I assume you make clean system install, no previous Nvidia installations. Other case, try the following steps on your own risk:
sudo apt-get purge 'nvidia*'
rm ~/.Xauthority
Switch off the PC, remove video card
import numpy as np | |
import pandas as pd | |
import scipy.stats as ss | |
import scipy | |
def get_bootstrap_samples(data, n_samples): | |
indices = np.random.randint(0, len(data), (n_samples, len(data))) | |
samples = data[indices] | |
return samples |
Borders for float features generated | |
0: learn 70.50475406 test 40.44999897 bestTest 40.44999897 total: 47.1ms remaining: 424ms | |
1: learn 65.63694777 test 53.45852055 bestTest 40.44999897 total: 47.6ms remaining: 191ms | |
2: learn 57.7842572 test 100.5151111 bestTest 40.44999897 total: 48.1ms remaining: 112ms | |
3: learn 55.30496775 test 128.7490654 bestTest 40.44999897 total: 48.6ms remaining: 72.8ms | |
4: learn 52.89929452 test 136.0044652 bestTest 40.44999897 total: 49ms remaining: 49ms | |
5: learn 51.9437037 test 150.0426779 bestTest 40.44999897 total: 49.6ms remaining: 33ms | |
6: learn 51.70084336 test 158.4656055 bestTest 40.44999897 total: 50.1ms remaining: 21.5ms | |
7: learn 50.61418096 test 162.2118236 bestTest 40.44999897 total: 50.6ms remaining: 12.6ms | |
8: learn 50.49985141 test 165.7670929 bestTest 40.44999897 total: 51.1ms remaining: 5.67ms |
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# import tensorflow as tf | |
import tensorflow as tf, numpy as np | |
from tensorflow import nn | |
from tensorflow import keras as ke | |
from tensorflow.examples.tutorials.mnist import input_data | |
def gpu_check(): | |
import os | |
os.environ['CUDA_VISIBLE_DEVICES'] = '/device/gpu:0' | |
import tensorflow as tf | |
from datetime import datetime | |
shape = (10, 10) | |
device_name = "/gpu:0" | |
with tf.device(device_name): |
# -*- coding: utf-8 -*- | |
import numpy as np | |
from glob import glob | |
import tensorflow.contrib.keras as K | |
from skimage.util import view_as_windows, pad | |
resnet = K.applications.resnet50 | |
image = K.preprocessing.image |
import tensorflow as tf | |
from glob import glob | |
folder = './data/*.jpg' | |
def create_graph(): | |
filename_queue = tf.train.string_input_producer(list(glob(folder))) | |
reader = tf.TextLineReader() | |
key, value = reader.read(filename_queue) |
import tensorflow as tf | |
from imageio import imsave, imread | |
def read_and_preproc(): | |
inp_img_op = tf.placeholder(tf.float32, shape=[None, None, 3]) | |
image_size_before_crop, IMG_HEIGHT, IMG_WIDTH = 286, 256, 256 | |
# Preprocessing: | |
out = tf.image.resize_images(inp_img_op, [image_size_before_crop, image_size_before_crop]) | |
out = tf.random_crop(out, [IMG_HEIGHT, IMG_WIDTH, 3]) |
function fk(n) { | |
return (n*(n + 1)) / 2; | |
} | |
var data = readline().split(' ').map(function(x) { return parseInt(x); }); | |
var n = data[0]; | |
var m = data[1]; | |
var k = data[2]; | |
var nL = k - 1; |
const Promise = require('bluebird'); | |
const mongoose = require('mongoose'); | |
const _ = require('lodash'); | |
const Answer = require('./answer'); | |
const GooGl = require('./goo-gl'); | |
const Meta = require('./meta'); | |
const Recommendations = require('./recommendations'); | |
const config = require('../config'); |