин принимают участие 4 ам. В активный центр фермента входят кофакторы исключ. В активном центре условно выделяют 2 участка: Кофактору и функ гр. Его 3 мерная структура комплементарна низкомолекулярным лнгандам - кот. Если присоединение модулятора повышает активность - аллостерич. Если понижает - аллостер ингибитор. Никогда не возникает ковалентная связь. Активность определяется концентрацией модуляторов. Аллостер ферм, имеют как правило 4 структуру. Один и тот же фермент имеет 2 и более актив, центра кот комплемент, разный модуляторам. Активаторы повышают, то есть активируют каталитич. В одних случаях активатор вытесняет ингибитор или отщепляет его от фермента. Отщепляетотпепсиноге на ингибитор в рез-те этого неактив. Итак, первый механизм это вытеснение ингибитора или отщепление его от фермента. Например, цистеин может активировать ряд ферментов, отщепляя от него соли тяжелых металлов, например серебра 2. Активатор может связываться с субстратом, обеспечивая более эффективное взаимодействие субстрата с активным центром. Такова вероятно роль ионов магния во многих реакциях идущих с участием АТФ. Считают, что магниевая соль АТФ является истинным субстратом для многих ферментов. Отсюда и активирующий эффект магния оказывающий влияние практически на все ферменты катализирующие реакции с использованием АТФ. Эти ферменты называют синтетазы или лиазы. Их достаточно много в наших клетках. Активатор может способствовать присоединению кофактора к апоферменту. Холофермент - сложный белок может работать только когда имеется апофермент и кофактор. Так вот активатор, иногда взаимодействуя апофермента с кофактором затруднено, некоторые активаторы обеспечивают такое взаимодействие, а значит образование активной формы - соединение апофермента с кофактором 4 Активаторы иногда способствуют формированию каталитически активной пространственной структуры фермента. Итак, активаторы способствуют формированию каталитически активной пространственной структуры фермента, то есть меняют ее конформацию до своеобразной нужной пространственной конформации при которой комплементарность между активным центром и связанным субстратом резко увеличивается. Без активатора связывание таким образом естественно крайне затруднено 5 Активация может быть аллостерической, то есть идти за счет присоединения к аллостерич. Отсюда аллостерических модуляторов с активирующим эффектом достаточно много. Это различные нуклеотиды, например НАД, НАДФ. Активаторами аллостерическими может являться фосфорная кислота, АТФ, АДФ и др. Эти основные 5 механизмов являются практически механизмами, расшифровывающими действия активаторов на ферменты. Это вещества, снижающие вплоть до полного прекращения каталитическую активность ферментов. Наиболее часто принято ингибирование делить на обратимое и необратимое. Наиболее часта причина это образование недиссоциир. Энзим - ингибиторного комплекса. Обратное восстановление энзима невозможно. ДФФ диизопропил фторфосфат тоже явл. В большинстве своем необратимые ингибиторы являются сильными ядами. Связано с тем, что дезорганизация работы ферментов, происходящих под действием этих ингибиторов, несомненно, сопровождается резким нарушением обмена веществ. При обратимом ингибировании образовавшийся энзим-ингибиторный комплекс нестойкий и поэтому способен диссоциировать на свободный энзим и ингибитор. При конкурентном ингибировании ингибитор по своей структуре подобен, но не идентичен субстрату. Поэтому он может связываться с активным центром фермента, но не подвергается в нем дальнейшим превращениям. Поэтому фермент на время выводится из строя В следствии непрочности связывания ингибитор через некоторое время покидает фермент. Если в клетке присутствуют и субстрат и ингибитор, то в этом случае, как правило, работают две системы. Энзим взаимодействует с субстратом, образуется ЕS комплекс, превращение субстрата приводит к высвобождению энзима и образования продукта реакции. Но в смеси есть еще одно вещество, которое может связываться - это ингибитор, поэтому часть активных центров фермента будет связана с этим ингибитором, поэтому каких соединений образуется больше, зависит от концентрации субстрата и ингибитора. Если в клетке большое количество ингибитора, то фермент выводится из строя практически полностью. Если его немного, то только часть молекул фермента выводится из строя, поэтому суммарная активность в этом случае снижается меньше. Повышая концентрацию субстрата в реакционной смеси или в клетке, можно уменьшить степень ингибирования. Другими словами, конкурентное ингибирование несомненно зависит от концентрации субстрата и при увеличении концентрации истинного субстрата происходит полное восстановление активности, то есть вытеснение ингибитора го активного цента. Классическим примером такого ингибирования является ингибирование фермента сукцннатдегидрогеназ ы молоновой кислотой или щавелевоуксусной кислотой. Сукцинатдегидрогеназ а - это фермент содержащий ФАД. В свою очередь в него входит витамин В2. Катализирует этот фермент реакцию дегидрирования сукцината янтарная кислота В ионной виде она соединяется с определенными участками активного центра. В итоге водород отщепляется от сукцината и образовалась непредельная кислота - фумаровая. Оказывается в клетках появляется иногда похожее по структуре соединение, но не идентичное -молоновая кислота она очень похожа на янтарную, но содержит цепочку из 3 углеродных атомов. Похожа по структуре и шавелеуксусная кислота 4 углеродно дикарбоновая кетокислота. Эти оба ингибитора являются конкурентами с янтарной. Они конкурируют, за активный центр и поэтому если их концентрация в клетке увеличивается, то фермент теряет свою активность. Итак, характерной чертой этого типа ингибирования является, то что фермент связывается только со свободным ферментом. Он не связывается с ЕS комплексом потому, что взаимодействие идет по активному центру. При этом типе ингибирования фермент не похож на субстрат. Фермент реагирует с ингибитором за счет каких-то функциональных групп, причем интересно, что это могут быть и группы активного центра и группа расположенные на поверхности других участков молекулы. В учебниках ошибочно и вы утверждаете, что не конкурентные значит не связываются по активному центру. Может связать какую-то одну группу, но он не может иметь несколько типов связи, поэтому он не может превращаться в этом активном центре, но связать какую-то одну группу, которая имеет огромное значение в катализе он может. Это касается низкомолекулярных соединений которые являются не конкурентными ингибиторами Степень такого ингибирования зависит только от концентрации ингибитора и от его сродства к ферменту, причем не конкурентные ингибиторы связываются обратимо как с самим ферментом, так и с ES комплексом. Энзим взаимодействует с ингибитором, образуя EJ комплекс обратимое ингибирование , но может взаимодействовать при не конкурентном ингибировании с ES комплексом с образованием ESJ комплекса. В виду особой важности регуляции клеточного метаболизма обычно отдельно рассматривают аллостерическое ингибирование. Хотя это частный случай не конкурентного ингибирования. Принципиальная разница в том, что аллостерический ингибитор связывается исключительно с аллостерическим центром. С другими участками он не связывается. Только с аллостерическим на основе принципа комплементарности. Присоединения аллостерического ингибитора к регуляторному центру приводит к изменению пространственной структуры фермента, что затрагивает активный центр. Причем происходят такие изменения, что связывания и катализ практически становятся невозможными. Происходящее изменение активности связано с изменением конформации. Активация ферментов это один из механизмов, с помощью которого клетки меняют свой метаболизм. Как можно изменить работу этих мощных биокатализаторов? Существует 2 типа регуляции работы ферментов. Изменение активности имеющихся в клетках ферментов. Реализуется за счет изменения концентрации самих ферментов в клетках. Изменение концентрации ферментов в клетках достигается 2 путями. Регуляция с изменением активности имеющихся в клетках ферментов. В процессах срочного регулирования важнейшая роль, принадлежит следующим 5 механизмам. Аллостерическое ингибирование или активация с участием механизма положительной или отрицательной обратной связи. Краткая характеристика 1 Целый ряд ферментов в организме человека синтезируется в виде своих неактивных предшественников -проферментов. Далее они в таком виде они могут находиться в клетках или поступают в биологические жидкости. Обычно проферменты имеют более длинные полипептидные цепи отсюда у них нет активного центра и они не могут работать как ферменты. В случае необходимости под действием специфических ферментов, а иногда других агентов, путем ограниченного протиолиза от профермента отщепляется различной длины полипептидные цепи и формируется активный фермент. В виде проферментов в крови циркулирует целый ряд факторов свертывания крови. Почему кровь не свертывается? Поскольку большое количество работающих здесь компонентов. Например, такие как протромбин. Они активируются при повреждении сосудов и обеспечивает свертывание крови. Активация идет по каскадному механизму. Наиболее частый механизм регуляции. Причем в клетках встречаются механизмы и активации и ингибирования. Если бы клетка не могла бы сама определить, сколько произвести того или иного продукта я имею ввиду метаболического пути и ждала бы команды сверху, то очевидно бы погибла. В клетке нет отсека для хранения. Это механизм, с помощью которого клетка узнает, когда данного вещества произведено достаточно. Перекрест метаболических путей достаточно сбалансирован и одно и то же соединение может использоваться во многих ферментативных реакциях. Так регулируется синтез холестерина, пуриновых и пиримидиновых метаболитов и др. Механизм аллостерической активации очень часто встречается как активация предшественникам. Типичным примером может быть эффект который наблюдается у бактерий синтезирующих изолейцин из треонина. В этоммногоступенчатом метаб олическом процессе участвуют 5 ферментов. В этой системе треонин является аллостерическим активатором первого фермента метаболического пути. Не включается синтез пока в клетки не накапливается треонин. Пока он используется для различных процессов превращение не идет как только так сразу. Например, АДФ, АМФ, фосфорная кислота и пирофосфат увеличивают активность целого ряда ферментов, работа которых обеспечивает клетки в виде энергии АТФ. Оказывается, что в целом ряду метаболических процессов конечный продукт данного метаболического пути действует на первый или второй аллостерический фермент инактивируя его работу. Если данного вещества синтезировано достаточное количество. В целом аллостерическая активация и ингибирование представляют собой высокоэффективные механизмы поддержания в клетках необходимых веществ на оптимальном уровне. В соответствии с этой системой все ферменты в зависимости от типа катализируемой реакции, я еще раз подчеркиваю что в основу положен тип катализируемых реакций, делят на 6 больших классов. В каждом классе выделяют подкласс. В подклассе выделяют под подкласс, а уже там соответственно название конкретного фермента. Шифр фермента для того что бы было понятно о каком ферменте говорит китаец если его читает русский. Например 4 буквенное обозначение 1 -ая класс, 1 подкласс, 1 под подкласс и первый порядковый номер в этом под подклассе, то есть шифр фермента всегда включает 4-ех цифровое обозначение. Какие же классы по международному соглашению г. Оксидоредуктазы - ферменты катализирующие окислительно-восстан овите льные реакции в организме человека б. Трансферазы - ферменты катализирующие реакции с переносом групп между различными веществами. Например переносящие метильную группу - метилтрансферазы, аминогруппу переносящие - аминотрансферазы и т. Гидролазы - ферменты катализирующие реакции гидролиза гидролиз - расщепление с присоединением воды Гидролитических ферментов достаточно много. С пищей мы получаем полимеры, для того чтобы они всасывались их нужно расщепить до мономеров. Разрыв углерод - углеродной связи, водородными иегидролитическим путем. Например, фермент декарбоксилаза, отщепляющая карбоксильную группу от аминокислоты, как раз относится к лиазам. Изомеразы - ферменты катализируют реакции изомеризации. В основном это перенос групп внутри молекул с образованием изомерных форм. Например превращение глюкозы 1- фосфат в глюкозу 6 -фосфат, т. Лигазы или синтетазы - ферменты которые катализируют образование связи С-С, C-S, C-N, С-О за счет реакции конденсации сопряженных с использованием АТФ, т. В настоящее время идентифицировано более различ. В наше время ферменты используются не только в медицине, но и в пищевой и хим. Ферменты - специализированные белки обладающие каталитической активностью, то есть способны ускорять течение химической реакции в организме человека. Ферменты, будучи биокатализаторами, отличаются от обычных катализаторов. Каково значение ферментов в организме человека? Ферменты по праву считают рабочим аппаратом ген. Дело в том, что как реализуют этот фермент? Все зависит от того насколько активны у вас ферменты полученные. Не секрет что сидящие здесь имеют одни и те же ферменты, но ферменты работают у каждого индивидуально. У каждого из нас поддерживается 1. Поддерживается еще и за счет синтеза активность определенных ферментов, поэтому метаболизм наш в целом очень различается. Ферменты по праву считают функциональными единицами клеточного метаболизма, поскольку большинство реакций протекающих в наших клетках ежесекундно в наших клетках протекает десятки тысяч разнообразных химических превращений идут с участием ферментов, за редким исключением. Только в том случае если в ходе реакции образуется какое-то неустойчивое соединение его стабилизация происходит самопроизвольно то есть не ферментативным путем. Поэтому изучение ферментов имеет огромное значение для понимания метаболизма, для понимания патологий которые могут развиться у человека. Ферменты осуществляют превращение таким образом огромного кол-ва вещ-в, причем в-в поступающих из внешней среды и в-в образующихся в ходе метаболизма, то есть непосредственно внутри организма. Некоторые болезни человека особенно генетически обусловленные заболевания связаны с недостаточностью или полным отсутствием того или иного фермента. Энзимопатии - патология, причем она может быть наследственная и врожденная поскольку вообще энзимопатии делятся на первичные и вторичные. Первичные - врожденные, наследуемые. Энзимопатия это патология связанная с нарушением синтеза, то есть синтез прежде всего ферментов недостаточно активных или полным блоком синтеза какого-то фермента Пример врожденной энзимопатии - фенилкетонурия правильней - фенилпировиноградноо лигоп риния то есть олигос фреиус в переводе на русский - слабоумие связанное с нарушением превращения фенилаланина, дело в том, что и фенилаланина синтезируются гормоны такие как йодированный тиронин, адреналин, хлорадреналин, поэтому те нарушения которые возникают при нарушении оксидинации фенилаланина. С другой стороны патологические состояния, с которыми мы встречаемся, могут быть вызваны избыточной активностью того или иного фермента. В таких случаях удается подобрать препарат ингибирующий активность фермента тем самым помочь больному. Ингибиторы ферменты используются достаточно широко, в том числе и в стоматологии. Очень часто многие лекарственные препарата реализуют свои эффекты воздействуя на ферменты. Измерение активности ферментов плазмы крови, биопсированных тканей имеет огромное значение при диагностики заболевания, а так же контроля за эффективностью проводимого лечения. Часть ферментов используется в качестве лечебных препаратов. Класс оксидоредуктаз включает ферменты, катализирующие окислительно-восстан овите льные реакции разных типов. В частности, в него входят НАД-зависимые и флавиновые дегидрогеназы, рассмотренные выше. Другой тип оксидоредуктаз — оксидазы. Эти ферменты катализируют окисление субстратов путем присоединения кислорода. Так, аминоксидазы окисляют амины с образованием альдегидов и аммиака. Образующийся в таких реакциях пероксид водорода разлагается тоже оксидоредуктазой — каталазой гемопротеин: К классу трансфераз относятся рассмотренные выше аминотрансферазы и ацилтрансферазы, а также метилтрансферазы, гликозилтрансферазы, фосфотрансферазы и др. В подкласс фосфотрансфераз входят группа ферментов, называемых киназами: Киназы катализируют перенос у-фосфатного остатка на другие вешества; АТФ при этом превращается в АДФ. Например, глицеринкиназа катализирует фосфорилирование глицерина но а-гидроксильной группе: В результате действия разных киназ в организме синтезируются многочисленные фосфорилированные соединения. В частности, сложные белки фосфопротеины образуются при участии протеинкиназ, остатки фосфорной кислоты присоединяются к гидроксильным группам серина, треонина и тирозина пептидной цепи:. Эти ферменты катализируют реакции расщепления разнообразных связей с присоединением воды по месту расщепления:. К классу гидролаз относятся эстеразы, расщепляющие сложноэфирные связи например, липаза, холинэстераза ; пептидазы, или пептидгидролазы пепсин, трипсин, карбоксипептидаза и до. Витамины — необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируется или синтезируются в недостаточном количестве в организме и поступают в организм с пищей. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур. Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений в деятельности органов и систем при дефиците любого из витаминов. Под авитаминозами понимают полное истощение витаминных ресурсов организма. При гиповитаминозах отмечается резкое снижение обеспеченности организма тем или иным витамином. Введение в организм избытка витаминов может вести к серьезным патологическим расстройствам - гипервитаминозам. Жирорастворимые витамины Витамин А, Витамин D, кальциферолы , Витамин Е токоферолы Витамин К. Аскорбиновая кислота витамин С , Витамины группы В - Тиамин витамин В1 , Рибофлавин витамин В2 , Витамин В6 пиридоксин , Ниацин витамин РР, никотиновая кислота , Цианокобаламин витамин В12 , Фолиевая кислота фолацин , Пантотеновая кислота витамин Вз , Биотин витамин Н. Витамин Р биофлавоноиды , Холин, Миоинозит инозит, мезоинозит , Витамин U, Липоевая кислота, Оротовая кислота, Пангамовая кислота витамин В Болезни возникающие вследствие отсутствия тех или иных витаминов. Многие авитаминозы можно рассматривать как патологическое состояние, возникающее на почве выпадения функций тех или иных коферментов. При гиповитаминозах отмечается резкое снижение обеспеченности организма тем или иным витамином Введение в организм избытка витаминов может вести к серьезным патологическим расстройствам — гипервитаминозам. Нарушение баланса химического состава рационов и нарушение оптимальных соотношений между витаминами и другими нутриентами и между отдельными витаминами 6. Пищевые извращения и религиозные запреты, налагаемые на ряд продуктов у некоторых народностей 7. Нарушение всасывания витаминов в желудочно-кишечном тракте: Утилизация поступающих с пищей витаминов кишечными паразитами и патогенной кишечной микрофлорой. Нарушение нормального метаболизма витаминов и образования их биологически активных форм: Нарушения образования транспортных форм витаминов: Антивитаминное действие лекарственных веществ, ксенобиотиков. Особые физиологические состояния организма интенсивный рост, беременность, лактация. Антивитамины - это вещества, очень близкие по структуре к соответствующим витаминам. Они не обладают свойствами витаминов, наоборот, являясь их ложными заменителями и включаясь по аналогии в структуре в естественную цепь реакций обмена, прерывают его нормальное течение. По-видимому, в их основе лежит конкурентное вытеснение витаминов из его комплекса в ферментативной системе. В результате образуется недеятельный фермент, обмен нарушается, и возникает тяжелое заболевание. Провитамины - это предшественники витаминов. Только два витамина относящихся к группе жирорастворимых имеют провитамины. Это витамин А - провитамином явл. Они легко расщепляются под действием диоксигеназы панкреатической железы давая два витамина две молекулы витамина А. Поэтому пища богатая кератинами она содержит достаточное кол-во витамина А. Его провитамином является 7 дегидрохолестирин, кот. Витамины группы А включают значительное число соединений, важнейшими среди которых являются ретинол, ретиналь, ретиноевая кислота и эфиры ретинола: Витамин А присутствует в пищевых продуктах в виде эфиров, а также в виде провитаминов, принадлежащих к группе каротиноидов. Эфиры ретинола, введенные с пищей в организм, расщепляются в желудочно-кишечном тракте с освобождением ретинола, который всасывается и поступает в печень, где он вновь эстерифицируется в основном с пальмитиновой кислотой, образуя ретинилпальмитат, являющийся главной резервной формой витамина А. Печень служит депо витамина А и содержит значительные количества ретинола в эфиросвязанной форме. Биохимические механизмы, лежащие в основе прочих физиологических эффектов витамина А, остаются менее ясными. Очевидно, однако, что эти механизмы не связаны с наличием у данного витамина коферментных свойств. По-видимому, одним из важных моментов в многостороннем действии витамина А на организм является его выраженное влияние на структуру и функцию мембран клетки и клеточных органелл. Недостаточность витамина А ведет к тяжелым нарушениям со стороны многих органов и систем, в основе которых лежит генерализованное поражение эпителия, характеризующееся его метаплазией и кератинизацией. Особенно типичны поражения кожных покровов сухость, фолликулярный гиперкератоз, предрасположенность к пиодермии, фурункулезу и т. Значительно страдают также органы зрения, причем нарушения темновой адаптации гемералопия , явления конъюнктивита и сухость роговицы ксерофтальмия при легких формах А-витаминной недостаточности сменяются кератомаляцией, перфорацией роговицы и слепотой в тяжелых случаях заболевания. Нарушение барьерных свойств эпителия и иммунологического статуса организма при дефиците витамина А ведет к резкому снижению устойчивости к инфекциям. Среди населения нашей страны состояние гиповитаминоза А чаще всего является следствием нарушения процессов всасывания липидов, в том числе жирорастворимых витаминов в кишечнике, что связано с поражением его слизистой оболочки или гепатобилиарной системы хронические энтериты, энтероколиты, гепатиты, ангиохолиты и др. Витамину Е принадлежит важная роль в поддержании стабильности мембран клетки и субклеточных структур, обусловленная его антиоксидантными свойствами, т. Активация же перекисного окисления мембранных липидов с накоплением при этом перекисей ПНЖК и продуктов их дальнейших превращений является одним из механизмов повреждения мембран клетки и клеточных органелл Антиоксидантные эффекты витамина Е обусловлены его способностью инактивировать свободные радикалы, инициирующие перекисное окисление мембранных липидов. Наряду с этим важную роль в обеспечении его антиоксидантной активности играет участие - токоферола в построении цитомембран и экранирование жирных кислот мембранных липидов от взаимодействия со свободными радикалами. Авитаминоз Е у человека не описан. Симптомом гиповитаминоза Е является усиленный гемолиз эритроцитов, обусловленный нарушением стабильности их мембран. Гемолиз эритроцитов усиливается при потреблении с пищей избытка ПНЖК, способствующего усиленному расходованию природного антиоксиданта — токоферола и возникновению его относительного дефицита. Биологическая роль витамина К определяется прежде всего его участием в процессах свертывания крови необходим для синтеза в печени функционально активных форм протромбина фактора II , а также трех других белков, участвующих в свертывании крови,— фактора 7 проконвертин , фактора 9 фактор Кристмаса. Подобно другим жирорастворимым витаминам," витамин К является, по-видимому, одним т компонентов биологических мембран, активно влияющим на их структурные и функциональные свойства. Недостаточность витамина К у человека приводит к замедлению свертывания крови и развитию выраженною геморрагического синдрома, обусловленных угнетением синтеза протромбина и 8, 9, 10 факторов свертываемости крови, а также замедлением превращения фибриногена в фибрин. Наряду с этим отмечаются изменения функциональной активности и гладких мышц, снижается активность ряда ферментов. Вопрос о специфичности этих сдвигов остается, однако, открытым. Основная причина возникновения недостаточности витамина К у человека — нарушение его всасывания в желудочно-кишечном тракте, вызванное либо заболеваниями кишечника хронические энтериты, колиты , либо поражениями гепатобилиарной системы, связанными с нарушением желчеобразования инфекционные и токсические гепатиты, циррозы печени или выведения желчи в просвет кишечника желчнокаменная болезнь, опухоли. Тиамии витамин В 1 — соединение, построенное из пиримидинового и тиазолового колец, соединенных между собой метиленовым мостиком. Биологически активной, коферментной фор мой витамина явл. Фосфорилирование тиамина в тиаминдифосфат происходит в печени с участием специфический фермента тиаминкиназы, катализирующей перенос пирофосфата от АТФ к тиамину. Перечисленные ферменты участвуют в регуляции основных этапов метаболизма различных нутриентов и прежде всего углеводов, в связи с чем тиамин играет важнейшую роль в осуществлении превращений именно этого класса нутриентов. Поскольку углеводы вносят основной вклад в обеспечение организма человека энергией, тиамин имеет также важное значение для процессов энергетического обмена. Тиамин необходим также для биосинтеза важнейшего нейромедиатора - ацетилхолина. Степень выраженности указанных симптомов зависит от степени недостаточности тиамина. Клинически выраженные формы недостаточности тиамина обозначают как болезнь бери-бери. Выделяют 3 формы этого заболевания — влажную с преимущественным поражением ССС , сухую с поражением нервной системы и детскую с острым началом и тяжелым течением. Наиболее распространены смешанные формы бери-бери с сочетанным поражением ССС и нервной системы. Рибофлавин витамин В 2 представляет производное изоаллоксазина, связанного с 5-атомным спиртом — рибитолом. Суточная потребность в рибофлавине взрослого человека составляет 1,3 — 2,4 мг, а в расчете на ккал 0,6—0. Биологическая роль рибофлавина определяется прежде всего его участием в построении двух важнейших коферментов — флавинмоно-нуклеотид а ФМН и флавинадениндинуклео тида ФАД , входящих в состав различных окислительно-восстан овите льных ферментных систем. Таким образом, биохимический механизм действия рибофлавина связан с его участием в процессах биологического окисления и энергетического обмена. Гипо- и авитаминоз В2 арибофлавиноз распространены в ряде районов развивающихся стран Африки, Южной и Юго-Восточной Азии. Основные причины гипо- и авитаминоза В2: Является производным пиримидинового ядра. Основными представителями этой группы витаминов являются никотиновая кислота и никотинамид. Их биологическая активность практически одинакова, но фармако-терапевтичес кие свойства различны — никотиновая кислота оказывает значительно более выраженное сосудорасширяющее действие, чем никотинамид. В животных тканях ниацин содержится в основном в виде никотинамида. Биологическая роль ниацина связана с его участием в построении двух коферментов никотинамидадениндин уклео тида НАД и никотинамидадениндин уклео тидфосфата НАДФ , входящих в состав важнейших окислительно - восстановительных ферментов дегидрогеназ. Ниацин участвует непосредственно в процессах биологического окисления и энергетического обмена. При недостаточности ниацина развивается пеллагра — тяжелое заболевание, связанное с поражением желудочно-кишечного тракта глоссит, нарушение секреции желудочного сока, упорная диарея , кожи симметричный дерматит лица и открытых частей тела и ЦНС раздражительность, боли в различных участках тела, нарушение чувствительности, кожных рефлексов, повышение сухожильных рефлексов и появление патологических рефлексов, судороги, атаксия, психозы, в тяжелых случаях — деменция. Потребность взрослого человека в ниацине составляет 14 - 28 мг ниациновых эквивалентов в сутки, а в расчете на ккал около 6—7 мг. По строению и действию близок к никотиновой кислоте и наравне с нею рассматривается как витамин РР. В связи с нейтральной реакцией растворов никотинамид не вызывает местной реакции при инъекциях. Выраженного сосудорасширяющего действия никотинамид не оказывает, и при его применении не наблюдается покраснения кожных покровов и чувства прилива крови к голове, часто встречающихся при применении никотиновой кислоты. Показания к применению и дозы в основном такие же, как для никотиновой кислоты пеллагра, гастриты с пониженной кислотностью, хронические колиты, гепатиты, цирроз печени и др. Как сосудорасширяющее средство никотинамид, однако, не применяют. Назначают никотинамид внутрь и парентерально. Основные представители семейства витаминов группы В6 — пиридоксаль и пиридоксамин. Они же и наиболее распространены в пищевых продуктах. Биологически активной, коферментной формой витамина B6 являются его фосфорилированные производные: Биологическая роль витамина B6 определяется участием его активных фосфорилированных производных в качестве коферментов в функционировании многочисленных ферментных систему Витамин В6 играет роль кофермента во многих превращениях ряда аминокислот — серина, глицина, цистеина и др. Образование в организме ниацина из аминокислоты триптофана также связано с участием пиридоксинзависимых ферментов. Витамин В6 участвует в качестве кофермента в многочисленных метаболических реакциях, связанных прежде всего с процессами обмена аминокислот. Кроме того, он необходим для ряда важнейших реакций углеводного и липидного обмена Недостаточность пиридоксина сопровождается выраженными нарушениями со стороны ЦНС раздражительность, сонливость, периферические полиневриты , кожных покровов и слизистых оболочек себорейный дерматит, ангулярный стоматит, хейлоз, конъюнктивит, глоссит. Потребность в витамине взрослого человека 1,8- 2,0 мг. В основе строения биотина лежит тиофеновое кольцо, к которому присоединена мочевина, а боковая цепь представлена валерьяновой кислотой. Наличие серы в биотине не имеет сушественного значения для биологической активности этого соединения, так как в оксибиотине где вместо серы находится кислород биологическая активность сохраняется. Биотин представляет собой кристаллическое вещество, хорошо растворимое в воде и спирте. Биотин необходим для синтеза пуринов на стадии фиксации СО2; он участвует в реакциях образования малонил-КоА из ацетил-КоА, CO2 и АТФ, в реакциях обратимого карбоксилирования пировиноградной кислоты с образованием щавелевоуксусной кислоты, декарбоксилирования сукцинилкоэнзима А, а также в некоторых реакциях обмена, вовлекающих аспарагиновую кислоту. Суточная потребность 0,25 мг. Биологическая роль витамина В12 связана с его коферментными свойствами. В ходе этих превращений витамин B12 служит промежуточным переносчиком могильной группы. Авитаминоз В12 характеризуется нарушением кроветворения с развитием макроцитарной гиперхромной анемии, поражением нервной системы и органов пищеварения. При авитаминозе отмечаются раздражительность, утомляемость, фуникулярный миелоз дегенерация и склероз задних и боковых столбов спинного мозга , приводящий в легких случаях к парестезиям, в тяжелых — к параличам и расстройствам функций тазовых органов; наблюдаются потеря аппетита, глоссит, ахилия, нарушения моторики кишечника. Суточная потребность — З мкг, беременным - 4 мкг. Фолиевая кислота — продукт взаимодействия птеридина, парааминобензойной и L-глутаминовой кислот. Параду с птероилмоноглутамино вой кислотой в природе широко распространены производные фолиевой кислоты, в которых птероевая кислота связана с двумя, тремя и более остатками глутаминовой кислоты — так называемые фолаты. Превращение фолиевой кислоты в тетрагидрофолиевую, связанное с восстановлением птеридинового ядра и присоединением к нему 4 водородных атомов, происходит в печени при участии специфического фермента — дигидрофолатредуктаз ы. Биологическая роль фолацина определяется коферментными свойствами ТГФК, способной присоединять различные одноуглеродистые остатки и активно участвовать в их дальнейших превращениях, являющихся существенным мометом в процессах биосинтеза пуриновых оснований и дезокситимидинфосфат а — важнейших компонентов нуклеиновых кислот. Вместе с тем способность ТГФК к переносу метальной -СНз группы определяет ее важную роль в процессе образования из гомоцистеина метионина, лабильные метильные группы которого необходимы для синтеза холина, адреналина, креатина и метаболизма никотиновой кислоты, гистамина и др. ТГФК участвует также во взаимопревращениях аминокислот серина и глицина, в ходе которых образуется основная часть одноуглеродных фрагментов. Наконец, фолиевая кислота необходима для превращения промежуточного продукта метаболизма гистидина — формиминоглутаминово я кислоты в глутаминовую кислоту. Таким образом, биохимические функции фолиевой кислоты зесьма разнообразны и связаны с участием в процессах биосинтеза белка и нуклеиновых кислот, реакциях метилирования и метаболизме ряда аминокислот. Фолацин имеет особое значение для процессов роста и развития, характеризующихся высокой скоростью синтеза белка и нуклеиновых кислот, и проявляет липотропные свойства, обусловленные его участием в ресинтезе метионина. Суточная потребность взрослых людей в фолацине составляет мкг, беременных — мкг. Химическая структура пантотена в настоящее время полностью установлена и подтверждена синтезом. Чистая пантотеновая кислота представляет собой светло-желтое вязкое масло, хорошо растворимое в воде. Суточная потребность человека исчисляется примерно в 10мг. Выяснилась тесная связь пантотена с реакцией ацетнлирования в животном организме. Как известно, - при реакции ацетилирования остаток уксусной кислоты - ацетильный радикал, СН3СО- присоединяется к ацетилируемому соединению. Таким путем происходят, например, превращения ароматических аминов в соответствующие ацетилированные производные в печени и холина в ацетилхолин в ткани мозга. Оказалось, что в сосстав коферментной группы, осуществляющей указанную реакцию ацетилирования КоА , входит пантотеновая 1 кислота. КоА участвует в переносе не только ацетильного, но и других кислотных ацильных радикалов, образуя соответствующие ацилкоэнзимы А ацетил-, бутирил-, сукцинил-КоА и т. В окислительном превращении пировиноградной кислоты, начиная с момента образования уксусной кислоты, точнее, ацетильного радикала, находящегося в связанном состоянии, также участвует коэнзим А, в который входит пантотеновая кислота. Эти данные имеют, по-видимому, наиболее общее значение, так как окислительный распад уксусной кислоты до углекислоты и воды представляет собой последний этап в образовании конечных продуктов обмена белков, жиров и углеводов. Можно вообще считать, что нарушение в обмене веществ при недостатке в организме пантотеновой кислоты обусловлено частичным выпадением функций КоА, для образования которого необходима пантотеновая кислота. Эти регуляторные молекулы принято называть гормонами. Пр и работе паракринной системы регуляторные молекулы синтезируются клетками, поступают в межклеточную фазу и воздействуют на рядом находящиеся клетки той же самой ткани. Эти регуляторные молекулы часто называют тканевыми гормонами или местными гормонами Молекулы принимающие участие в передаче регуляторных сигналов между клетками принято называть сигнальными молекулами. Например инсулин и кортизол являются типичными горонамн, а простогландины, тромбоксаны являются тканевыми гормонами, но и те и другие относятся к сигнальным молекулам. Гормоны - сигнальные молекулы, синтезируемые в клетках желез внутренней секреции, поступающие в кровеносную и лимфатическую систему и оказывающие регуляторный эффект на клетки других органов и тканей. Оказывается гормонам присущ целый ряд основных свойств - 3 свойства: Во-первых для каждого гормона характерен свой регуляторный эффект Во-вторых отсутствие гормонов не может быть заменена в организме комбинацией других гормонов. Патология эндокринной системы иногда связана с нарушением транспорта гормона соответствующим органам- Механизм действия гормонов Молекулы гормонов белковой природы, гормонов пептидов и гормоны производных аминокислот за исключением полированных тиронинов гидрофильны, поэтому они без особых проблем переносятся током крови, но не могут проникать через мембраны клеток, поэтому рецепторы для таких гормонов локализуются в наружной клеточной мембране, причем гормон связывающий домен этих рецепторов расположен всегда на внешней стороне мембраны и может взаимодействовать с гормоном, находящимся в жидкости окружающей клетку. Поэтому требуется специальный механизм, обеспечивающий трансформацию внеклеточного регулягорного сигнала в сигнал внутриклеточный. Это связано с синтезом в клетке соединений выступающих в клетки "вторых вестников" мессенджеры. Механизмы действия отдельных гормонов этой группы сильно различается, тем не менее формирование ответа клетками на воздействие регуляторного сигнала всегда начинается с образования гормон-рецепторного комплекса. Образование этого комплекса сопровождается в дальнейшем генерацией химического сигнала изменяющего метаболизм клетки Рецепторы этих биорегуляторов локализуются на внешней стороне наружной клеточной мембраны. Далее происходит активация О,-белка и этот белок взаимодействует с аденилатциклазой. Адекилатциклаза отщепляет отАТФпирофосфат и образуется цАМФ, который далее соединяется с ферментом с АМФ-зависимой протеинкиназой А-киназа и пререаодит фермент в активную форму. Неактивная форма представляет собой тетромер, состоящий из 2-х каталитических и 2-х регуляторных субъединиц. При взаимодействии цАМФ происходит диссоциация комплекса на регуляторные субъединицы связанные с цАМФ и свободные каталитические субъединицы способные фосфорилировать различные внутриклеточные белки по остаткам серина или треонина. Это фосфорклировакие белков есть ни что иное как ковалентная модификация которая сопровождается изменением их фуккщшналъной активности, то есть в клетке меняется каталитическая активность фермента, изменяется способность транспортных белков переносить свои лиганды через мембраны, а фосфорилированне белков участвующих в работе механизмов отвечающих за экспрессию генов приводит к изменению количества отдельных белков клетки. За счет этих изменений и формируется метаболический ответ клетки на воздействие гормонов. Возврат клетки в исходите состояние обусловлен работой нескольких механизмов: Поскольку гормон-рецепторный комплекс формируется за счет слабых взаимодействий, то он легко диссоциирует, а сворбодный гормон быстро инактивируется 2. Gs-белок самобладаетспособнос тью гидролизовать ГТФ, поэтому уже через секунд активированный Gs-белок послегодролизасвязан ного с ним ГТФ переходит в неактивное состояние, и теряет способность взаимодействовать с аденилатциклазой. В клетках имеется ферменты - фосфопротеинфосфатаз ы, которые обеспечивают дефосфорилирование белков, то есть возврат функцианальной активности клеточных белков к исходному состоянию. Производные аминокислот адреналин, Кодированные тироникы, метатонии 4. Стероидной природы кортизол, альдостерон, половые гормоны эстрадиол, тестостерон, прогестерон. Выполняют регуяяторную функцию, контролируя протекание в организме различных. Для кортизола было показано наличие специального белка переносчика в наружной клеточной мембране. Стероидные гормоны поступив в цитозоль взаимодействуют там со своими рецепторами. Рецептор имеет три домена: Центральный домен, который содержит белок - ингибитор, обеспечивает связывание рецептора со специфическим участком ДНК в регуляторной зоне того или иного гена. N-концевой домен, обеспечивающий активацию или торможение транскрипции соответствующего гена. После присоединение гормона происходит удаление ингибитора из центрального домена, конформация резко меняется - активация рецепторов. И только такой комплекс может проходить через поры ядерных мембран. Стероидные гормоны, проходя через мембрану взаимодействуют в цитозоле со своими рецепторами, которые представляют собой полидоменные белки - гликопротеиды, имеющие в своем составе около аминокислотных остатков. В рецепторе имеется три домена. В клетках содержится до 10 тыс. В отсутствии гормона с центральным ДНК-связывшотцим доменом связан белок ингибитор, который препятствует проникновению рецептора в ядро. Связывание гормона с С-концевым доменом приводит к изменению конформации всей молекулы белка рецептора, поэтому белок ингибитор покидает рецептор, освобождая центральный домен активация рецептора. Образовавшийся гормон-рецепторкый комплекс поступает в ядро, где взаимодействует с гормон-чувствительны ми сайтами в различных частях ДНК. Гормон-чувствительны е комплексы взаимодействуют с генами в районе энхансоров, а N-концевые домены этих комплексов принимают непосредственное участие в регуляции эффективности транскрипции соответствующих генов, активируя или ннгибируя эти процессы. На первой стадии под прямым влиянием гормон-рецепторных комплексов изменяется эффективность транскрипции небольшого количества генов, ответственных за синтез в клетке небольшого количества регуляторных белков -ПЕРВИЧНЫЙ ОТВЕТ. На втором этапе синтезированные регуляторные белки в свою очередь изменяет количество белков-ферментов, белков-переносчиков и структурных белков на втором этапе синтезированные регуляторные белки в свою очередь изменяет количество белков-ферментов, белков-переносчиков и структурных белков, отвечающих за формирование метаболического ответа в клетке, то есть так называемый вторичный ответ. Регуляторныи эффект Т3 и Т4 базируется на контроле генной экспрессии Кодированные тиронины мало растворимы в воде и транспортируются к органам и тканям плазмы крови в комплот е с белками - это тироксинсвязывающий глобулин и тироксинвязывающии преальбумин. Синтез и выделение и одированных тиронинов стимулируется тиреотропным гормоном передней доли гипофиза В свою очередь выделение тириотропного гормона контролируется гипоталамусом Во первых за счет выделения тириолиберина стимулирующего выделение. Во вторых с помощью соматостатина ингибирующего выделение тириотропного гормона. Показано что введение гормона приводит к повышению активности как минимум сотни ферментов. Этоувеличение активности большого числа ферментов отражает резковыраженное стимулирующее действие гормона на синтез белка во многих органах и тканях. Введение тириодных горомнов приводит к увеличению теплопродукции, но это увеличение теплообразования обусловлено не разобщением окисления фосфорилирования, а увеличением расхода АТФ в энергозависимых процессах. Гипофункция китовидной желеаы проявляется у людей выраженным замедлением метаболических процессов что проявляется например в снижении уровня основного обмена в снижении температуры тела Если гипотериозом страдают новорожденные то. При гипофункции щитовидной железы у взрослых развивается микседема слизистый отек Характерен низкий уровень основного обмена брадикардия сонливость. Он секретйруется в кровь мозговым вещ-вом надпочечников в экстремальных сигуациях. Тирозин щцроксидируется с превращением в ДОФА, затем ДАФА карбокеилируется с превращением в ДОФ-амин, далее происходит гидроксилирование с образованием норадреналина, который в последующем метилируется и дает адреналин с использованием активного метионин-S-аденозинм етион ин. Инактивация идет путем дезаминирования или путем метилирования, процесс глюкуронирования в печени. Стимулирует гликогенолиз в мышцах, стимулирует мобилизацию гликогена в печени, стимулирует мобилизацию триглицеринов. Однако в мышцах нет фермента глюкозафосфотазы, поэтому при расщеплении гликогена в мышцах свободной глюкозы образуется и она не поступает в кровь, т. В то же время адреналин способен ускорять расщепление гликогена в печени за счет активации фосфорилазы. Образующаяся глюкоза поступает из гепатоцитов в кровь, что приводит к повышению ее концентрации, поэтому все ситуации сопровождающиеся выбросом адреналина или введением адреналина естественно сопровождается повышением концентрации глюкозы в крови. Это повышение содержания глюкозы развивается очень быстро, поскольку как и в случае глкжагона обусловлено повышением активности имеющихся в гепатоцитах ферментов. Адреналин является мощным стимулятором липолиза в жировой ткани. Глюкагон а-клетки островков лангерганса Представлен одной, линейно расположенной, полипептидной цепью в состав" которой входит 29 аминокислот Образуется из проппокагона, содержащего на Г-конце полинептида дополнительный октапептид, отщепляемый в процессе постсингатического протиолизы. Он стимулирует процесс глюконеогенеза, за счет повышения активности одного из фермента гаоконеогенеза фруктоза- 1,6-бисфосфотазу Глюкагон не оказывает не оказывает влияние на скорость расщепления гликогена в хашиах. Кора надпочечников выделяет три класса стероидных гормонов, в соответствии с их преобладающими. В основе структуры всех стерондных гормонов лежит стераиовое ядро. Синтез идут из хролистерола, т еродоначальникомили исходным углеводородом для всех стероидных гормонов является холестерин. Синтез кортизола идет в клетках в пучковой и сетчатой зоне коры надпочечников Холистерол поступает в клетки коры надпочечников из коры и только незначительная часть образуется в клетках путем его синтеза из ацетилКоА. Первым этапом синтеза кортшола как и других кортикостероидов является укорочение боковой цепи хопистерола и отщепление 6-й углеродного фрагмента с образованием прегненолона-. В качестве окислителя в гидроксилазных реакциях используется кислород, косубстратом служит восстановленный НАД Стероидные гормоны практически не накапливаются в коре надпочечников и секреткруются в кровь по мере их синтеза Кортнзол оказывает на метаболизм двойственный эффект. При ведении кортизола наблюдается увеличение скорости глкжоиеогенеза, что сопровождается выбросом глюкозы в кровь и нарастает содержание гликогена в печени Активация глюконеогенеза базируется на увеличении количества целого ряда ферментов, отвечающих как за дезаминирования аминокислот, так и за исгшьзование углеродных скелетов для синтеза глюкозы Одновременно в периферических тканях кортизол стимулирует выход аминокислот в кровь ив то же время тормозит поступление глюкозы из крови в клетки периферических тканей т е сберегает глюкозу. Введение кортизола приводит к увеличению ВЖК плазме крови Частично это является результатом стимуляцией липолиза, причем избыточное количество кортизола стимулирует липолиз в жировой тканей конечностей с одновременной стимуляцией лгоюгенеза в жировой ткани туловища и лица. Тестостерон синтезируется в нитерстициальныхклет ках семенников клетки Лейдига Синтез и секреция регулируются гкпоталамо-гилофизар ной системой. По своему строению близок к углеводному андростану Тестостерон можно рассматривать как андростан, в котором имеется одна двойная связь в положении , кетогрулпа в положении 3 и гидроксильная группа в положении Известно, что введение андрогенов приводит к положительному азотистому балансу, ускорению синтеза ДНК, РНК, белков структурных липидов и полисахаридов, т е всего, что необходимо для увеличения массы тканей анаболическое действие Некоторые синтетические аналоги андрогенов, не имеющие андрогенной активности, но стимулирующие рост тела и накопление мышечной массы, получили распространение у атлетов для повышения спортивных показателей, однако теперь выясняется, что их применение может быть опасным для здоровья Женские половые горомны Являются производными углеводорода эстерана, отличающегося от циклопентанопергидро фенан трена только тем, что содержит группу СНЗ у го углеродного атома Важнейшими из гормонов являются эстрадиол, эстрон, эстриол Так же можно отнести гормон желтого тела яичника - лютеостерон и прогестерон. Влияние половых гормонов на отдельные виды обмена в организме мало изучено Следует отметить, что атрофия половых желез у людей или кастрация у животных вызывает понижение окислительных процессов в организме и отложение жира в жировых депо Склонность кастрированных животных к ожирению издавна используется в животноводстве в целях получения жирного мяса Связь между функциями половых желез и центральной нервной системой несомненна У кастратов отмечено значительное падение возбудимости, особенно страдает тормозной процесс Вследствие этого у кастратов условные рефлексы образуются значительно труднее. Паратгормоно влияет на концентрацию Са в плазме повышает в результате воздействия на кишечник, кости и почки Эффект действия на костную ткань связан в основном со снижением Са-связывающей способности костей Гормон после связывания с рецептором активирует аденилатциклазу мембран костных клеток и увеличивает поступление Га в эти клетки Увеличение концентрации Са в остеокластах приводит к I угнетение цитратеинтазы2итибир овани е синтеза коллагена 3 активаций лизосомальных ферментов участвующих в рассасывании кости. Основным путем выделения энергии служит окислительное расщепление Именно окислительнымпутемра зрыва ется основное количество химических святей питательных веществ Например аминокислоты образующиеся при гидролизе белка расщепляются затем до углекислого газа воды и аммиака Какие же способы окисления веществ реализуются в клетке? Суть различия сводится к вопросу о первичном акцепторе отщепленного водорода Если атомы водорода отщепленные от субстрата переносятся сразу на кислород - аэробное Если отщепленные атомы водорода переносятся на соединения отличные от кислорода - анаэробное. Оксиредуктазы Все ферментыкатализирующ ие окислительно-восстан овите льные процессы Какие же здесь группы. В чем разница между ними? Аэробные дегидропшазы катализируют перенос отщепленных атомов водорода от окисляемого субстрата на кислород в итоге образуется токсичная перекись водорода. Анаэробные дегидрогиназы катализируют перенос отщепленных атомов водорода на какое-то соединение отличающееся от кислорода НАД, ФАД, ФМН , а субстрат окисляется, потеряв 2 атома водорода. Реакции монооксигеназного типа требуют еще одного участника так называемого Косубстрата Чаще всего выступает восстановленный НАД К субстрату присоединяется один атом кислорода. Окислительные процессы несут защитную роль Многие ксенобиотики обезвреживаются путем окисления в том числе многие лекарственные препараты 5. Огромная роль в поддержании температуры тела Таким образом существование живых существ невозможно без окислительных процессов. Пищевые вещества могут быть заменимыми и незаменимыми Заменимые — это те, которые могут образоваться в организме из других веществ Например, жиры могут образ из углеводов, углеводы — из аминокислот, некоторые аминокислоты образ из других аминокислот или га углеводов Незаменимые пищевые вещества не синтезируются из других веществ и поэтому должны содержаться в пище в готовом виде. Основные пищевые вещества большей частью представляют собой полимеры В желудочно-кишечном тракте они гидролизуются при участии ферментов класса гидролаз на мономеры в этом заключается суть пищеварения В процессе пищеварения происходит уменьшение разнообразия веществ из бесчисленного количества белков разного строения, полисахаридов, жиров получается 20 разных аминокислот, небольшое число моносахаридов главным образом глюкоза, фруктоза, галактоза , глицерин, жирные кислоты главным образом олеиновая, стеариновая, пальмитиновая Мономеры как низкомолекулярные вещества значительно легче проникают через клеточные мембраны кишечного эпителия полимеры практически не всасываются С кровью мономеры транспортируются во. Что происходит в цикле Кребса? Обеспеченность клетки энергией можно характеризовать величиной энергетического ее заряда Он равен отношению концентрации АТФ и половины концентрации АДФ к концентрация АДФ, АТФ и АМФ Когда клетка хорошо обеспечена энергией большая часть ее адениловых нуклеотидов находится в форме АТФ и величина энергетического заряда приближается к 1 Высокая концентрация АДФ и АМФ признак нехватки энергии Отсюда работа цикла Кребса должна тормозиться высокой концентрацией АТФ Цикл Кребса должен стимулироваться высокой концентрацией АДФ и АМФ, энергии не хватает - пора включать цикл Аналогичную роль может играть отношение восстановленно! Третьим уровнем регуляции является а-кетоглюторатдегидр опшаз ная реакция Здесь восстановленный НАД и АТФ явл аллостер ингибиторами работы этого комплекса Активатором выступает АМФ Высокие концентрации сукцинил-КоА угнетает работу комплекса. Активность фермента сукцинатдегидрогиназ ы ингибируется по конкурентному механизму высокими концентрациями ЩУК и малоновой кислоты. Тканевое дыхание можно наблюдать, используя срезы тканей. Если срезы инкубировать в растворе глюкозы в замкнутом сосуде, то в растворе происходит убыль глюкозы, а в воздухе над жидкостью — убыль кислорода и прирост диоксида углерода. Интенсивность тканевого дыхания в разных тканях неодинакова. Выделение СО2 как мы видели, происходит за счет реакций де-карбоксилирования и общем пути катаболизма. Здесь представлена главная цепь дыхательных ферментов в составе которой имеется три комплекса I III IV Кроме тогоздесьпредставлен а редуцированная или укороченная цепь дыхательных ферментов в составе которой входит комплекс И содержащий ФАД зависимый фермент и железосерный центр обеспечивающий Такая организация переносчиков имеет свою логику Здесь вы видите что KoQ и циточром С не входят в состав комплекса Б этойсистемеKoQ и цитохром С выступают в качестве так называемых стыковочных узлов. На ряду с Н АД KoQ и цитохром Г выступают в клетках в качестве коллекторов эгекгронов Поток этих электронов с окисляемых субстратов может подключатся на раэны уровнях дыхательной цепи Так например пиридин вые дегидрогиназы переносят протоны и электр ны на НАД из алаксозиновые на KoQ аферментаскорабатокс ндаза переносит э кктроны непосредственно на цитс хром С. Причем на участке от восстановленного НАД до KoQ работает система двухелектронного переноса, а на участке где раоотают цитохромы переносится один электрон Вместе с тем, для того что бы молекула кислорода активировалась и стала способной связывать 4 протона с образованием 2 молекул воды требуется 4 электрона. Он выражается в микролитрах кислорода поглощенного в один час в расчете на миллиграмм сухой ткани Обозначается. Поглощение кислорода тканями и органами сопровождается одновременным образованием в них СО2 и Н2О Этот процесс получил название тканевое дыхание. НАД Зависимые аегидрогеназ ы. В реакциях, катализируемых этими ферментами, в качестве софермента участвует никотина мидадениндинуклеотид НАД Две половины молекулы НАД объединенные связью между статками фосфорной кислоты построены по. Одна половина представляет ыбои остаток нуклеотнда адеиило вой кислоты Другая половина тоже нуклеотид, его азотсодержащая гетероциклическая группа представлена амидом никотиновой кислоты. НАД Зависимые дегидрогеназы катализируют реакции окисления веществ путем дегидрирования при этом окисляемое вещество служит донором водорода а НАД выполняет ротъ акцептора водорода, т е восстанавливается. НАД находится в цитозоле в свободном состоянии и взаимодействует с ферментом в момент реакции в этом отношении он сходен с субстратами ферментов. Мукополисахариды представляют собой сложные высокомолекулярные соединения полисахариды с не вполне выясненной структурой, обычно построенные из гексозаминов стр 82 и гексуроновых кислот, например глюкуроновой кислоты, формула которой приведена ниже В настоящее время с химической стороны наиболее изучены так называемые кислые Мукополисахариды, именуемые также мукополиурони-дами, т е полисахаридами, в состав которых входят уроновые кислоты D-глюкуроновая, иногда ее изомер—идуроновая кислота Мукополисахариды содержатся в различных живых организмах животных зги соединения входят в состав главным образом соединительной ткани и особенно в состав межтканевого н межклеточного веществ язкие секреты слизи ,выделяемыера зличн ыми железами, предохраняющие стенки многих органов от механических повреждений или облегчающие прохождение тех или иных тел через узкие трубки например, пищи через пишевод , также богаты мукополисахарндами Мукпшшисазмриды яаходятса в тканях частые г. Хондроитинсерная кислота наряду с гиаяурояшой- ааивлой содержится в большим каштмгк в различных видах соединительной ткани. Особенно много ее содержится в хрящах, где она связана с белковыми веществами так называемые хондромукоид ы Подобно гиалуроновой кислоте, хондроитинсерная кислота является высокополимерным соединением, в состав которого зходят ацеетдхоыдроза-мин гадактозамин , ппокуроиоаая и серная кислоты Молекулярный вес хондроитинсерной кислоты около Известно несколько типов А, В, С хондроитинсерной кислоты, отличающихся по. Широко распространенный в животных тканях гепарин является мукополисахаридом, в состав которого входят глюкозамин, глю-куроновая кислота и эфирно связанная серная кислота Молекулярный вес гегарина ПООО— Таким образом, этот мукополисахарид представляет собой, по сравнению с другими веществами этой же группы, сравнительно простое соединение. Биологическое значение гешрина определяется его способностью задерживать свертывание крови стр Гекарян может образовывать комплексы срядим белковых веществ, в гом чииш с некоторыми ферментами. Гепарин в настоящее время широко применяется в качестве естественного стабилизатора крови при ее переливании, а также как средство для предотвращения тромбозов. Химическая природа н роль. К флавиновьш ферментам, содержащим ФМН, принадлежит НАД-Н-дегидрогеназа, которая окисляет НАД-Н. Акцептором водорода в этой реакции служит кофермеит Q убихинон , который в клеткеможетсуществов ать в окисленной убихинон Q и восстановленной формах убихинол QH2 НАД-Н-Дегидрогеназа переносит водород с НАД-Н на убихинон. При этом атомы водорода сначала присоединяются к ФМН в составе НАД-Н-дегидрогенязы первая полуреакдия , а затем передаются на убихинон вторая полуреакция. Дегидрогеяюы содержащие ФАД, катализируют отщепление водорода от групп -CH2-CH2- с образованием двойной связи. Электроны с восстановленного коэнзима переносятся по системе ферментов получивших название цитохромы на кислород и активируют его Протоны попадают в окружающую среду и соединяются с кислородом только после его активации. Цитохромы окрашенные компоненты клеток содержащие в своей структуре геминовые коферменты Все цитохромы таким образом являются гемопротеидами. Гемопротеиды содержат в своей структуре железопорфериновую простетическую группу которая напоминает по своей структуре гем гемопюбина, но не идентично гему Отличие заключается в боковых цепях парфиринового ядра Каждая железопарфириновая группировка содержит атом железа за счет изменения валентности которою ферменты осуществляют перенос электронов Железо легко пеняет свою валентность и поэтому легко может выполнять электронотранспортну ю функцию. В рассматриваемой нами цепи переносчиков электронов с KoQH2 на кислород функционирует 5 цитохромов 1 из них объединяются 2 надмолекунярных комплекса. Первый из них именуемый KoQH2 цитохром-С-оксидоред уктаз а содержит: Функция железосерного комплекса перенос электронов с цитохрома в1 на цитохром cl За счет работыэтогокомплекса электроны с KoQH2 переносятся на железопорфериновую группировку цитохрома С восстанавливая в группировке атом железа. Второй цитохромный комплекс называется циозом-С-оксидаза и включает в себя 2 цитохрома а и второй цитохром аЗ Особенностью цитохрома аЗ является наличие иона Си причем 2 атома Электроны вначале поступают на железопорфериновую группировку цитохрома а затем они переносятся на атомы Си и лишь затем передаются на кислород. Повышение концентрации глюкозы в крови например в результате ее всасывания из кишечника на высоте пищеварения поступление глюкозы в клетку может увеличиваться и часть глюкозы может использоваться для синтеза гликогена Накопление резерва углеводов в клетках в виде гликогена имеет преимущество по сравнению с накоплением глюкозы Поступившая в клетку глюкоза подвергается фосфорилированию с участием фермента гексокиназы или гюкокиназы. Образующаяся глюкозафосфат с участием фермента фосфоглюкомутаэы изомеризуется в глюкозафосфат Далее глюкозафосфат за счет энергии уридинтрифосфорной кислоты с участием фермента глюкоза-I-фосфат уридилтрансферазапре враща ется в уридиндифосфоглюкозу Образующийся пирофосфат немедленно расщепляется пирофосфотазой необратима - реакция термодинамического контроля УДФ глюкоза с участием фермента гликоген-синтетазы этот фермент способен образовывать а-1,4-гликозидные связи в гликогене включается в молекулу гликогена Фермент гликоген-синтетаза способен присоединять остатки к строящейся молекуле гликогена только путем образования а 1,4-гликозндной связи Следовательно с участием этого фермента может синтезироваться только линейный полимер Гликоген полимер разветвленный имеющий а-1,б-гликозидные связи в точках ветвления Оказывается для образования этих связей необходим еще один фермент получивший название фермента ветвления Синтез гликогена идет во всех органах и тканях Однако наибольшее количество содержится в печени и мышцах Включение одного остатка глюкозы в молекулу гликогена сопровождается использованием двух макроэргических эквивалентов Необходима одна молекула АТФ и одна молекула УДФ Поэтому синтез гликогена может идти только при достаточной энергообеспеченности клеток, т е при высокой концентрации АТФ. Гликоген как резерв глюкозы накапливается в клетках в постадсорбционном периоде после всасывания и расходуется затем. Эти процессы различны Это обстоятельство дает возможность раздельно регулировать синтез и распад гликогена Регуляция осуществляется на уровне 2 ферментов гликогенфосфорилазы и гликогенсинтетазы Осн овным механизмом регуляции активаостн этих ферментов является их ковалентная модификация путем фосфорилирования — дефосфорилирования Фосфорилированная фосфорилазаактивна о твеча ет за расщепление гликогена ее называют фосфорилаза-А В то время как фосфоритрованная гяикогенсинтетаза неактивна активная форма отвечает за синтез а дефосфоршппмванные формы наоборот Дефосфорилированная фосфорилаза неактивна - фосфорилаза-В. РАСПАД ГЛИКОГЕНА В ПЕЧЕНИ Первичным сигналом стимулирующим мобилизацию гликогена в печени является снижение концентрации глюкозы в крови Если вы хотели есть, но вас отвлекли как ребенка и ничего не давать, то дальше он уже не просит есть Почему? В ответ на это а-клетки островков Лангерганса панкреатической железы выбрасывают в кровь гормон ГЛЮКАГОН. Глюкагон циркулирующий в крови взаимодействует со своим белком-рецептором находящимся на внешней стороне наружной клеточной мембраны и образует гормон-рецепторный комплекс 3. Затем с помощью специального механизма после образования гормон-рецепторного комплекса происходит активация фермента аденилатциклазы G белки меняют свою конформацию и переводят в активную форму адекилатциклазу 4. Активная форма начинает образовывать циклический АМФ из АТФ 5. Каталитические субъеднницы обеспечивают фосфорнлироваиие ряда белков, в том числе ферментовВчастности они обеспечивают фосфорилирофание гликогенсинтетазы и это сопровождается блокированием синтеза гликоген Кроме этого происходит фосфорилирование киназы-фосфорилазы слово киназа означает фосфорилироваиие которая фосфорилирует пшкогекфосфоршшу Отсюда активация расщепления гликогена с выходом глюкозы в кровь. Выброшенная глюкоза в кровь увеличивает концентрацию доводя ее до нормальных величин Стимуляция расщепления гликогена в печени происходит так же за счет выброса адреналина. Анаэробное расщепление глюкозы до лактата гликолиз и гликогенолиз. Поскольку в ходе этого превращения используются молекулы восстановленного НАД которые образовались при окислении трифосфоглицериновог о альдегида то система становиться независимой от киолдорода. Комбинация реакции в ходе которых окисление трифосфоглицериновог о альдегида в 1,3 дифосфоглицерат генерирует восстановленный НАД используемый в дальнейшем для восстановления пирувата в лактат получило название - гликолитическая оксидоредукция. Что здесь важно подчеркнуть По свременным представлениям 1 этап окисления люкозы протекает в цитозоле и катализируется. Первая реакция катализируется ферментом гексокиназой. Вторая реакция изомеризация катализируется ферментом фосфогексоизомеразой. Превращением в фруктозу 6 фосфат. Четвертая реакция альдолазная катализируемая ферментам альдолазой Входе этой реакции происходит альдолазное расщепление фруктозабисфосфат а. Следующая реакция в ходе которои фосфодиоксиацетон изомеризуется с превращением трифосфоглицириновый альдегид Катализирует эту реакцию фосфотриоза-изомераз а. Таким образом в ходе первой стадии затрач 1Вается 2 молекулы АТФ и оорачуется молекулы фосфоглицеринового альдегида Иногда эту стадию называют подготовительной Т е идет дальнейшая подготовка к окислению уже образующихся фосфотриоз. На второй стадии первого этапа. Происходит окисление фоосфоглицеринового альдегида в пируват. Поскольку при распаде молекулы глюкозы образуется 2 молекулы фосфоглицеринового альдегида, то вдальнейшем при описании процесса мы должны учитывать это обстоятельство. Дегидрогеназа трифосфоглицериновог о альдегида. Одновременно участником реакции является фосфорная кислота Названный фермент является НАД зависимым т е одержи в качестве кофермента НАД Происходящий процесс окисления путем дегидрирования приводит. Во второй реакции происходит образование АТФ Фермент катализирующий эту реакцию называется фосфоглицераткиназа В ходе этой реакции энергия вместе с фосфатной группой передается на АДФ образованием АТФ Образующеес я оединение в ходе этои реакции это 3-фосфоглицерат. В третей реакции катализируемои фосфоглицератмутазой происходит перенос фэсфатной группы от 3 углеродного атома ко 2-му углеродному атому. В четвертой реакции катализируемой ферментом енолазой, происходит перегруппировка связей и образование макроэргического соединения фосфоэнолпирувата ФЭ П. В ходе пятой реакции катализируемой ферментом пируваткиназой происходит перенос вместе с энергией фосфорильного остатка на АДФ с образованием АТФ. На этом первый этап заканчивается. Основными из них являются анаэробные расщепление глюкозы до лактата гликолиз и гликогенолиз. В анаэробных усповиях расщепление до лирувата идет аналогично аэробному пути окислению. Пировиноградная кислота за счет лактатдегидрогиназы с использованием восстановленного НАД восстанавливается до молочной кислоты. Поскольку в ходе этого превращения используются молекулы восстановленного НАД, которые образовались при окислении трифосфоглицериновог о альдегида, то система становиться независимой от кислдорода. Комбинация реакций в ходе которых окисление тряфосфоглкцериновог о альдегида в 1,3 дифоофоглицерат генерирует восстановленный НАД, используемый в дальнейшем для восстановления пирувата в лактат подучило название - гликолитическая оксидоредукция. Тем не менее на каждую распавшуюся в ходе анаэробного гликолиза молекулу глюкозы клутка получает 2 молекулы АТФ. При гликогинолизе клетка получит 3 молекулы АТФ на каждый остаток глюкозы из молекулы гликогена. Потому, что фосфоролиз не требует АТФ в отличии от гексокиназной реакции, то есть при гликогенолизе расходуется только 1 молекула АТФ, а 4 образуется. Несмотря на очевидную невыгодность в отношении количества высвобождаемой энергии анаэробный гликолиз и гликогенолиз позволяет клеткам существовать в условиях отсутствия кислорода. Во-первых анаэробный путь окисления глюкозы обеспечивает энергией в условиях высокой экстренно возникающей нагрузке. Во-вторых эти процессы играют большую роль в обеспечении клеток энергией при. Их количественное соотноыение в составе комплекса как правило приближается В качестве простетической группы этот фермент содержит ТДФ тиаминдифосфат. Этот фермент отщепляет карбоксильную группу в виде СО2 и образует соединенный с ферментом активный ацетоальдегид гидроксиэтил. В качестве простетической группы этот фермент содержит липоевую кислоту В ходе этой реакции происходит перенос остатка эфирного ацетоальдегида на ЛК. Параллельно происходит окисление альдегидной группы до карбоксильной. Фермент катализирующий данную реакцию - дегидрогиназа липоевой кислоты. Суммарное уравнение окислительного декарбоксилирования пирувата. Под действием пируватдегидрогиназн ого комплекса который содержит 3 фермента и 5 коферментов: ТДФ, ЛК, ФАД, НАД, HSKoA, происходит отщепление 2СО 2 , образование двух восстановленных НАД, то есть энергия прошедшего окисления запасается в восстановленном НАД и образуется макроэргическое соединение - ацетил-КоА, которое дальше может использоваться в цикле трикарбоновых кислот Кребса. Вторую группу нарушений составляют вторичные нарушения обмена углеводов, которые развиваются на фоне того или иного заболевания. Эти нарушения не имеющие наследственного характера, встречаются в следствии того или иного заболевания или в результате прибывают человека в экстремальных условиях голодание или эмоциональный стресс Проявление этих нарушений метаболизма обычно яваяется изменение содержания глюкозы в крови, появление глюкозы в моче, изменение содержания различных промежуточных продуктов углеводного обмена вкрови, ликворе и тканях Несомненно, что изменение содержания этих соединений в различных биологических объектах дает ценную информацию о состоянии внутренней среды оргашима на основании которых на ряду с другими данными может быть поставлен диагноз или сделано заключение о ходе развития патологического процесса Целый ряд физиологических и патологических состояний сопровождается изменениями содержания глюкозы в крови Повышение концентрации глюкозы в крови более 5,5 носит название гипергллкемии более точио гиперглюкозэмия Причиной гипергликемии может быть то или иное физиологическое состояние организма, но в то же время гштергликемия может развиваться как следствие различных заболеваний Поэтом; их подразделяют аа: Определенную роль играет так же нарушение усвоения глюкозы тканями, поскольку мы говорили, что инсулин активно влияет на процессы утилизации глюкозы клетками При так называемом стероидном диабете так же развивается стойкая гнпергликемвя В основе этого варианта лежит избыточная продукция корковым веществом надпочечников гормонов глюкокортикоядов. Глюкокортикоиды поступающие в кровь в избыточном количестве вызывают гиперстимуляцию глкжонеогенеза отсюда и гипергликемия Гиперплазия коры надпочечников и повышенная выработка ппококортикоидов наблюдается при синдрома болезни Иценко-Кушинга. При опухолях мозгового вещ-ва надпочечников так же развивается гипергликемия причиной является избыточная продукция опухолевыми клетками гормона адреналина Еще одним вариантом патологической гипергликемии является гипергдикемия развивающаяся при тяжелых поражениях печени например цирроза В этом случае причиной гипергликемии является нарушение способности пораженной печени депонировать поступающую во время пищеварения глюкозу в гликоген. Липиды - природные органические соединения крайне гегерогенны по своей химической структуре общими свойствами которых является низкая растворимость в воде и хорошая растворимость в аполярных растворителях таких как хлороформ, жидкие углеводороды и др. Жирные кислоты и их производные. Природные ненасыщенные жирные кислоты незаменимые обычно имеют тривиальное название, например алеиновая, линоливая, линоленовая арахндоновая. Жирные кислоты в организме выполняют несколько функций. Прежде всею несомненно это энергетическая функция. Так же выполняют структурную функцию. Выполняют пластическую функцию Из ацетилКоА продукт распада жирных кислот в гепатоцитах синтезируются ацетоновые тела, холестнрол А эйкоюполяевовые кислоты используются для синтеза рядя биорегуляторов это простогландины. К ним относятся простоноиды а простогландины, 6 простоциклины, ъ лейкотриены; г трамбоксаны Первые три группы соединений простогландины, простошклины, лейкотриены объединяют так же в группу простоноиды Эйкозополиеновые кислоты - высшие жирные кислоты с 20 атомами углерода в цепи и имеющие в своей структуре несколько двойных связей. Простогландины, которые делятся на простогландины а, в, с, d и т д относятся к виорегуляторам паракринной системы. При очень низких концентрациях они вызывают сокращение гладкой мускулатуры, 1 участвуют в развитии воспалительной реакции. Из глициринсодержащих липидов наибольшее значение имеют и Обычно их рассматривают как производные трехатомного спирта — глицерола делятся по количеству входящих в их состав ацильиых групп на а моноацилглицигины -1 жирный кислотный остаток б диадилпшцериныв тр иацил глицерины Триайилглицерины. Липиды, не содержании глицерола. К этим липидам относятся множество самых разнообразных соединений химической природы Мы остановимся только на трех группах веществ имеющих высокую биологическую значимость а сфинголипиды б стероиды в полипреноиды Сфинголипиды. Можно рассматривать как производные стерамида Отдельные классы сфингошгшдов отличаются друг от друга только характером группировки присоединенной функния сфшхалипидов Прежде всего структурная функция Они входят обязательно в состав клеточных мембран Углеводные компоненты цереброзидов и ганпшозидов участвуют в образовании гдикокаликса Причем в этом качестве они играют определенную роль во - первых в реализации межклеточных взаимодействий во - вторых во взаимодействии клеток с компонентами межклеточного вещества3 Ганглиозиды выполняют рецепторные функции Стероиды. К ним относятся соединения имеющие в своей структуре стерановое ядро Различные соединения из класса стероидов отличаются друг от друга а дополнительными углеводородными радикалами, б наличием двойных связей,в наличием различных функциональных групп г различия могут ноешь стереохимический характер Биологически важные соединения сгпероидной природы. Липиды, поступающие из кишечника во внутреннюю среду организма обычно называют экзогенными липидами Процесс расщепления пищевых жиров идет в основном в тонком кишечнике, правда в пшгорическом отделе желудка выделяется липаза рН желудочного сока на высоте пищеварения составляет 1,25 и при этих значениях рН фермент практически неактивен Желудочная липаза работает только у ребенка, поскольку рН желудочного сока ребенка составляет величины порядка Принято считать что образующиеся в пилорическом отделе желудка жирные кислоты и моноглицериды далее участвуют в эмульгировании жиров в 12 перегной кишке В желудке под обработка облегчает расщепление липидов этих липопротеидов в тонком кишечнике. Поступающие в тонкий кишечниклипидыподвер гаютс я действию ряда ферментов Прежде всего пищевые триацилглицерины подвергаются действию фермента липазы поступающей из панкреатической железы Эта липаза наиболее активно гидролизует сложноэфирные связи в 1-ом и 3 м положении Менее эффективно она гидролизует сложноэфирные связи между ацилом и 2-м атомом углерода глицерола. Для проявления максимальной активности колипаза - это полипептид поступающий в 12перстную кишку с соком панкреатической железы В расщеплении жиров принимает вторая липаза выделяемая стенками кишечника Эта липаза малоактивна в отличии от панкреатической и преимущественно катализирует гидролиз сложноэфирной связи между ацилом и 2 м атомом углерода глнцерола, т е гидролизует июжноэфирную связь которая расщепляется слабо панкреатической липазой При расщеплении жиров под действием этих двух липаз образуются преимущественно свободные жирные кислоты, моноацнлглиперины и ппшерол. С пищей так же поступают сложные эфиры холистерина, они расщепляются в тонком кишечнике гидролитическим путем при участии фермента холистеролэстеразы холистераза до свободных жирных кислот и холистерола Холистеролзтераза содержится и в соке поджелудочной железы и в кишечном соке, т е работают два типа холистеролэтераз кишечная и панкреатическая. Все ферменты принимают участие вгидролизепищевых липидов, могут они действовать только намолекулы. В качестве активно поверхностных веществ в тонком кишечнике выступают соли жирных кислот мыла а так же продукты неполного гидрошза триацилглицериное и фосфояшшдов Однако основную роль в этом процессе играют желчние кислоты Желчные кислоты синтезируются в печени из холистерола и поступают в кишечник вместе с желчью Различают первичные и вторичные желчные кислоты Все желчные кислоты это производные холановой кислоты Всасывание продуктовперевариван иялип нлов. В стенку кишечника легко всасываются вешества хогхшо шствооимые в воле Из продуктов пасщегшения липидрв к ним относятся такие как глицерол, аминоспирты, жирные кислоты с количеством углеродных атомов не более 10 а так же натриевые со ш фосфорной кис юты Эти соединения из клеток кишечника обычно поступают непосредственно в кровь и с током крови транспортируются в печень В то же время большинство продуктов переваривания липидов - это высшие жирные кислоты, моно- и диаципдглицерины, лизофосфолипиды, холистерол и др плоло растворимы в воде и для всасывания ил в стенку кишечника требуется специальный механизм Перечисленные соединения наряду с желчными кислотами и фосфолнпидами образуют мицеллу. Мицела состоит из гидрофобного ядра и внешнего мономолекулярного слоя амфифильных соединений. Поступившие в энтероциты мицеллы немедленно разрушаются, всосавшиеся продукты расщепления превращаются в энтероцитах в липиды характерные для человека Высвободившиеся при распаде мицелы желчные кислоты поступают обратно в кишечник или же постегают в кровь и через воротную вену оказываются в печени, здесь они улавливаются гепатоцитами и направляются в желчь для повторного использования Это так называемая энтерогеппическля циркуляция желчных кислот. Жирные кислоты - это алифатические карбоновые кислоты число атомов в которых может достигать 22 24 Основная масса жирных кислот входящих в организм человека и животных имеет четное число атомов углерода что связано с особенностями их синтеза Дело в том, что синтез идет путем тотарного удлинения углеродной цепочки Жирные кислоты как правило имеют неразветвленную углеводородную цепь Они подрюоеляются на насыщенные жирные кислоты - не имеющие в своей структуре двойных связей И ненасыщенные жирные кислоты имеющие в своей структуре двойные или даже тройные С - С связи тройные встречаются крайне редко Ненасыщенные жирные кислоты в свою очередь деются на. Все природные ненасыщенные жирные кислоты имеют стереохимическую цис- конфигурацию так называемая цнс-ол-изомерия. Природные ненасыщенные жирные кислоты обычно имеют тривиальное название, например алеиновая, линоливая, линоленовая арахидоновая Однако иногда пользуются систематическими названиями, которые отражают особенности структуры каждого соединения например олеиновая кислота называется цисоктодеценовой , из этого следует, что данная кислота имеет 18 атомов углерода октодецен она содержит одну двойную связь начинающуюся от 9-го атома углеродной цепи и имеет "цис" конфигурацию относительно этой двойной связи. Арахидоновая кислота по систематическому названию - цис-5,8,11,14,-эйкоз аттет роеновая кислота. Откуда такое мудреное название? От слова эйкозан Углеводородный эйкозан содержит 20 атомов углерода. Триаиилглииееины выполняют резервную функцию. Причем это преимущественно энергетический резерв организма Если мы говорили, что гликоген - это резерв энергетического и пластического материала, то триацилглицершш - это преимущественно энергетический резерв У человека массой 70 кг на долю резервных липидов приходится примерно И кг Учитывая калорический коэфицент для липидов равный 9,3 ккал общий запас энергии в резервных тригаицеридах у нас ккал Для сравнения запас энергии в гликогене в печени не превышает ккал. Стернды представляют весьма важную группу соединений липоидного характера В отличие от фосфатидов они являются сложными эфирами жирных кислот и стеринов. Циклопентанопергидро фенан трен можно рассматривать как продует конденсации циклопентана и полностью гидрированного фенантрена пергидрофенантрена. Стерины широко распространены в растительном и животном мире В бактериях их обычно обнаружить не удается Стерины находятся в биологических объектах либо в свободном виде, либо в виде сложных эфиров с. Изотдельных стеринов наибольший интерес для медиков представляют холестерин-. Основным органом, в котором идет синтез холистерола является печень. В печени человека синтезируется от 50 до. В условиях обычного пищевого рациона во внутреннюю среду организма поступает около мг экзогенного. Основным органом в котором идет синтез холистерола является в печень. В условиях обычного пищевого рационавовнутреннюю среду организма поступает около мг экзогенного хопистерола - мг холистерола организм обычно при смешанной диете получает за счет эндогенного синтеза. Общее содержание холестерола в организме человека примерно гр. Жирные кислоты связанные с холистерином это преимущественно линоливая и олеиновая Избыток холистерола в клетках запасается в виде эфиров олеиновой кислоты, в то же время в состав мембран входит только свободный холистерол. Избыток холистерола выводится из организма желчью. Последнее время доказано, что часть избыточного холнстерина может поступать в просвет кишечника непосредственно через его стенки Таким образом холистериновый гамеостаз в организме является результатом динамического равновесия во-первых процессов его поступления в организме эндогенного синтеза, и во-вторых процесов использования холистерола для нужд клеток и его выведение из организма Как синтезируется холистерол? Он синтезируется в клетках из двух углеродных группировок ацетилКоА Процесс синтеза включает в себя Зэ последовательных реакций и может быть разбит на этапов. При повышении содержания хояистерола в клетках, Внезависимос ти от того синтезирован он здесь в клетках или поступил из вне происходит снижение активности этого фермента, причем установлено что в данном случае речь идет не о прямом влиянии холистерола на активность фермента, а в основе ингибирующего действия лежат другие механизмы. Высшие жирные кислоты могут окислятся в тканях тремя способами 1 а-окисление 2 р-окисление 3 w-окисление Процессы а-иw-окисления идут в мшсросомах с участием ферментов монооксигеназ. Они играют в основном пластическую функцию В ходе этих процессов вдет синтез гидроксикислот, кетокислот и кислот с нечетным количеством углеродных атомов, которые затем включаются в тригшщериды Первая реакция монооксигеназная, т е реакция гидроксилирования с образованием гидроксикислот и образование жирных кислот с нечетным числом атомов путем декарбоксипирования -окисление высших жирных кислот является основным способом окисления высших жирных кислот в тканях Было открыто в году. Активация Поступающие в клетку высшие жирные кислоты подвергаются активации с участием фермента ацилКоА-синтетазы и они превращаются ацилКоА, причем активация происходит в цитозоле в то время как сам процесс р-окисления идет в матриксе митохондрий В то же время мембрана митохондрий непроницаема для ацилКоА Механизм транспорта? Оказывается ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика — карнитин В цитозоле с помощью фермента так называемой внешней ацилКоА-карнитинацил транс феразы переносится остаток высшей жирной кислоты в КоА на карнитин Далее аципкарнитин при участии специальной транслокаэной системы проходит через мембрану внутрь митохондрий и в матрнксе с помощью внутренней аципКоА-карнитикация транс феразы остаток ацила переносится на КоА т е образуется в митохондриях ацилКоА, карнитин высвобождается Высвобожденный карнитин с помощью той же транслоказы переносится в цитозоль, где может включаться в новый цикл переноса Таким образом транслоказа, осуществляющая перенос молекулы ацитилхарнитина внутрь мембраны, обменивает на молекулу карнитина удаляемую из митохондрий. Далее активированная жирная кислота или ацилКоА подвергается ступенчатому циклическому окислению В результате одного цикла р-окисления радикал жирной кислоты укорачивается на 2 углеродных атома, а отщепившийся фрагмент выделяется в виде ацетилКоА Суммарное уравнение. Парциальные реакции одного цикла 3-окисления в ходе которого активированная жирная кислота укорачивается на 2 углеродных атома например вступала стеариновая кислота, выходит пальметаилКоА и отщепляется ацетилКоА Пеовая реакция катализируется ФАЛ зависимой аиилКоАдегшнюгиназой. В кишечной стенки всосавшиеся ацилгицерины распадаются под действием тканевых липаз с образованием свободных жирных кислот и глицерола Часть моноацилглицеринов может превращаться в триащгаглицерины без предварительного расшепления йо так называемый моноацклглицериновый путь ресинтеза Все высшие жирные кислоты всосавшиеся к, кишечника используются в энтероцитах для ресинтеза различных лилидов Но перед тем как: За счет взаимодействия жирных кислот и использования специального фермента образуется ацшюденилаты. В ходе активации высшей жирной кислоты АТФ распадается до АМФ и 2 остатков фосфорной кислоты таким жирные кислоты участвуют в активированной форме. Соединения ацетоуксусные и р-гидроксимасляные кислоты поступают в кровь, а затем идут в клетки тканей, но для этих молекул диффузионного барьера не существует, поэтому они служат эффективным энергетическим топливом. Эти соединения получили название - ацетоновые тела. К ацетоновым телам относится и сам ацетон диметилкетон В то же время в гепатоциты высшие жирные кислоты поступают минуя диффузионный барьер потому, что гпатоциты в печеночных синусах непосредственно контактируют с кровью. Биосинтез и распад ацетоновых тел. Последняя реакция - лиазная катализирует фермент ГМГ-лиаза , происходит отщепление ацетилКоА и образование 4-х углеродной молекулы - ацетоацетата. Как образуются два других соединения, относящихся к группе ацетоновых тел? Ацетоацетат, поступающий в клетки различных тканей, прежде всего подвергается активации помощью одного из двух механизмов Ацетоацетат с участием фермента тиокиназы, за счет энергии АТФ превращается в ацетоацетилКоА. Второй путь, является превалирующим в активации, это за счет фермента тиофоразы Реакция, в которой принимают участие сукценнКоА и адетоацетат, приводит к образованию ацетоацетилКоА и образование сукцината, Образующийся ацетоацетилКоА далее дает 2 молекулы ацетилКоА принимает участие HSKoA, это тиолазная реакция АцетилКоА поступает в цикл Кребса, где ацетильные остатки окисляются до углекислого газа и воды Ацетоновые тела по значимости - 3 тип топливной энергии В гепатоцитах нет фермента тиофоразы, поэтому образовавшийся в гепатоцитах ацетоацетат не активируется и не окисляется Таким образом печень экспортирует ацетоацетат, другими словами синтезирует этот вид топлива для других клеток р-гидрокснбутерат окисляется путем дегидрироаниявацетоа цетат , дальше ацетоацетат в ацетилКоА Что касается ацетона, возможно 2 варианта окисления Дело в том, что ацетон очень летуч поэтому большое количество выделяется вместе с выдыхаемым воздухом, кроме того ацетон выделяется с водой 1 путь Ацетон расщепляется до ацетильного и формильного остатка 2 путь Через пропандиол он превращается в пируват. Ацетоновые тела накапливаясь в крови и тканях оказывают ннгибирующие действие на липолиз, в особенности это касается расщепление триглицеридов в липоцитах Дело в том, что избыточное накопление в крови ацетоновых тел приводит к развитию ацидоза Снижение уровня липолиза в клетках жировой ткани приводит к уменьшению притока жирных кислот в гепатоцига, к снижению скорости образования ацетоновых тел н следовательно к снижению содержания в крови. Все липиды присутствующие в крови входят в составе смешанных надмолекулярных белок-липидных. Трнглицериды фосфолипиды и холестирол. Перенос этих соединении осуществляется особым образом организованных надмолекулярных агрегатов получивших название -липопротеидные частицы ЛП. В состав липопротеидов могут входить молекулы липидов различных классов и молекулы белков Все ЛП имеют общий план структуры. Во внешней оболочке или так называемый внешний мономолекулярный слой липопротеидные частицы образуют белки их называют апобелки или апопротеины свободный холистерол и фосфолипиды Причем гидрофильные участки этих молекул обращены кнаружи и контактируют с водой, гидрофобные участки располагаются кнутри т е в сторону ядра Ядра гидрофобных липопротеидньгх частиц образуют прежде всего триглицериды далее этерефицированный холистерол, кроме того сюда могут включаться жирорастворимые витамины или другие гидрофобные молекулы Их подразделяют на 1 Хиломикрокы ХМ 2 Липопротеиды очень низкой плотности 3 Лкпопротеиды низкой плотности 4 Липопротеиды высокой плотности. В транспорте экзогенных липидов те липндоБ поступающих во внутреннюю среду организма из кишечника принимают главным образом два вида липопротеидов ХМ и Липопротеиды очень низкой плотности лонп Содержание липидов в ряду от ХМ до ЛПВП снижается, содержание белков нарастает постепенно возрастает содержание фосфолипидов возрастает и только содержание холистерола до липопротеидов низкой плотности увеличивается, но затем при переходе в лпвп оно снижается. Ведущую роль в транспорте экзогенных тлипидов играют хнпомикроны. Липопротеид липаза расщепляет триглицериды хиломикронов до глицерола и высших жирных кислот. Часть высших жирных кислот поступает в клетки а другая часть связывается с альбуминами и уносится током крови в другие ткани. Глицерин так же может утилизироваться либо в клетках непосредственно данного органа либо уносится током крови. Кроме триглицеринов хиломикронов ЛП липаза расщепляет также триглицериды липидов очень низкой плотности ХМ после атаки липопротеидлигаз потеряв значительную часть липидов превращаются в ремнантные хиломикроны остаточные ХМ они по размерам меньше Эти ремнантные ХМ захватываются рецепторами печени где они полностью расщепляются, а часть ХМ превращается путем сложных перестроек в липопротеиды высокой плотности В норме спустя часов после приема пищи плазма практически не содержит ХМ. Общий пул лпвп в циркулирующей крови формируется за счет трех источников 1 Синтез лпвп в печени 2 Образование лпвп нз ремнантных ХМ 3 Синтез в тонком кишечнике 4 Преимущественно теп синтезируются в печени Наиболее популярной точкой зрения в отношении биологической роли лпвп является следующая теп. В печени этот холестерол: В любом случае чтановится ясно, чтофункционирование лпвп будет способствовать выведению лишнего холестерола. Лпвп - антиатерогенные липопротеидами, в отличии рассмотренные ранее лпонп и лпнп атерогенные липопротеиды высокая концентрация которых несомненно стимулируют формирование атеросклероза и. Переваривание белков представляет собой расщепление пищевых белков на составляющие его аминокислоты Расщепление белков в желудочно-кишечном тракте. Пепсин катализ разрыва летпидных связей образованных аминогруппами фенилаланина и тирозина ароматические аминокислоты Трипсин - катализ разрыва пептндкых связей образованных карбоксильными группами лизина и аргинина основные аминокислоты. Хемотрипсин - кмалнз разрыва пептидных связей образованных карбоксильными группами трех аминокислот ароматических фениалаланнана, тирозина и триптофана. Карбоксипептидаза А -образованных С концевыми аминокислотами фенилаланнна, тирозина и триптофана Карбоксипептидаза —образованиях С концевыми лизином и аргинином. Аланинаминопептидаза — образованных N концевым аланином В целом протеяшш ж-к тракта в отношении своей специфичности обладают дополнительностью действия т е за счет совокупности их згаяитического эффекта с большой скоростью идет гидролиз пеПгияиых связей к белковых молекулах. Более того отсутствие одной из протеннвз за исключением трипсина обычно не приводит к существенному нарушению переваривания белков. Переваривание белков в желудке. Переваривание белков начинается в желудке В желудочном соке присутствует несколько протеиназ пепсин, гастриксин и несколько сходных с пепсином протеиназ Одним из таких ферментов является пепсин В У детей юиетея еще одна эндопротеиназа ренин Главной протеиназой желудочного свка пуослих несомненно является пепсин. Клетки слизистой дна Желудка вырабатывают профермент пепсияоген. Его молекулярная масса составляет величину килодальтон Под действием соляной кислоты желудочного сока пепсиноген в результате ограниченного протно виа превращается в пепсин молекуляр масса кот равна 32,7 килодальтон. Оптимальной средой для действия пепсина является среда с рН 1- 2,5 Это значение создается в желудке соляной кислотой. Переваривание белков в кишечнике. В поджелудочной железе синтезируется протоэнзимы. Энтерокиназа отщепляет от неактивного трипсиногена гексопептид 6 амк остатка. В дальнейшем превращение трипсиногена в трипсин может идти параллельно, путем аутокатализа. Образовавшийся трипсин превращает все другие проферменты в активные Ферменты, Хемотрипсиноген А или В под действием трипсина превращается в одну из форм активного Действие протеиназ поджелудочной железы дополняется действием ферментов синтезируемых в стенках кишечника Кишечная стенка синтезирует про аминопептидазу и про-дипептидазу. Перевод в активную форму идет так же за счет трипсина. Механизм перевода единый отщепление различной длины путем ограниченного протиолиза и фо активного центра Под действием этого комплекса ферментов белки и пептиды расщепляются до отдельных аминокислот и в таком виде всасываются в стенку кишечника. Всасывание ди-, три-, тетрапептидов абсолютно невозможно. Дезаминирование - процесс отщепления от аминокислот аминогрупп с образованием свободного аммиака Дезанминирование в организме челочка протекает в 2ариантах 1 В виде прямого дезаминирования 2 В виде непрямого дезаминирования трансдезаминировани е Пря моедезаминировакие аминокислот в свою очередь на разных уровнях организации живых объектов встречается в 4 основных вариантах а окислительное дезаминирование б внутримолекулярное дезаминирование в гидролитическое дезаминирование г восстановительное дезаминирование В клетках человека работают только 2 из перечисленных окислительное и внутримолекулярное дезаминирование Прямоеокислительноед езами нирование аминокислот. При прямом окислительном дезамикирование аминокислот образуются а-кетокислоты и аммиак Процесс идет в 2 этапа На первом зтапе при участии фермента оксидазы от аминокислоты отщепляется 2 атома водорода и аминокислота превращается в нминокислоту На втором этапе образованная иминокислота спонтанно присоединяет воду без участия фермента с образованием кетокислоты и аммиака Дегидрирование, происходящее на первом этапе сопровождается переносом водорода на ФАД или ФМН т е на простетические группы ферментов оксидаз т е вначале образуется восстановленный ФАД или ФМН и эти же восстановленные формы переносят затем водород на кислород аэробные легилпогннялгы и образуется токсическая перекись водорода. В организме человекаприсутствует оксид аза L-аминокислот в качестве кофермента ФМН Эта оксидаза обладает низкой активностью, в то же время в тканях обнаружена оксидаза D-амннокислот, в качестве кофермента она содержит ФАД. Считают, что оксидаза D-аминокислот обеспечивает превращение D-аминокислот, которые образуются в кишечнике. Образуется иминокислота, водород переноситься на ФМН и этот кофермент переносит водород на кислород с, образованием перекиси водорода Перекись водорода немедленно разрушается католазой. Иминокислота спонтанно присоединяет воду с образованием кетокислоты и отщеплением иминогруппы в виде аммиака Принято считать, что прямое дезаминирование аминокислот L ряда не вносит существенного вклада в метаболизм этих соединений человека В то же время практически во всех тканях организма человека обнаружены высоко активная дегидрогеназа Lглютаминовой кислоты Наибояьщая активность этого фермента обнаружена в почках и печени Этот фермент обладает высокой специфичностью и катализирует прямое окислительное дезаминирование L-пгютамата по схеме В качестве кофермента дегидрогназа содержит НАД На первом этапе водород с участием фермента переноситься на НАД с образованием восстановленного НАД, окисление которого несомненно сопровождается с образованием 3 молекул АТФ Образуется имниоглютамат Далее спонтанное присоединение воды обеспечивает образование 2 оксопиотарата сс-кетоглютаровая кислота и отщепляется аммиак. Ураканиновая кислота распадается дальшедоL-глютомата, аммиака и муравьиной кислоты Гистидаза обнаружена в печени и коже В коже ураканиновая кислота выступает в качестве фактора защищающего кожу от УФ-радиации. Фермент превращающий ураканиновую кислоту урокиназа оказывается присутствует только в печени Появление этого фермента в крови в норме он практически отсутствует наблюдается при развитии опухолевых процессов печени. В связи с этим определение активности наличия этого фермента используется в качестве диагностического теста на опухолевые поражения печени Это своеобразный индикаторный фермент Аминокислоты серии и трионин при участии дегидротазы, содержащей ПЛФ перидоксальфосфат в качестве кофермента, подвергаются сходным превращениям в результате которых серии превращается в пируват, а трионин в а-кетобутерат. Оказывается декарбоксилированию подвергаются не все аминокислоты, а лишь те из них при декарбоксилировании которых образуются биологически активные соединения выполняющие в организме функции или биорегуляторов или нейромедиаторов Вся эта группа соединений получила название - биогенные амины. Необходимо отметить, что в условии клетки декарбоксилировакие является необратимым процессом Биогенные амины обладают высокой биологической активностью и несомненно после выполнения основных функций они должны быть инакгивированы Общим путем инактивации биогенных аминов является их окислительное дезаминирование с участием ферментов моноаминооксидаз или диаминооксидаз. Биогенный амин, в данном случае моноамин, поэтому фермент моноаминооксидаза оксидаза способна переносить отщепляемый водород непосредственно на кислород с образованием перекиси водорода , превращается в альдегид, который затем окисляется до жирной кислоты, а перекись водорода расщепятся католазой Некоторые биогенные амины, например гистамин. Образование этих биологически активных. Из аминокислоты гистидина под действием гистидиндекарбоксила зы образуется биогенный амин - гистамин -клеточный медиатор медиатор воспаления, аллергии Антигистаминные препараты используются крайне широко Гистамин обладает выраженным сосудорасширяющим действием, причем это эффект у единственного из биогенных аминов, кроме того 2 Он участвует в развитии воспалительных в том числе аллергических реакциях 3 Наконец он стимулирует выделение желудочного сока и в этом качестве он нашел применение в клиническо-лаборатор ной диагностике для установления причины нарушения секреции желудочного сока - шстаминовая проба Инактивация гистамина идет либо за счет его дезаминнрования либо путем образования N-метипгистидина, т е путем метилирования. Тирозин гидроксилируется с превращением в ДОФА диоксифениламнин , затем ДОФА декарбоксилируется и превращается в дофамин. Дофамин является промежуточным продуктом при синтезе норадреналина и адреналина, он обладает выраженным сосудосуживающим действием, самое важное то, что он является медиатором стволовой части головного мозга При нарушении его образования в мозговой ткани развивается тяжелое заболевание паркинсонизм Для лечения которого используют подсадку в головной мозг эмбриональных клеток способных синтезировать дофамин При гидроксилировании дофамина образуется норадреналин, который при последующем метилировании дает адреналин В реакции превращения дофамина в норадреналин участвует аскорбат аскорбат участвует в синтезе гормонов При переходе норадреналина в адреналин в качестве метилирующего агента используется активный. Инактивирование названных биогенных аминов осуществляется в основном путем их дезаминирования с участием оноаминооксидаз или же путем метилирования. Кроме названных 2-х путей есть еще один путь инактивации этих аминов процессы глюкуроянрования происходящее в печени. Декарбоксилированию кроме ароматических аминокислот могут подвергаться аминокислоты жирного ряда, в частности глютомат. Образующееся при декарбоксилировании глутомата соединение является медиатором и носит название - у аминомаслянная кислота. Это соединение сегодня известно как тормозной медиатор коры головного мозга В ходе декарбоксилирования таких аминокислот как арнитин и лизин образуется диамины - путрисцин и кодаверин эти соединения используются при синтезе полиаминов, сперминов и спермидина, которые участвуют в регуляции процессов пролиферации клеток. При трансаминировании аминокислота взаимодействует к кетокислотой и в ходе этого взаимодействия происходит перенос аминогруппы с аминокислоты на кетокислоту без образоввдня свободного аммиака В результате образуется новая аминокислота и новая кетокислота. Одной из участвующих во взаимодействии кислот должна быть дикарбоновой. Реакции трансаминирования легко обратимы, в клетках органах и тканей находиться большое кол-во трансаминаз Каждый фермент катализирует перенос аминогруппы только между определенной парой аминокислот В реакцию трансаминирования из аминокислот входящих в состав белков вступают только две трионин и лизин Биологическая роль трансаминирования. Трансаминирование играет огромную роль в оптимизации смеси аминокислот, поступающих из кишечника во внутреннюю среду организма. Природные белки при расщеплении в кишечнике дают смесь аминокислот в которых соотношение отдельных аминокислот может быть очень далеким от потребности наших клеток В организме синтезируются ряд кетокислот которые в результате трансаминирования могут превращаться в заменимые аминокислоты За счет этого синтеза и происходит оптимизация смеси аминокислот ПРи трансаминировании происходит перераспределение аминного азота поступающего из кишечника, кроме того трансаминирование входит в качестве одного из этапов в более сложные процессы превращения аминокислот трансдезаминирование и трансреамикирования. В клинической практике нашло широкое применение определение активности двух трансаминаз - алат, асат Эти ферменты относятся к внутриклеточным ферментам и в норме их активность в крови крайне низкая. Активность в миокарде в печени очень высокая и при поражении этих тканей ферменты выходят в кровь Поэтому повышение активности трансаминаз в крови свидетельствует о поражении той или иной ткани какого-либо органа Например при инфаркте миокарда активность асат аспартатаминотрансф еразы увеличивается ухе через часов, при благоприятном течении заболевания активность через дня возвращается к исходному уровню При болезни Боткина в крови резко увеличивается активность второй трансаминазы алат аланинаминотрансфер азы , нормализация этого показателя используется для контроля за эффективностью проводимой терапии. Синтез аминокислот в тканях. Ели в клетках имеются а-кетокислоты, являющиеся аналогами соответствующих аминокислот, то эти аминокислоты могут быть образованы из кетокислот путем трансаминирования Исключением является трионин и лизин, поскольку в клетках они не вступают в реакции трансаминирования. Таким образом фактически незаменимыми в своем большинстве являются не аминокислоты, а их кетоанаолги которые не синтезируются в организме. Источником аминного азота для синтеза аминокислот путем трансаминирования является глютомат Если в клетках нет достаточного количества глютомата, то он может быть синтезирован из а-кетоппотаровой кислоты и аммиака в реакции восстановительного аминирования за счет обратимости действия глютоматдегидрогиназ ы Комбинация реакций восстановительного аминирования а-кетоглютората с последующим переносом аминного азота на кетокислоту получило название трансреаминирования. Таким образом трансреаминирование является основным путем синтеза заменимых аминокислот. Глютомлдегидрогиназа катализирует реакцию дезаминировання гчютомата и восстановительное аминирование а-кетоппотората с участием восстановленного НАД. Трансреаминирование - это основной путь синтеза заменимых аминокислот в организме человека. Углеродные скелеты аминокислот, образующиеся при дезаминировании аминокислот могут использоваться в клетках по различным направлениям. Углеродные остовы аминокислот серина, глицина, треонина, цистиина, аланина превращаются в пируват, далее карбоксилируются с образованием оксалоацетата. Пролин, гистидин, глютомат, глютамин, валин, изолейцин, метионин превращаются в промежуточные продукты. Аминокислота, которая при распаде дает любое промежуточное соединение гяиколиэа или цикла Кребса может использоваться в клетке для синтеза гаюкозы. Глюкозы мы синтезируем в сутки до грамм - это интенсивный синтез, причем синтез идет в основном за счет углеродного скелета аминокислот. Лейцина, лезин, тирозин, фенилаланнн и триптофан в качестве промежуточного продукта их распада образуется ацетоацетат получили название кетопластических или кетогенных. Хотя следует отметить, что часть углеродного скелета фенияаланина и тирозина превращается в фумаровую кислоту и может использоваться для синтеза глюкозы, т е эти аминокислоты их скелеты являются аминокислотами со смешанными функциями часть может давать глюкозу, часть ацетоновые тела. Углеродные остовы как гтюко-, так и кетопластических аминокислот могут окисляться до углекислого газа и воды в цикле Кребса. Поскольку ацетоацетат в клетках перефирических тканей активируется образованием ацетоацетилКоА, который затем, подвергаясь тиолизу, дает 2 молекулы ацетилКо, которые вовлекаются в цикл Кребса где и происходит их дальнейшее превращение. Оксалоацетат, образующийся из углеродных скелетов ряда аминокислот при своем декарбоксилировании превращается в пируват, а пируват в свою очередь декарбоксилируясь дает ацетилКоА. АцетиКоА в независимости от пути его образования будет поступать в цикл Кребса и окисляться до конечных. Следует отметить, что избыто ацетилКоА может быть использован на синтез высших жирных кислот, т е если мы будем есть белки в больших количествах и не шевелиться, то это не значит что мы будем очень стройными, поскольку аминокислоты превращаются в жиры. Аммиак тем или иным путем поступивший в печень или образовавшийся в гепатоцитах вступает в цикл мочевинообразования открытый в г. Синтез мочевины начинается с образования в митохондриях печени карбомоилфосфата. Вторая реакция мочевинообразования протекает так же в митохондриях трансферам обеспечивает перенос остатка карбомонила на молекулу арнигина-монокарбоно вая кислота содержащая 5 углеродных атомов. Образуется аминокислота - цитрулин. Дальнейшие реакции мочевинообразования протекают в цитозоле. В следующей реакции участвует цитрулин и аспартат фермент - аргининосукцинатсинт етаза. В этой реакции участвуют цитрулин и аспартат. В ходе реакции происходит расщепление АТФ до АМФ и пирофосфата и образуется аргининоянтарная кислота или аргининосукцинат. От куда клетки находят аспартат? Аспартат образуется в ходе реакций трансаминирования из оксалоацетата - промежуточного продукта цикла Креоса, который подвергается реакции взаимодействия с глутоматом и образуется аспартат. Дальше в ходе следующего процесса происходит лиазная реакция лиазное расщепление -расщепление не гидролитическим путем фермент- аргининосукцинатлиаз а. Происходит расщепление и в итоге образуется аминокислота аргинин и отщепляется остаток в виде фумаровой кислоты. Последняя реакция мочевинообразования катализируемая ферментом обладающим абсолютной специфичностью аргиниза. Происходит расщепление аргинина, образуется полный амид угольной кислоты получивший название иочевина и регенирирует орнитин. В ходе следующей реакции арнитин вновь вступая в реакцию взаимодействия с карбомоилфосфататом может давать цитрулин и дальнейшей повторение реакций приводит к увеличению синтезированной мочевины. Источникам углерода в мочевине является несомненно углекислый газ. Один атом азот происходит из аммиака, а второй атом азота по происхождению из аспартата. На синтез 1 молекулы мочевины клетка затрачивает 4 макроэргических эквивалента. Суточное выделение мочевины из организма составляет гр. Фермент аргиназа как и аргинин присутствует и в других тканях например головной мозг, почки, кожа. Однако в количественном отношении образование мочевины в этих органах крайне незначительно. Аммиак, образующийся в клетках различных органов и тканей в свободном состоянии не может переносится кровью к печени или к почкам в виду его высокой токсичности. Он транспортируется в эти органы в связанной форме в виде нескольких соединений, но преимущественно в виде амидов дикарбованных кислот, а именно гаютамина и аспаргина. Наибольшую роль в системе безопасного транспорта аммиака играет глютамин. Он образуется в клетках периферических органов и тканей из аммиака и пгутомата в энергозависимой реакции катализируемойфермен том гл ютаминсинтетазой. В виде глутамина аммиак переносится в печень или в почки где расщепляется до аммиака и глутомата в реакции катализируемой глутаминазой. Концентрация пгутомина в крови на несколько порядков выше чем других аминокислот. Ферменты мочевинообразования в полном объеме имеются только в печени. Меньшее значение имеет аналогичная система безопасного транспарта с участием аспаргиш. Энергозависимая реакция с участием АТФ тратится 2 макроргических соединения АТФ и АДФ. Аммиак связывается в виде аспаргина. Доставляется в печень или в почки где с участием аспарокиназы происходит выделение свободного аммиака. Есть еще один путь безопасного транспорта. Аммиак из мышц в печень транспортируется с участием аланина, который образуется в мышечной ткани из аммиака и пирувата. В гепатоцитах алакин в результате трансдезаминирования вновь расщепляется на аммиак и пируват. Некоторую роль в транспорте аммиака играет глутаминовая кислота, которая образуется в клетках перефирических тканей из аммиака и а-кетоглютаровой кислоты в ходе реакции восстановительного аминирования. Каждая тРНК в своей структуре имеет антикодон, который способен к комплементарному взаимодействию с соответствующим кодоном мРНК. Однако тРНК не имеют в своей структуре участков комплементарных той или иной аминокислоте. Присоединение аминокислоты к своей тРНК осуществляется с помощью специальных ферментов - аминоацил-тРНК-синте тазы. Каждая эта синтетаза катализирует 2-х стадийную реакцию, на первом этапе которой в активном центре фермента связывается молекула своей аминокислоты и молекулы АТФ. Фермент катализирует реакцию оразования аминоациладенилата. Иногда эти реакции называют активацией аминокислот. На второй этапе к активному центру присоединяется соответствующая тРНК и в ходе реакции образуется аминоацит-тРНК. В каждой клетке имеется минимум 20 различных аминоацил-тРНК-синте таз АА-тРНК-синтетаза , то есть по одной на каждую из 20 аминокислот. Точность работы этих ферментов крайне важна, поскольку дальнейшая судьба аминокислоты, то есть ее место включения в полипептидную цепь зависит только от тРНК. Сборка полипептидных цепей белков в соответствии с информацией поступающей из ядра с мРНК происходит на рибосомах. В составе рибосомы имеются 4 функциональных центра. П цнтр 3 Центр связывания тРНК полилелтидной цепи - А центр 4 Т центр. Обеспечивает образование пептидных связей в синтезируемом полипептиде. Процесс трансляции принято делить на три этапа: Терминацим Процессинг полипептидных цепей белков. Синтезируемая в ходе трансляции полипептидная цепь должна претерпеть ряд изменений прежде чем она превратиться в функционально полноценную молекулу. Естественно что для разных белков характер процессинга будет различным. Полипептидная цепь приобретает вполне определенную для данного белка третичную дисульфидных мостиков между сульгидрильными группами HS цистииновых остатков В случае образования неправильных дисульфидных мостиков возможна их перестройка. Эту функцию выполняют специальные белки, обнаруженные в большинстве тканей и получившие название - шепероны. Аминокислотные остатки в составе полипептидных цепей белков могут подвергаться химической модификации. Например гидроксилирование, метилирование, йодирование остатки тирозина в составе тириоглобулина. В преобразовании сложных белков на рибосомах синтезируются лишь их полипептидные цепи. Присоединение небелковых группировок происходит в ходе процессинга. Например при синтезе гликопротеидов лолипептидные цепи подвергаются гликозилированию, то есть присоединение к ним или моносахаридных остатков или олигосахаридных блоков при участии специальных ферментов - гликозилтрансфераз. При синтезе фосфопротеидов полипептидные цепи подвергаются фосфорилированию с участием ферментов протеинкиназ. При синтезе гликопротеидов и фосфопротеидов иджет ковалентная модификация синтезированных на рибосомах полипептидных цепей. В ходе синтеза трансаминаз или биотин зависимых карбоксилаз к полипептидным цепям ферментов ковалентными связями присоединяются фосфоперидоксаль или биотин. В ряде случаев небелковая группировка присоединяется к полипептидной цепи с помощью слабых взаимодействий ионные, водородные связи и даже гидрофобные взаимодействия. Например при образовании металлопротеидов ионы металлов соединяются с аминокислотными. Результатом этой серии реакций является образование инозиновой кислоты ИМФ. Инозиновая кислота - это нуклеотид, пуриновая часть которого представлена гипоксантином: Кроме того, инозиновая кислота служит предшественником основных пуриновых нукпеотидов - АМФ и ГМФ, схема синтеза которых представлена. При действии специфических киназ эти нуклеозидмонофосфаты превращаются в нуюгеозиддифосфаты и нуклеозидтрифосфаты. Пиримидиновое ядро пиримидиновых пуклеогидов образуется из диоксида углерода, амидной группы глутамина, аспарагиновой кислоты. В результате цепи реакций из этих веществ синтезируется уридинмонофосфорная кислота, которая в свою очередь служит предшественником других пиримидиновых нуклеотидов — цитидиловых и тимидиловых. Напомним, что при синтезе мочевины в реакции, катализируемой карбамоилфосфатсинте тазой 1, используется аммиак, а не глутамин. Эти ферменты различаются также локализацией:. Далее карбамоилфосфат в реакции с аспарагиновой кислотой образует карбамоиласпарагинов ую кислоту, которая денатурируется с образованием пиримидинового цикла дигидрооротовой кислоты:. Первые три реакции—образование карбамоилфосфата, карбамоиласпартата и дигидрооротовой кислоты— катализируются одним белком, содержащим активные центры для катализа каждой из реакций, Карбамоилфосфат и карбамоиласпартат не освобождаются из фермент-субстратного комплекса; освобождающимся продуктом действия. Дигидрооротовая кислота при действии отдельного фермента дегидрогеназы превращается в оротовую кислоту. Две следующие реакции—образование оротидиловой кислоты и ее декарбоксилирование— катал изируются также одним белком. Таким образом, шесть активных каталитических центров, необходимых для синтеза пиримидиновых нуклеотидов, кодируются только тремя структурными генами. Из УМФ при действии специфических киназ образуются УДФ и УТФ: Более сложным путем из уридиловой кислоты а также из цитидиловой кислоты образуются тимидиловые нуклеотиды. Синтез УМФ регулируется по механизму отрицательной обратной связи: УТФ является аллостерическим ингибитором первого фермента этой метаболической цепи — карбамоилфосфат-синт етазы II. Этот механизм предотвращает избыточныйсинтезне только УМФ, но и всех других пиримидиновых нуклеотидов, поскольку они образуются из УМФ. Повышенное выведение мочевой кислоты наблюдается при лейкемии, полицетемии, гепатитах,. Аминопурины в частности аденин и гуанин, подвергаются дезаминированию под действием особых ферментов — пуриндезаминаз аденазы и гуаназы При дезаминировакии аденина образуется гипоксантин. Аденаза с несомненностью обнаружена только у низших форм, в организме же человека и большинства животных дезаминирование аде нина, по-видимому происходит еще тогда когда аденин входит в состав нуклеозидов или нуклеотидов. При дезаминировании гуанина 2 амино 6 оксипурина под влиянием гуаназы образуется ксантин 2 6 диоксипурин. Ксантин в свою очередь окисляется далее в мочевую кислоту Как и при окислении гипоксантина, этот процесс происходит путем предварительного присоединения к ксантину воды с исследующим переносом водорода на кислород при участии фермента ксантиноксидазы. Наиболее известным примером нарушения обмена нуклеиновых кислот пуриннуклеотидов является подагра— заболевание знакомое человечеству с древнейших времен. Подагру греч pous — нога и agnos — тяжкий, жестокий издавна связывали с определенными условиями питания и, в частности с преобладанием в диете мясной пищи Действительно избыточное потребление продуктов богатых пуриновыми нуклеотидами и доставляющих помимо этого аминокислоты из которых организм. При подагре отмечается увеличение концентрации мочевой кислоты в крови гиперурикемия Вместо нормальных 4 мг в среднем нередко содержится больше 6мг мочевой кислоты в мл крови Если мочевая кислота. Нуклеопротеиды, нуклеиновые кислоты Структура я биологическая роль нуклеиновых кислот. В клетках присутствуют 2 типа нуклеиновых кислот: Как правило в составе клеток нуклеиновые кислоты образуют комплексы с белками получившими название - нуклеопротеиды. Молекулы ДНК построены из 2 дёзоксирибополинукле отидн ых цепей. Это самые большие отдельных мономерных звеньев до млн. Общая длина ДНК входящих в диплоидный набор человека оценивается величиной порядка 1,5 - 2 метра. Вместе с тем химическая структура отдельной ДНК удивительна проста. Это линейный полимер построенный из достаточно ограниченного числа индивидуальных мономерных единиц. Последовательность дезоксирибонуклеотид ов в полинуклеотидной цепи получили название - первичная структура ДНК. Представляет собой двойную правозакрученную дезоксирибополинукле отидн ых цепей. Саму спиральную структуру образует сахарофосфатные. Стабилизация такой структуры осуществляется прежде всего за счет водородных связей между комплементарными ларами азотистых оснований соседних цепей, во-вторых за счет так называемого стекинг взаимодействия, то есть взаимодействия делокализованных системэлектроновв расположеных параллельно друг другу ароматических циклов. Молекулы ДНК уменьшается в ядре клетки, диаметр которой измеряется микрометрами. Следовательно спирализованная молекула ДНК должна быть упакована в пространстве причем линейные размеры должны быть уменьшены по крайне мере на 4 порядка. Вместе с тем ДНК - непрочная структура и она легко разламывается на части при ее перегибе. Отсюда ясно, что укладка ДНК в более компактную структуру возможна при взаимодействии ее с другими компонентами ядра в основном с ядерными белками кистоны. Взаимодействие происходит так же с кислыми негистоновьми белками, которые входят в состав ядра. Принято выделят 3 уровня компактизации молекулы ДНК. В формировании 1-го - нуклеосомного важную роль играет взаимодействие ДНК с молекулами белков гистонов. Участки ДНК соединяющий между собой минимальные нуклеосомы получили название - линкер. Минимальная нуклеосома с линкером образует полную нуклеосому. За счет нуклеосомного уровня компактизации линейные размеры моелкулы ДНК уменьшаются примерно в раз. Второй уровень компактизации ДНК - образование фибрилл ДНК. Важную роль в формировании второго уровня компактизации принадлежит белку гистону HI. Своей глобулярной частью молекула гистона связывается со средней частью одной нуклеосомой, а с помощью своих ручек взаимодействует с 2-мя соседними нуклеосомами, при этом нуклеосомы стягиваются вместе, образуя регулярную повторяющуюся структуру напоминающую спираль. Поперечник такой структуры составляет около 30 нм. За счет формирования такого рода фибрилярныя структур длина молекулы ДНК уменьшается еще в. Эта структура образуется следующим образом: Осевая нить хромосомы образована негистоновыми кислыми белками. Каждая петля включает до тыс пар нуклеотидов. Существуют более высокие уровни компактизации. Информация записана в ДНК о линейной последовательности аминокислотных остатков полипептидных цепей белков и некоторых полипепюцдов. Эта информация о линейной последовательности рибонуклеотидных остатков в молекулах структурных РНК, т. Рибонуклеиновые кислоты Первшчпаястру ктура РНК. Главными нуклеотидами РНК являются: АМФ - адениловая кислота ГМФ - гуаниловая кислота ЦМФ - цитидиловая кислота УМФ - уридировая кислота Кроме того в состав РНК входит минорных нуклеотидов. Причем минрные нуклеотиды могут быть 3 видов. Первичная структура РНК - последовательность расположения нуклеотидов в полинуклеотидной цепи молекулы. Химическая структура молекулы РНК идентична таковой для моелкулы ДНК с учетом замены дезоксирибозы и тимина ДНК на рибозу и урацил в РНК. Полинуклеотидная цепь РНК как и цепь ДНК имеет направление. Количество рибонуклеотидных остатков в молекулах РНК разлкчккх классов колеблется весьма значительно: Молекулярная масса РНК составляет у транспортных от 25 тыс, у рибосомальных до нескольких миллионов дальтон. Молекулы РНК представляют собой одиночные полинуклеотидные цепи не имеющие на всем своем протяжении регулярной пространственной. Полинуклеотидная цепь закручивается сама на себя и между азотистыми основаниями сближенными возникает водородная связь, однако полной комплементарности этих антипараллельных участков РНК нет. Поэтому спиральная структура имеет менее правильный характер по сравнению со вторичной структурной ДНК. В стабилизация "шпилек" считают что принимают участие и стекинг взаимодействия. Это определенный способ укладки полинуклеотидной цепи РНК в определенном объеме пространства. За счет электростатических и гидрофобных взаимодействий между элементами цепи РНК. Кроме того несомненно в стабилизации третичной структуры принимают участие белки, особенно белки имеющие большую молекулярную массу в состав которых входит большое количество рибонуклеидных остатков. В клетках эукариот присутствует несколько классов РНК, играющих ту или иную роль в процессах реализации генетической информации. Выполняют структурную функцию, поскольку они входят в состав рибосом. Обеспечивает связывание аминокислот в цитозоле. Перенос аминокислот на рибосомы. Принимает непосредственное участие в синтезе полипептидных. Это первичные транскрипты с тех или иных структурных генов ДНК. Являются высокомолекулярными предшественниками молекул РНК различных классов. Которые присутствуют в небольшом количестве и в цитозоле и ядре клеток эукариот. Среди них обычно выделяют малые ядерные РНК. Они принимают участие в регуляции работы генетического аппарата клеток, а так же в. Последовательность аминокислот в полипептидных цепях зашифрована в виде последовательности триплетов дезоксирибонуклеотид ов значащей цепи гена ДНК. Поскольку непосредственно е синтезе полипептндных цепей белков принимают участке мРНК, то аминокислотный код обычно представляют в виде последовательностей азотистый оснований триплетов РНК. Из 4 главных нуклеотидов РНК с учетом последовательности их расположения можно получить 64 триплета или кодона. Причем 3 из этих кодонов не кродируют ни одной аминокислоты и служит сигналдов об окончании сборки полипептидной цепи терминирующие кодоны. Таким образом на 20 аминокислот приходится 61 кодон. Наличие "нонсенс" кодонов УАА, УГА, УАГ кодоны терминации и АУТ и ГУТ - кодоны инициации. На всех уровнях живых систем конкретная аминокислота кодируется одним и теми же триплетами. Молекулы транспортных РНК имеют небольшие размеры. Они состоят всего из нуклеотидных остатков, и. Особенностью строения тРНК является большое количество здесь минорных нуклеотидов. Оказывается, что транспортные РНК подобно молекулам матричных РНК так же имеют общий план. Антикодон за счет взаимодействия с кодоном матричной РНК определяется место включения аминокислоты, переносимой данной молекулой в полептидную цепь белка при синтезе его на рибосомах. Дегидроуридировая и Псевдоуридиловая петли играют определенную роль во взаимодействии молекулы тРНК с рибосомами. При дальнейшем формировании третичной структуры все молекулы тРНК принимают Ц образную форму, причем на конце горизонтальной перекладины этой структуры расположен антикодон а ниждем конце вертикальной палочки находиться акцепторный иуклеотид ЦЦА. В каждой клетке содержится как минимум 20 тРНК. Поскольку ряд аминокислот могут кодироваться несколькими кодонами, то в клетке может присутствовать несколько изоакцепторных тРНК, которые имеют различные антикодоны. В рибосомах эукариотических клеток присутствует 4 типа молекул РНК. Их обозначают в соответствии с их молекулярной массой. В состав малой субединицы рибосом входит 18S РНК 2. В составбольшойсубедин ицы 3 типа:. В цитозоле ядре клеток обнаружено большое количество небольших высоко стабильных молекул РНК имеющих в своем составе от 90 до нуклеотидных остатков. Часть этих молекул участвуют в регуляции работы генетического аппарата клеток. ДЛя большинства этих молекул РНК функции пока неизвестны. Молекулы тРНК образуются первоначально в виде больших предшественников которые содержат нуклеотидные последовательности для нескольких молекул тРНК. Эти превичные транскрипты подвергаются нуклеолитическому процессигу под действием специальных нуклеаз. В ходе процессинга из общего предшественника выделяются отдельные нуклеотидные последовательности характерные для той или иной тРНК. Поскольку в составе генов некоторых тРНК имеется интрон, он так же удаляется в ходе процессинга. Дальнейшая модификация молекул тРНК включает в себя превращение части главных нуклеотндов в минорные за счет различных вариантов их химической модификации. Наиболее многочисленным и гетерогенным по своим размерам является класс матричных РНК, что связано с функциями. Вы знаете, что этот класс отвечает за информационное обеспечение синтеза десятков тысяч различных белковых молекул присутствующих в каждой. Необходимо отметить, что матричная РНК является наиболее быстро обменивающейся фракцией клеточной РНК. Большинство молекул РНК имевт единый класс построения - общие черты. Далее располагается инициирующий кодон, далее зона трансляции, кроторыя заканчивается "нонсенс" кодовом кодон терминации. Его функция не выяснена, но считают, что это блок отвечает за стабильность матричной РНК в клетке. Молекулы некоторых матричных РНК, например гистоновые матричные РНК полиаденилатного блока не имеют. Транскрипция - синтез РНК не только матричных. В ходе процесса репликации происходит удвоение молекулы ДНК, причем структура, образующаяся в ходе синтеза, 2 дочерних молекул ДНК представляют собой точную структуру исходной или материнской цепи ДНК. В каждой из идентичных дочерних молекул ДНК содержится тот же самый объем генетической информации, что и в материнской молекуле. Именно поэтому, при последующем делении клеток каждая из 2 новых клеток получает эквивалентный объем генетической информации. Несомненно это и обеспечивает стабильность клеток и вида в целом в раду поколений. Принципиальная схема механизма репликации ДНК очень проста. Молекула Днк состоит нз 2антипараллельных комплементарных дезоксирибополинукле отидн ой цепей каждая из которых содержит весь набор генетической информации. На первом этапе репликации происходит раскручивание двойной спирали ДНК и расхождение ее цепей. На втором этапе репликации на каждой из материнских цепей синтезируется новая вторая дезоксирибополинукле отидн ая цепь, причем порядок соединения мономериых единиц во вновь синтезируемой цепи определяется матрицей, то есть материнской цепью последовательностью нуклеотидов. По завершению процесса синтеза имеется 2 молекулы ДНК, в каждой из которых одна цепь материнская, а вторая вновь синтезируемая - полуконсервативный: У РНК транскрипция имеет консервативный механизм биосинтеза.


Сколько раз можно пить алкоголь
Статья 175 упк
Сколько стоит проектор домашний
Аминокислотный состав белков
Внедрение результатов исследования в образовательный процесс
Расписание автобусов саратов петровск на сегодня
Last theater перевод
Лекция № 3. Строение и функции белков. Ферменты
Декатлон в спб адреса
Убрать формулы оставить значение
Глюкоза.
Презентация про город братск
Как начать писать рэп
Милане делают свечку в попу ютуб
Белки
Приказ фтс 1458 от 11.08 2009
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment