Torch Vision GoogLeNet Model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "d61a6c41", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import torch\n", | |
"import torchvision" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "abe6863d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"('1.9.0', '0.10.0')" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"torch.__version__, torchvision.__version__" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "1b55aad8", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"GoogLeNet(\n", | |
" (conv1): BasicConv2d(\n", | |
" (conv): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (maxpool1): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", | |
" (conv2): BasicConv2d(\n", | |
" (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (conv3): BasicConv2d(\n", | |
" (conv): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (maxpool2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", | |
" (inception3a): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (inception3b): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(32, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (maxpool3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", | |
" (inception4a): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(480, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(96, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(208, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(480, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(16, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(480, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (inception4b): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(512, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(112, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(112, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(224, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(24, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(24, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (inception4c): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(24, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(24, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (inception4d): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(112, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(512, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(144, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(144, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(288, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(512, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (inception4e): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(528, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(528, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(528, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(528, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (maxpool4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)\n", | |
" (inception5a): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(832, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(832, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(832, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (inception5b): Inception(\n", | |
" (branch1): BasicConv2d(\n", | |
" (conv): Conv2d(832, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (branch2): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(832, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch3): Sequential(\n", | |
" (0): BasicConv2d(\n", | |
" (conv): Conv2d(832, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(48, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" (branch4): Sequential(\n", | |
" (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=True)\n", | |
" (1): BasicConv2d(\n", | |
" (conv): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" )\n", | |
" )\n", | |
" (aux1): InceptionAux(\n", | |
" (conv): BasicConv2d(\n", | |
" (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (fc1): Linear(in_features=2048, out_features=1024, bias=True)\n", | |
" (fc2): Linear(in_features=1024, out_features=1000, bias=True)\n", | |
" )\n", | |
" (aux2): InceptionAux(\n", | |
" (conv): BasicConv2d(\n", | |
" (conv): Conv2d(528, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | |
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" )\n", | |
" (fc1): Linear(in_features=2048, out_features=1024, bias=True)\n", | |
" (fc2): Linear(in_features=1024, out_features=1000, bias=True)\n", | |
" )\n", | |
" (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n", | |
" (dropout): Dropout(p=0.2, inplace=False)\n", | |
" (fc): Linear(in_features=1024, out_features=1000, bias=True)\n", | |
")" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"torchvision.models.GoogLeNet(init_weights=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "c7437d1d", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment