Last active
April 12, 2016 13:30
-
-
Save Gedevan-Aleksizde/9e9eb0ff9a1dd53533bf to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyr) # ver. 0.3.1. | |
library(dplyr) # ver. 0.4.3 | |
library(rstan) # ver. 2.9.0 | |
library(forecast) # ver. 6.2 | |
# 並列化させる設定 | |
rstan_options(auto_write = TRUE) | |
options(mc.cores = parallel::detectCores()) | |
setwd("~/Documents/blog/20160212_StanVARMA/") # 任意のフォルダに書き換える | |
stan.varma11 <- stan_model(file="varma.stan") # compile | |
N <- 1 # num series | |
Time <- 400 # span | |
Time.forecast <- 50 # forecasting span | |
sample.data <- arima.sim(n = Time, list(ar = c(0.8897), ma = c(-0.2279)), | |
sd = sqrt(0.1796)) | |
# plot 80 % & 90 % predition interval of y | |
plot.stan.pred <- function(data,stanout, Time, Time.forecast, N, span=NULL){ | |
if (is.null(span) ) span <- 1:(Time + Time.forecast) | |
y_pred <- data.frame() | |
for ( i in 1:N){ | |
m.pred <- rstan::extract(stanout, "y_pred")$y_pred[,,i] | |
# 90 % pred interval | |
temp <- data.frame(t = Time+1:Time.forecast, | |
series = i, | |
y90_l = apply(m.pred, 2, quantile, probs=.05), | |
y90_u = apply(m.pred, 2, quantile, probs=.95), | |
y80_l = apply(m.pred, 2, quantile, probs=.1), | |
y80_u = apply(m.pred, 2, quantile, probs=.9), | |
y_med = apply(m.pred, 2, median), | |
y_mean = apply(m.pred, 2, mean, rm.na=T) | |
) | |
y_pred <- rbind(y_pred, temp) | |
} | |
temp <- data.frame(t=1:Time, data) | |
colnames(temp)[1+1:N] <- seq(1:N) | |
y_pred <- temp %>% gather(key=series, value=y_mean, -t) %>% mutate(series=as.integer(series)) %>% bind_rows(y_pred) | |
y_pred <- y_pred %>% filter(t %in% span) | |
ggplot(y_pred) + geom_line(aes(x=t, y=y_mean)) + geom_line(aes(x=t, y_med), linetype=2) + | |
geom_ribbon(aes(x=t, ymin=y90_l, ymax=y90_u), alpha=.2, fill="blue") + geom_ribbon(aes(x=t, ymin=y80_l, ymax=y80_u), alpha=.5, fill="grey") + | |
xlim(c(min(span),max(span))) + labs(title="ARMA (1,1) Forecasts by MCMC", y="y") + facet_wrap(~series, nrow = N) | |
} | |
# estimate ARMA | |
res.stan <- sampling(stan.varma11, data=list(T=Time, N=N, y=matrix(sample.data), T_forecast=Time.forecast), chain=1 ) | |
res.auto.arima <- auto.arima(sample.data) | |
res.arima <- arima(sample.data, order = c(1,0,1)) | |
print(res.stan, pars=c("mu","Psi","Theta","Sigma")) | |
print(plot.stan.pred(sample.data, res.stan, Time, Time.forecast, N, 350:450)) | |
print(res.auto.arima) | |
plot(forecast(res.auto.arima, h = Time.forecast), xlim=c(Time-Time.forecast,Time + Time.forecast) ) | |
print(res.arima) | |
plot(forecast(res.arima, h = Time.forecast), xlim=c(Time-Time.forecast, Time + Time.forecast) ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment